Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros


Intervalo de ano de publicação
1.
Cell Genom ; 4(4): 100540, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604125

RESUMO

Mechanisms underlying phenotypic divergence across species remain unresolved. In this issue of Cell Genomics, Hansen, Fong, et al.1 systematically dissect human and rhesus macaque gene expression divergence by screening tens of thousands of orthologous elements for enhancer activity in lymphoblastoid cell lines, revealing a much greater role for trans divergence at levels equal to those of cis effects, counter to the prevailing consensus in the field.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Animais , Humanos , Macaca mulatta/genética , Sequências Reguladoras de Ácido Nucleico , Genômica
2.
Clin Exp Med ; 23(3): 737-750, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35802264

RESUMO

MicroRNAs are a set of small non-coding RNAs that could change gene expression with post-transcriptional regulation. MiRNAs have a significant role in regulating molecular signaling pathways and innate and adaptive immune system activity. Moreover, miRNAs can be utilized as a powerful instrument for tissue engineers and regenerative medicine by altering the expression of genes and growth factors. MiR-1290, which was first discovered in human embryonic stem cells, is one of those miRNAs that play an essential role in developing the fetal nervous system. This review aims to discuss current findings on miR-1290 in different human pathologies and determine whether manipulation of miR-1290 could be considered a possible therapeutic strategy to treat different non-malignant diseases. The results of these studies suggest that the regulation of miR-1290 may be helpful in the treatment of some bacterial (leprosy) and viral infections (HIV, influenza A, and Borna disease virus). Also, adjusting the expression of miR-1290 in non-infectious diseases such as celiac disease, necrotizing enterocolitis, polycystic ovary syndrome, pulmonary fibrosis, ankylosing spondylitis, muscle atrophy, sarcopenia, and ischemic heart disease can help to treat these diseases better. In addition to acting as a biomarker for the diagnosis of non-malignant diseases (such as NAFLD, fetal growth, preeclampsia, down syndrome, chronic rhinosinusitis, and oral lichen planus), the miR-1290 can also be used as a valuable instrument in tissue engineering and reconstructive medicine. Consequently, it is suggested that the regulation of miR-1290 could be considered a possible therapeutic target in the treatment of non-malignant diseases in the future.


Assuntos
Síndrome de Down , MicroRNAs , Gravidez , Feminino , Animais , Humanos , Recém-Nascido , Medicina Regenerativa , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica
3.
Immunology ; 165(1): 44-60, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716913

RESUMO

Cytokines are considered vital mediators of the immune system. Down- or upregulation of these mediators is linked to several inflammatory and pathologic situations. IL-26 is referred to as an identified member of the IL-10 family and IL-20 subfamily. Due to having a unique cationic structure, IL-26 exerts diverse functions in several diseases. Since IL-26 is mainly secreted from Th17, it is primarily considered a pro-inflammatory cytokine. Upon binding to its receptor complex (IL-10R1/IL-20R2), IL-26 activates multiple signalling mediators, especially STAT1/STAT3. In cancer, IL-26 induces IL-22-producing cells, which consequently decrease cytotoxic T-cell functions and promote tumour growth through activating anti-apoptotic proteins. In hypersensitivity conditions such as rheumatoid arthritis, multiple sclerosis, psoriasis and allergic disease, this cytokine functions primarily as the disease-promoting mediator and might be considered a biomarker for disease prognosis. Although IL-26 exerts antimicrobial function in infections such as hepatitis, tuberculosis and leprosy, it has also been shown that IL-26 might be involved in the pathogenesis and exacerbation of sepsis. Besides, the involvement of IL-26 has been confirmed in other conditions, including graft-versus-host disease and chronic obstructive pulmonary disease. Therefore, due to the multifarious function of this cytokine, it is proposed that the underlying mechanism regarding IL-26 function should be elucidated. Collectively, it is hoped that the examination of IL-26 in several contexts might be promising in predicting disease prognosis and might introduce novel approaches in the treatment of various diseases.


Assuntos
Suscetibilidade a Doenças , Interleucinas/genética , Interleucinas/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Infecções/etiologia , Infecções/metabolismo , Infecções/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Interleucinas/química , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Transporte Proteico , Transdução de Sinais , Relação Estrutura-Atividade
4.
EBioMedicine ; 68: 103379, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34090257

RESUMO

BACKGROUND: Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is often late- or misdiagnosed leading to irreversible disabilities. Blood transcriptomic biomarkers that prospectively predict those who progress to leprosy (progressors) would allow early diagnosis, better treatment outcomes and facilitate interventions aimed at stopping bacterial transmission. To identify potential risk signatures of leprosy, we collected whole blood of household contacts (HC, n=5,352) of leprosy patients, including individuals who were diagnosed with leprosy 4-61 months after sample collection. METHODS: We investigated differential gene expression (DGE) by RNA-Seq between progressors before presence of symptoms (n=40) and HC (n=40), as well as longitudinal DGE within each progressor. A prospective leprosy signature was identified using a machine learning approach (Random Forest) and validated using reverse transcription quantitative PCR (RT-qPCR). FINDINGS: Although no significant intra-individual longitudinal variation within leprosy progressors was identified, 1,613 genes were differentially expressed in progressors before diagnosis compared to HC. We identified a 13-gene prospective risk signature with an Area Under the Curve (AUC) of 95.2%. Validation of this RNA-Seq signature in an additional set of progressors (n=43) and HC (n=43) by RT-qPCR, resulted in a final 4-gene signature, designated RISK4LEP (MT-ND2, REX1BD, TPGS1, UBC) (AUC=86.4%). INTERPRETATION: This study identifies for the first time a prospective transcriptional risk signature in blood predicting development of leprosy 4 to 61 months before clinical diagnosis. Assessment of this signature in contacts of leprosy patients can function as an adjunct diagnostic tool to target implementation of interventions to restrain leprosy development. FUNDING: This study was supported by R2STOP Research grant, the Order of Malta-Grants-for-Leprosy-Research, the Q.M. Gastmann-Wichers Foundation and the Leprosy Research Initiative (LRI) together with the Turing Foundation (ILEP# 702.02.73 and # 703.15.07).


Assuntos
Biomarcadores/sangue , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Hanseníase/diagnóstico , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Humanos , Hanseníase/sangue , Hanseníase/genética , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sequência de RNA , Adulto Jovem
5.
Am J Trop Med Hyg ; 104(6): 2190-2194, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33819170

RESUMO

Experts have called attention to the possible negative impact of the coronavirus disease 2019 (COVID-19)-related cytokine storm syndrome on the progression of leprosy-related disabilities. We assessed the frequency of reactional states in patients co-infected with Mycobacterium leprae and severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2). We consecutively included patients during the first peak of the COVID-19 epidemic in Brazil and analyzed the expressions of genes encoding interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12A, IL-12B, and tumor necrosis factor-α in peripheral blood mononuclear cells. We included 64 leprosy patients and 50 controls. Twelve of the leprosy patients and 14 of the controls had been diagnosed with COVID-19. Co-infection was associated with increased IL-6 (P = 0.043) and IL-12B (P = 0.017) expression. The median disability grades were higher for leprosy/COVID-19 patients; however, the difference was not significant (P = 0.194). Patients co-infected with M. leprae and SARS-CoV-2 may experience a higher-grade proinflammatory state.


Assuntos
COVID-19/imunologia , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Hanseníase/complicações , Traumatismos dos Nervos Periféricos/etiologia , Adulto , COVID-19/complicações , COVID-19/metabolismo , Estudos Transversais , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-12/genética , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia
6.
ACS Synth Biol ; 10(2): 297-308, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501828

RESUMO

The marine yeast Debaryomyces hansenii is of high importance in the food, chemical, and medical industries. D. hansenii is also a popular model for studying molecular mechanisms of halo- and osmotolerance. The absence of genome editing technologies hampers D. hansenii research and limits its biotechnological application. We developed novel and efficient single- and dual-guide CRISPR systems for markerless genome editing of D. hansenii. The single-guide system allows high-efficiency (up to 95%) mutation of genes or regulatory elements. The dual-guide system is applicable for efficient deletion of genomic loci. We used these tools to study transcriptional regulation of the 26S proteasome, an ATP-dependent protease complex whose proper function is vital for all cells and organisms. We developed a genetic approach to control the activity of the 26S proteasome by deregulation of its essential subunits. The mutant strains were sensitive to geno- and proteotoxic stresses as well as high salinity and osmolarity, suggesting a contribution of the proteasome to the extremophilic properties of D. hansenii. The developed CRISPR systems allow efficient D. hansenii genome engineering, providing a genetic way to control proteasome activity, and should advance applications of this yeast.


Assuntos
Sistemas CRISPR-Cas , Debaryomyces/enzimologia , Debaryomyces/genética , Edição de Genes/métodos , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/genética , Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Extremófilos/enzimologia , Extremófilos/genética , Regulação da Expressão Gênica , Genoma Fúngico , Organismos Geneticamente Modificados , Osmorregulação/genética , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
PLoS Negl Trop Dis ; 14(12): e0008883, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33362202

RESUMO

Leprosy is an infectious disease caused by Mycobacterium leprae (M. leprae), with about 210,000 new cases per year worldwide. Although numerous risk loci have been uncovered by genome-wide association studies, the effects of common genetic variants are relatively modest. To identify possible new genetic locus involved in susceptibility to leprosy, whole exome sequencing was performed for 28 subjects including 14 patients and 12 unaffected members from 8 leprosy-affected families as well as another case and an unrelated control, and then the follow-up SNP genotyping of the candidate variants was studied in case-control sample sets. A rare missense variant in mitochondrial ribosomal protein S5 (MRPS5), rs200730619 (c. 95108402T>C [p. Tyr137Cys]) was identified and validated in 369 cases and 270 controls of Chinese descent (Padjusted = 0.006, odds ratio [OR] = 2.74) as a contributing factor to leprosy risk. Moreover, the mRNA level of MRPS5 was downregulated in M. leprae sonicate-stimulated peripheral blood mononuclear cells. Our results indicated that MRPS5 may be involved in leprosy pathogenesis. Further studies are needed to determine if defective MRPS5 could lead to impairment of energy metabolism of host immune cells, which could further cause defect in clearing M. leprae and increase susceptibility to infection.


Assuntos
Povo Asiático/genética , Predisposição Genética para Doença , Hanseníase/genética , Proteínas Mitocondriais/genética , Polimorfismo de Nucleotídeo Único , Proteínas Ribossômicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , China/epidemiologia , Feminino , Regulação da Expressão Gênica , Humanos , Hanseníase/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Hum Genet ; 139(6-7): 835-846, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31713021

RESUMO

Leprosy is a chronic infectious disease of the skin and peripheral nerves that presents a strong link with the host genetic background. Different approaches in genetic studies have been applied to leprosy and today leprosy is among the infectious diseases with the greatest number of genetic risk variants identified. Several leprosy genes have been implicated in host immune response to pathogens and point to specific pathways that are relevant for host defense to infection. In addition, host genetic factors are also involved in the heterogeneity of leprosy clinical manifestations and in excessive inflammatory responses that occur in some leprosy patients. Finally, genetic studies in leprosy have provided strong evidence of pleiotropic effects between leprosy and other complex diseases, such as immune-mediated or neurodegenerative diseases. These findings not only impact on the field of leprosy and infectious diseases but also make leprosy a good model for the study of complex immune-mediated diseases. Here, we summarize recent genetic findings in leprosy susceptibility and discuss the overlap of the genetic control in leprosy with Parkinson's disease and inflammatory bowel disease. Moreover, some limitations, challenges, and potential new avenues for future genetics studies of leprosy are also discussed in this review.


Assuntos
Regulação da Expressão Gênica , Predisposição Genética para Doença , Hanseníase/genética , Hanseníase/imunologia , Modelos Genéticos , Humanos
9.
J Immunol Res ; 2019: 3405103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781675

RESUMO

Leprosy reactions are acute immunological events that occur during the evolution of chronic infectious disease causing neural damage and disabilities. A study using blood samples of 17 leprosy reaction patients and 17 reaction-free was carried out by means of associations between antigens, receptors, and expression of cytokines, using path analysis providing new insights into the immunological mechanisms involved in triggering leprosy reactions. Toll-like receptors (TLR) such as TLR1 and TLR2, presented balanced expression in the reaction-free multibacillary (MB) group (TLR1: 1.01 ± 0.23, TLR2: 1.22 ± 0.18; p = 0.267). On the other hand, downgrading type 1 reaction (T1R) (TLR1: 1.24 ± 0.17, TLR2: 2.88 ± 0.37; p = 0.002) and erythema nodosum leprosum (ENL) (TLR1: 1.93 ± 0.17, TLR2: 2.81 ± 0.15; p = 0.004) revealed an unbalance in relation to the expression of these receptors. When the path analysis was approached, it was noted that interleukin 10 (IL-10) expression showed a dependence relation with phenolic glycolipid I (PGL-I) in downgrading T1R (direct effect = 0.503 > residual effect = 0.364), whereas in ENL, such relationship occurred with lipoarabinomannan (LAM) (direct effect = 0.778 > residual effect = 0.280). On the contrary, in the reaction-free leprosy group, interferon-gamma (IFN-γ) levels were dependent on the association between TLR2 and TLR1 (0.8735). The high TLR2 expression associated with IL-10 levels, in the leprosy reaction groups, may be hypothetically related to the formation of TLR2/2 homodimers and/or TLR2/6 heterodimers linked to evasion mechanisms in downgrading reactions and pathophysiology of ENL.


Assuntos
Eritema Nodoso/etiologia , Regulação da Expressão Gênica , Interferon gama/genética , Interleucina-10/genética , Hanseníase/etiologia , Receptor 1 Toll-Like/genética , Receptor 2 Toll-Like/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Suscetibilidade a Doenças , Eritema Nodoso/diagnóstico , Eritema Nodoso/epidemiologia , Eritema Nodoso/metabolismo , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Hanseníase/diagnóstico , Hanseníase/epidemiologia , Hanseníase/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Ligação Proteica , Transdução de Sinais , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Adulto Jovem
10.
PLoS Negl Trop Dis ; 13(7): e0007589, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31344041

RESUMO

The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-ß. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hanseníase/genética , Macrófagos/microbiologia , Mycobacterium leprae/imunologia , Proteínas de Neoplasias/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interferon Tipo I/imunologia , Hanseníase/imunologia , Hanseníase/microbiologia , Macrófagos/imunologia , Transdução de Sinais
11.
Am J Trop Med Hyg ; 100(2): 377-385, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30652669

RESUMO

Type 2 reaction (T2R) or erythema nodosum leprosum (ENL), a sudden episode of acute inflammation predominantly affecting lepromatous leprosy patients (LL), characterized by a reduced cellular immune response. This possibly indicates a close relationship between the onset of T2R and the altered frequency, and functional activity of T lymphocytes, particularly of memory subsets. This study performed ex vivo and in vitro characterizations of T cell blood subpopulations from LL patients with or without T2R. In addition, the evaluation of activity of these subpopulations was performed by analyzing the frequency of these cells producing IFN-γ, TNF, and IL-10 by flow cytometry. Furthermore, the expression of transcription factors, for the differentiation of T cells, were analyzed by quantitative real-time polymerase chain reaction. Our results showed an increased frequency of CD8+/TNF+ effector memory T cells (TEM) among T2Rs. Moreover, there was evidence of a reduced frequency of CD4 and CD8+ IFN-γ-producing cells in T2R, and a reduced expression of STAT4 and TBX21. Finally, a significant and positive correlation between bacteriological index (BI) of T2R patients and CD4+/TNF+ and CD4+/IFN-γ+ T cells was observed. Thus, negative correlation between BI and the frequency of CD4+/IL-10+ T cells was noted. These results suggest that CD8+/TNF+ TEM are primarily responsible for the transient alteration in the immune response to Mycobacterium leprae in ENL patients. Thus, our study improves our understanding of pathogenic mechanisms and might suggest new therapeutic approaches for leprosy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Eritema Nodoso/imunologia , Hanseníase Virchowiana/imunologia , Mycobacterium leprae/patogenicidade , Fator de Necrose Tumoral alfa/imunologia , Adolescente , Adulto , Idoso , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/microbiologia , Estudos de Casos e Controles , Eritema Nodoso/genética , Eritema Nodoso/patologia , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica , Imunofenotipagem , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/patologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/crescimento & desenvolvimento , Mycobacterium leprae/imunologia , Cultura Primária de Células , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/imunologia , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Fator de Necrose Tumoral alfa/genética
12.
Front Immunol ; 9: 1223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915584

RESUMO

Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1ß production. In addition, analysis of IL-1ß production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1ß at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1ß and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.


Assuntos
Autofagia , Inflamassomos/metabolismo , Hanseníase Multibacilar/etiologia , Hanseníase Multibacilar/metabolismo , Adulto , Idoso , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Hanseníase Multibacilar/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium leprae/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Transcriptoma
13.
Front Immunol ; 9: 939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867937

RESUMO

Neurotrophins are a family of proteins that regulate different aspects of biological development and neural function and are of great importance in neuroplasticity. This group of proteins has multiple functions in neuronal cells, as well as in other cellular populations. Nerve growth factor (NGF) is a neurotrophin that is endogenously produced during development and maturation by multiple cell types, including neurons, Schwann cells, oligodendrocytes, lymphocytes, mast cells, macrophages, keratinocytes, and fibroblasts. These cells produce proNGF, which is transformed by proteolytic cleavage into the biologically active NGF in the endoplasmic reticulum. The present review describes the role of NGF in the pathogenesis of leprosy and its correlations with different clinical forms of the disease and with the phenomena of regeneration and neural injury observed during infection. We discuss the involvement of NGF in the induction of neural damage and the pathophysiology of pain associated with peripheral neuropathy in leprosy. We also discuss the roles of immune factors in the evolution of this pathological process. Finally, we highlight avenues of investigation for future research to broaden our understanding of the role of NGF in the pathogenesis of leprosy. Our analysis of the literature indicates that NGF plays an important role in the evolution and outcome of Mycobacterium leprae infection. The findings described here highlight an important area of investigation, as leprosy is one of the main causes of infection in the peripheral nervous system.


Assuntos
Hanseníase/etiologia , Hanseníase/metabolismo , Fator de Crescimento Neural/metabolismo , Animais , Autoimunidade , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Hanseníase/patologia , Fator de Crescimento Neural/genética , Transdução de Sinais
14.
PLoS One ; 13(6): e0196853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29883464

RESUMO

Leprosy is a complex chronic, infectious dermato-neurological disease that affects the skin and peripheral nerves especially during immuno-inflammatory episodes known as type 1/T1R and type 2/T2R reactions. This study investigated the in situ expression of CD25+Foxp3+ Treg cells and TGF-ß1, IFN-γ, IL-17 in leprosy T1R and T2R. Tregs were evaluated in 114 skin biopsies from 74 leprosy patients: 56 T1R (28-paired reaction-free/reactional biopsies, 28 unpaired T1R), 18 T2R (12 paired reaction-free/reactional biopsies, 6 unpaired T2R). Double CD25+Foxp3+immunostained Treg cells obtained by automated platform (Ventana BenchMark XT, Roche, Mannheim, Germany) were counted (Nikon Eclipse E400 2mm2). Cytokine expression was evaluated by immunostaining in 96 biopsies (48 paired reaction-free/reactional lesions, 24 T1R, 24 T2R) using rabbit polyclonal anti human TGF-ß1, IFN-γ, IL-17 antibodies (Santa Cruz Biotechnology CA, USA). Treg cell counts in leprosy reactional lesions were higher compared to reaction-free (p = 0.002). Treg numbers were higher in T1R compared to paired unreactional T1R lesions (p = 0.001). Similar frequency of Treg was seen in paired reactional versus unreactional T2R lesions. Higher expression of TGF-ß, IFN-γ and IL-17 was seen in T2R lesions compared to T1R and reaction-free lesions. The increase in Treg cells during T1R suggests a suppressive role to control the exacerbated cellular immune response during T1R that can cause tissue and nerve damage. Evidences of upregulated Treg cells in TR1, which usually occurs in patients with Th1-Th17 immunity and the indications of the expression of Th17/IL-17 in T2R, which develops in patients with Th2-Treg profile, suggest plasticity of Treg-Th17 cells populations and a potential role for these cell populations in the immunopathogenesis of leprosy reactions.


Assuntos
Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Hanseníase/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Adulto , Idoso , Biópsia , Feminino , Humanos , Hanseníase/patologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/patologia , Células Th17/patologia
15.
Front Immunol ; 9: 463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593724

RESUMO

Leprosy remains as a public health problem and its physiopathology is still not fully understood. MicroRNAs (miRNA) are small RNA non-coding that can interfere with mRNA to regulate gene expression. A few studies using DNA chip microarrays have explored the expression of miRNA in leprosy patients using a predetermined set of genes as targets, providing interesting findings regarding the regulation of immune genes. However, using a predetermined set of genes restricted the possibility of finding new miRNAs that might be involved in different mechanisms of disease. Thus, we examined the miRNome of tuberculoid (TT) and lepromatous (LL) patients using both blood and lesional biopsies from classical leprosy patients (LP) who visited the Dr. Marcello Candia Reference Unit in Sanitary Dermatology in the State of Pará and compared them with healthy subjects. Using a set of tools to correlate significantly differentially expressed miRNAs with their gene targets, we identified possible interactions and networks of miRNAs that might be involved in leprosy immunophysiopathology. Using this approach, we showed that the leprosy miRNA profile in blood is distinct from that in lesional skin as well as that four main groups of genes are the targets of leprosy miRNA: (1) recognition and phagocytosis, with activation of immune effector cells, where the immunosuppressant profile of LL and immunoresponsive profile of TT are clearly affected by miRNA expression; (2) apoptosis, with supportive data for an antiapoptotic leprosy profile based on BCL2, MCL1, and CASP8 expression; (3) Schwann cells (SCs), demyelination and epithelial-mesenchymal transition (EMT), supporting a role for different developmental or differentiation gene families, such as Sox, Zeb, and Hox; and (4) loss of sensation and neuropathic pain, revealing that RHOA, ROCK1, SIGMAR1, and aquaporin-1 (AQP1) may be involved in the loss of sensation or leprosy pain, indicating possible new therapeutic targets. Additionally, AQP1 may also be involved in skin dryness and loss of elasticity, which are well known signs of leprosy but with unrecognized physiopathology. In sum, miRNA expression reveals new aspects of leprosy immunophysiopathology, especially on the regulation of the immune system, apoptosis, SC demyelination, EMT, and neuropathic pain.


Assuntos
Regulação da Expressão Gênica/imunologia , Hanseníase , MicroRNAs , Neuralgia , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Hanseníase/sangue , Hanseníase/genética , Hanseníase/imunologia , Masculino , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/imunologia , Pessoa de Meia-Idade , Neuralgia/sangue , Neuralgia/genética , Neuralgia/imunologia
16.
PLoS Negl Trop Dis ; 12(3): e0006321, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29499046

RESUMO

Complement C1q is a soluble protein capable of initiating components of the classical pathway in host defence system. In earlier qualitative studies, C1q has been implicated in the pathogenesis of Erythema Nodosum Leprosum (ENL). However, little is known about the role of this complement in ENL reaction. In the present study we described the protein level of C1q production and its gene expression in the peripheral blood and skin biopsies in patients with ENL reaction and lepromatous leprosy (LL) patient controls before and after treatment. Thirty untreated patients with ENL reaction and 30 non-reactional LL patient controls were recruited at ALERT Hospital, Ethiopia. Peripheral blood and skin biopsies were obtained from each patient before and after treatment. The level of circulating C1q in the plasma was determined by enzyme-linked immunosorbent assay. The mRNA expression of the three C1q components, C1qA, C1qB, and C1qC in the peripheral blood and skin biopsies was determined by qPCR. Circulating C1q in the peripheral blood of untreated ENL patients was significantly decreased compared to LL patient controls. Untreated ENL patients had increased C1q gene expression in the peripheral blood compared to LL controls. Similarly, C1qA and C1qC gene expression were substantially increased in the skin biopsies of untreated ENL patients compared to LL controls. However, after treatment none of these genes show significant difference in both groups. In conclusion, while circulating C1q is inversely correlated with active ENL reactions, its gene expression is directly correlated with ENL. The decreased circulating C1q may suggest the utilization of C1q in immune-complex formation in these patients. Therefore, C1q could be a potential diagnostic marker for active ENL reactions as well as for monitoring ENL treatment.


Assuntos
Complemento C1q/genética , Eritema Nodoso/sangue , Hanseníase Virchowiana/sangue , Adolescente , Adulto , Estudos de Casos e Controles , Complemento C1q/metabolismo , Citocinas/sangue , Eritema Nodoso/genética , Etiópia , Feminino , Regulação da Expressão Gênica , Humanos , Hanseníase Virchowiana/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Pele/patologia , Adulto Jovem
17.
PLoS Negl Trop Dis ; 11(10): e0006001, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991896

RESUMO

Leprosy is a disease caused by Mycobacterium leprae where the clinical spectrum correlates with the patient immune response. Erythema Nodosum Leprosum (ENL) is an immune-mediated inflammatory complication, which causes significant morbidity in affected leprosy patients. The underlying cause of ENL is not conclusively known. However, immune-complexes and cell-mediated immunity have been suggested in the pathogenesis of ENL. The aim of this study was to investigate the regulatory T-cells in patients with ENL. Forty-six untreated patients with ENL and 31 non-reactional lepromatous leprosy (LL) patient controls visiting ALERT Hospital, Ethiopia were enrolled to the study. Blood samples were obtained before, during and after prednisolone treatment of ENL cases. Peripheral blood mononuclear cells (PBMCs) were isolated and used for immunophenotyping of regulatory T-cells by flow cytometry. Five markers: CD3, CD4 or CD8, CD25, CD27 and FoxP3 were used to define CD4+ and CD8+ regulatory T-cells. Clinical and histopathological data were obtained as supplementary information. All patients had been followed for 28 weeks. Patients with ENL reactions had a lower percentage of CD4+ regulatory T-cells (1.7%) than LL patient controls (3.8%) at diagnosis of ENL before treatment. After treatment, the percentage of CD4+regulatory T-cells was not significantly different between the two groups. The percentage of CD8+ regulatory T-cells was not significantly different in ENL and LL controls before and after treatment. Furthermore, patients with ENL had higher percentage of CD4+ T-ells and CD4+/CD8+ T-cells ratio than LL patient controls before treatment. The expression of CD25 on CD4+ and CD8+ T-cells was not significantly different in ENL and LL controls suggesting that CD25 expression is not associated with ENL reactions while FoxP3 expression on CD4+ T-cells was significantly lower in patients with ENL than in LL controls. We also found that prednisolone treatment of patients with ENL reactions suppresses CD4+ T-cell but not CD8+ T-cell frequencies. Hence, ENL is associated with lower levels of T regulatory cells and higher CD4+/CD8+ T-cell ratio. We suggest that this loss of regulation is one of the causes of ENL.


Assuntos
Eritema Nodoso/etiologia , Eritema Nodoso/imunologia , Hanseníase/complicações , Linfócitos T/fisiologia , Adolescente , Adulto , Anti-Inflamatórios/uso terapêutico , Estudos de Casos e Controles , Eritema Nodoso/tratamento farmacológico , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Hanseníase/imunologia , Masculino , Pessoa de Meia-Idade , Prednisolona/uso terapêutico , Linfócitos T/classificação , Adulto Jovem
18.
Immunity ; 47(3): 582-596.e6, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930664

RESUMO

After entering tissues, monocytes differentiate into cells that share functional features with either macrophages or dendritic cells (DCs). How monocyte fate is directed toward monocyte-derived macrophages (mo-Macs) or monocyte-derived DCs (mo-DCs) and which transcription factors control these differentiation pathways remains unknown. Using an in vitro culture model yielding human mo-DCs and mo-Macs closely resembling those found in vivo in ascites, we show that IRF4 and MAFB were critical regulators of monocyte differentiation into mo-DCs and mo-Macs, respectively. Activation of the aryl hydrocarbon receptor (AHR) promoted mo-DC differentiation through the induction of BLIMP-1, while impairing differentiation into mo-Macs. AhR deficiency also impaired the in vivo differentiation of mouse mo-DCs. Finally, AHR activation correlated with mo-DC infiltration in leprosy lesions. These results establish that mo-DCs and mo-Macs are controlled by distinct transcription factors and show that AHR acts as a molecular switch for monocyte fate specification in response to micro-environmental factors.


Assuntos
Células Dendríticas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Ascite , Células Cultivadas , Análise por Conglomerados , Citocinas/metabolismo , Citocinas/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/metabolismo , Hanseníase/imunologia , Hanseníase/metabolismo , Hanseníase/microbiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Transcrição MafB/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Neoplasias/genética , Neoplasias/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Receptores de Hidrocarboneto Arílico/genética , Proteínas Repressoras/metabolismo , Transcriptoma
19.
Acta Trop ; 172: 213-216, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28511777

RESUMO

Previous studies suggest that coinfection of leprosy and human immunodeficiency virus (HIV) does not decrease the frequency and intensity of leprosy reactions. However, the immunological aspects of leprosy reactions in coinfected patients remain obscure, with a limited number of studies showing contradictory results. Observational study using tissue samples collected during leprosy reactions from 15 patients coinfected with leprosy and HIV and from 15 patients with leprosy alone. Patients were part of a prior larger cohort study of leprosy patients with and without HIV coinfection. Specific antibodies were used to detect IL-1ß and IL-6 expression in skin biopsy tissue cells. IL-1ß and IL-6 expression was similar between leprosy patients with and without HIV coinfection (p>0.05). Coinfected and non-coinfected tissues showed similar levels of IL-1ß and IL-6 expression for type 1 reactions. A trend towards increased levels of IL-1ß and IL-6 expression was observed in tissue from coinfected patients (p=0.0024). The expression of IL-1ß and IL-6 during leprosy reactions did not differ significantly between tissues obtained from leprosy patients with and without HIV coinfection. Therefore, we conclude that HIV coinfection does not affect the immunological pattern of leprosy reactions.


Assuntos
Coinfecção/metabolismo , Infecções por HIV/complicações , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Hanseníase/complicações , Adulto , Estudos de Coortes , Estudos Transversais , Feminino , Regulação da Expressão Gênica/imunologia , Infecções por HIV/imunologia , Humanos , Imuno-Histoquímica , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Hanseníase/imunologia , Modelos Lineares , Masculino , Pele/patologia
20.
J Cell Sci ; 130(12): 1997-2006, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476940

RESUMO

Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Assuntos
Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Ubiquitinação , Animais , Dano ao DNA , Endopeptidases/metabolismo , Humanos , Inflamação , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Mapeamento de Interação de Proteínas , Proteólise , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA