Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 162: 77-84, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29990742

RESUMO

Crop protection agents are widely used in modern agriculture and exert direct effects on non-target microorganisms such as yeasts. Yeasts abundantly colonize wheat grain and affect its chemical composition. They can also limit pathogen growth. This study evaluated the sensitivity of yeast communities colonizing winter wheat kernels to benzimidazole, strobilurin, triazole and morpholine fungicides, trinexapac-ethyl, a commercial mixture of o-nitrophenol+p-nitrophenol+5-nitroguaiacol, and chitosan applied during the growing season of winter wheat and in vitro in a diffusion test. A molecular identification analysis of yeasts isolated from winter wheat kernels was performed, and nucleotide polymorphisms in the CYTb gene (G143A) conferring resistance to strobilurin fungicides in yeast cells were identified. The size of yeast communities increased during grain storage, and the total counts of endophytic yeasts were significantly (85%) reduced following intensive fungicide treatment (fenpropimorph, a commercial mixture of pyraclostrobin, epoxiconazole and thiophanate-methyl). This study demonstrated that agrochemical residues in wheat grain can drive selection of yeast communities for reduced sensitivity to xenobiotics. A mutation in the CYTb gene (G143A) was observed in all analyzed isolates of the following azoxystrobin-resistant species: Aureobasidium pullulans, Debaryomyces hansenii, Candida albicans and C. sake. Agrochemicals tested in vitro were divided into four classes of toxicity to yeasts: (1) tebuconazole and a commercial mixture of flusilazole and carbendazim - most toxic to yeasts; (2) fenpropimorph and a commercial mixture of pyraclostrobin and epoxyconazole; (3) propiconazole, chitosan, thiophanate-methyl and a commercial mixture of o-nitrophenol, p-nitrophenol and 5-nitroguaiacol; (4) trinexapac-ethyl and azoxystrobin - least toxic to yeasts. It was found that agrochemicals can have an adverse effect on yeast abundance and the composition of yeast communities, mostly due to differences in fungicide resistance between yeast species, including the clinically significant C. albicans.


Assuntos
Agroquímicos/farmacologia , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Triticum/microbiologia , Leveduras/efeitos dos fármacos , Leveduras/genética , Agaricales/efeitos dos fármacos , Agaricales/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Benzimidazóis/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Carbamatos/farmacologia , Compostos de Epóxi/farmacologia , Testes de Sensibilidade Microbiana , Resíduos de Praguicidas/análise , Doenças das Plantas/microbiologia , Pirimidinas/farmacologia , Estações do Ano , Silanos/farmacologia , Estrobilurinas/farmacologia , Triazóis/farmacologia , Xenobióticos/farmacologia , Leveduras/classificação
2.
Lett Appl Microbiol ; 47(1): 54-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18544142

RESUMO

AIMS: The toxicity of the fungicide pyrimethanil on the growth of wine yeasts was evaluated using in vivo and in vitro experimentation. METHODS AND RESULTS: The effect of pyrimethanil in the must was studied during the spontaneous wine fermentation of three consecutive vintages and by the cultivation of Hanseniaspora uvarum and Saccharomyces cerevisiae yeasts in a liquid medium. The residues of the fungicide were measured using gas chromatography-mass spectrometry system and the sugar concentration in the must using HPLC-RI. Molecular and standard methods were used for identifying the yeast species. Although the pyrimethanil residues in grapes were below the maximum residue limits, they significantly affected the reduced utilization of sugars in the first days of fermentation. Its residues controlled the growth of H. uvarum during the fermentation and during in vitro cultivation as well. CONCLUSIONS: The fungicide pyrimethanil had an effect on the course and successful conclusion of spontaneous wine fermentation that was correlated with the initial concentration of yeasts in the must. SIGNIFICANCE AND IMPACT OF THE STUDY: The impact of pyrimethanil on the indigenous mixed yeast flora in fermenting must was investigated for the first time. The results showed that its residues might play an important role in the growth and succession of yeast during spontaneous wine fermentation.


Assuntos
Contaminação de Alimentos/análise , Pirimidinas/farmacologia , Leveduras/efeitos dos fármacos , Cromatografia Gasosa , Fermentação , Fungicidas Industriais/toxicidade , Espectrometria de Massas , Resíduos de Praguicidas/análise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vinho/microbiologia , Vinho/normas , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA