Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 11(12): e0168276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959965

RESUMO

BACKGROUND: Genetic variation in the Laccase (multicopper oxidoreductase) domain-containing 1 (LACC1) gene has been shown to affect the risk of Crohn's disease, leprosy and, more recently, ulcerative colitis and juvenile idiopathic arthritis. LACC1 function appears to promote fatty-acid oxidation, with concomitant inflammasome activation, reactive oxygen species production, and anti-bacterial responses in macrophages. We sought to contribute to elucidating LACC1 biological function by extensive characterization of its expression in human tissues and cells, and through preliminary analyses of the regulatory mechanisms driving such expression. METHODS: We implemented Western blot, quantitative real-time PCR, immunofluorescence microscopy, and flow cytometry analyses to investigate fatty acid metabolism-immune nexus (FAMIN; the LACC1 encoded protein) expression in subcellular compartments, cell lines and relevant human tissues. Gene-set enrichment analyses were performed to initially investigate modulatory mechanisms of LACC1 expression. A small-interference RNA knockdown in vitro model system was used to study the effect of FAMIN depletion on peroxisome function. RESULTS: FAMIN expression was detected in macrophage-differentiated THP-1 cells and several human tissues, being highest in neutrophils, monocytes/macrophages, myeloid and plasmacytoid dendritic cells among peripheral blood cells. Subcellular co-localization was exclusively confined to peroxisomes, with some additional positivity for organelle endomembrane structures. LACC1 co-expression signatures were enriched for genes involved in peroxisome proliferator-activated receptors (PPAR) signaling pathways, and PPAR ligands downregulated FAMIN expression in in vitro model systems. CONCLUSION: FAMIN is a peroxisome-associated protein with primary role(s) in macrophages and other immune cells, where its metabolic functions may be modulated by PPAR signaling events. However, the precise molecular mechanisms through which FAMIN exerts its biological effects in immune cells remain to be elucidated.


Assuntos
Doença de Crohn/genética , Predisposição Genética para Doença , Proteínas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Células HeLa , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Leucócitos Mononucleares/citologia , Ligantes , Macrófagos/citologia , Macrófagos/metabolismo , Oxigênio/química , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
J Invest Dermatol ; 135(10): 2410-2417, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26030183

RESUMO

The mechanisms by which intracellular pathogens trigger immunosuppressive pathways are critical for understanding the pathogenesis of microbial infection. One pathway that inhibits host defense responses involves the induction of type I interferons and subsequently IL-10, yet the mechanism by which type I IFN induces IL-10 remains unclear. Our studies of gene expression profiles derived from leprosy skin lesions suggested a link between IL-27 and the IFN-ß induced IL-10 pathway. Here, we demonstrate that the IL-27p28 subunit is upregulated following treatment of monocytes with IFN-ß and Mycobacterium leprae, the intracellular bacterium that causes leprosy. The ability of IFN-ß and M. leprae to induce IL-10 was diminished by IL-27 knockdown. Additionally, treatment of monocytes with recombinant IL-27 was sufficient to induce the production of IL-10. Functionally, IL-27 inhibited the ability of IFN-γ to trigger antimicrobial activity against M. leprae in infected monocytes. At the site of disease, IL-27 was more strongly expressed in skin lesions of patients with progressive lepromatous leprosy, correlating and colocalizing with IFN-ß and IL-10 in macrophages. Together, these data provide evidence that in the human cutaneous immune responses to microbial infection, IL-27 contributes to the suppression of host antimicrobial responses.


Assuntos
Interferon beta/farmacologia , Interleucina-10/metabolismo , Interleucina-27/metabolismo , Hanseníase Virchowiana/tratamento farmacológico , Hanseníase Virchowiana/metabolismo , Mycobacterium leprae/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunossupressores/farmacologia , Interleucina-27/farmacologia , Hanseníase Virchowiana/patologia , Camundongos , Microscopia Confocal , Modelos Animais , Monócitos/citologia , Monócitos/efeitos dos fármacos , Mycobacterium leprae/patogenicidade , Prognóstico , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos de Amostragem , Sensibilidade e Especificidade , Transfecção
3.
Mol Microbiol ; 73(5): 737-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19659640

RESUMO

Small regulatory RNAs (sRNAs) are well known to command bacterial protein synthesis by modulating the translation and decay of target mRNAs. Most sRNAs are specifically regulated by a cognate transcription factor under certain growth or stress conditions. Investigations of the conserved Hfq-dependent MicM sRNA in Escherichia coli (article by Poul Valentin-Hansen and colleagues in this issue of Molecular Microbiology) and in Salmonella have unravelled a novel type of gene regulation in which the chitobiose operon mRNA acts as an RNA trap to degrade the constitutively expressed MicM sRNA, thereby alleviating MicM-mediated repression of the synthesis of the YbfM porin that is required for chitosugar uptake. The results suggest that 'target' mRNAs might be both prey and also predators of sRNAs.


Assuntos
Dissacarídeos/metabolismo , Escherichia coli K12/fisiologia , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Modelos Biológicos , Porinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA