Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytopathology ; 107(8): 963-976, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28398876

RESUMO

Citrus leprosis (CL) is a viral disease endemic to the Western Hemisphere that produces local necrotic and chlorotic lesions on leaves, branches, and fruit and causes serious yield reduction in citrus orchards. Samples of sweet orange (Citrus × sinensis) trees showing CL symptoms were collected during a survey in noncommercial citrus areas in the southeast region of Brazil in 2013 to 2016. Transmission electron microscopy analyses of foliar lesions confirmed the presence of rod-like viral particles commonly associated with CL in the nucleus and cytoplasm of infected cells. However, every attempt to identify these particles by reverse-transcription polymerase chain reaction tests failed, even though all described primers for the detection of known CL-causing cileviruses and dichorhaviruses were used. Next-generation sequencing of total RNA extracts from three symptomatic samples revealed the genome of distinct, although highly related (>92% nucleotide sequence identity), viruses whose genetic organization is similar to that of dichorhaviruses. The genome sequence of these viruses showed <62% nucleotide sequence identity with those of orchid fleck virus and coffee ringspot virus. Globally, the deduced amino acid sequences of the open reading frames they encode share 32.7 to 63.8% identity with the proteins of the dichorhavirids. Mites collected from both the naturally infected citrus trees and those used for the transmission of one of the characterized isolates to Arabidopsis plants were anatomically recognized as Brevipalpus phoenicis sensu stricto. Molecular and biological features indicate that the identified viruses belong to a new species of CL-associated dichorhavirus, which we propose to call Citrus leprosis N dichorhavirus. Our results, while emphasizing the increasing diversity of viruses causing CL disease, lead to a reevaluation of the nomenclature of those viruses assigned to the genus Dichorhavirus. In this regard, a comprehensive discussion is presented.


Assuntos
Citrus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Animais , Clonagem Molecular , Efeito Citopatogênico Viral , Genoma Viral , Ácaros/classificação , Ácaros/ultraestrutura , Ácaros/virologia , Filogenia , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , RNA Viral/genética
2.
J Virol Methods ; 224: 105-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341059

RESUMO

Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence.


Assuntos
Citrus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , América Central , Primers do DNA/genética , Sondas de Oligonucleotídeos/genética , Proteínas do Movimento Viral em Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sensibilidade e Especificidade
3.
Phytopathology ; 105(9): 1277-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25961338

RESUMO

Leprosis refers to two diseases of citrus that present similar necrotic local lesions, often surrounded by chlorotic haloes on citrus. Two distinct viruses are associated with this disease, one that produces particles primarily in the nucleus of infected plant cells (Citrus leprosis virus nuclear type [CiLV-N]; Dichorhavirus) and another type that produces particles in the cytoplasm of infected plant cells (Citrus leprosis virus cytoplasmic type [CiLV-C]; Cilevirus). Both forms are transmitted by Brevipalpid mites and have bipartite, single-stranded, RNA genomes. CiLV-C and CiLV-N are present in South and Central America and as far north as parts of Mexico. Although leprosis disease was originally described from Florida, it disappeared from there in the 1960s. The United States Department of Agriculture-Agricultural Research Service maintains preserved citrus specimens identified at inspection stations 50 or more years ago with symptoms of citrus leprosis. We isolated RNA from these samples and performed degradome sequencing. We obtained nearly full-length genome sequences of both a typical CiLV-C isolate intercepted from Argentina in 1967 and a distinct CiLV-N isolate obtained in Florida in 1948. The latter is a novel form of CiLV-N, not known to exist anywhere in the world today. We have also documented the previously unreported presence of CiLV-N in Mexico in the mid-20th century.


Assuntos
Citrus/virologia , Genoma Viral/genética , Ácaros/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Animais , Argentina , Sequência de Bases , Florida , Frutas/virologia , México , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/genética , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA
4.
Viruses ; 6(7): 2602-22, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25004279

RESUMO

The causal agents of Citrus leprosis are viruses; however, extant diagnostic methods to identify them have failed to detect known viruses in orange, mandarin, lime and bitter orange trees with severe leprosis symptoms in Mexico, an important citrus producer. Using high throughput sequencing, a virus associated with citrus leprosis was identified, belonging to the proposed Dichorhavirus genus. The virus was termed Citrus Necrotic Spot Virus (CNSV) and contains two negative-strand RNA components; virions accumulate in the cytoplasm and are associated with plasmodesmata-channels interconnecting neighboring cells-suggesting a mode of spread within the plant. The present study provides insights into the nature of this pathogen and the corresponding plant response, which is likely similar to other pathogens that do not spread systemically in plants.


Assuntos
Citrus/virologia , Genoma Viral , Nucleocapsídeo/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Citrus/imunologia , Frutas/imunologia , Frutas/virologia , Regulação Viral da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , México , Nucleocapsídeo/ultraestrutura , Filogenia , Células Vegetais/imunologia , Células Vegetais/virologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta/imunologia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/ultraestrutura , Plasmodesmos/imunologia , Plasmodesmos/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Vírus de RNA/ultraestrutura
5.
J Virol Methods ; 206: 144-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24956418

RESUMO

Citrus leprosis virus C (CiLV-C) causes damage in citrus production in the South and Central America. Since closely related types of citrus viruses have recently been described monoclonal antibodies (MAbs) are needed for accurate and sensitive diagnosis of CiLV-C. In this study, MAbs to the expressed coat protein of CiLV-C were produced for serological detection of CiLV-C in crude extracts of infected tissues in double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA), dot blot immunosorbent assays (DBIA) and immuonocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) procedures. Monoclonal antibodies were developed in mice to the purified expressed coat protein of CiLV-C. The published standard protocols of DAS-ELISA, DBIA and IC-RT-PCR were followed for the detection of coat protein p29 of CiLV-C in the crude extracts of CiLV-C infected tissues. Two monoclonal antibodies, designated G10 and C11, were identified from four potential candidates for the specific and sensitive detection of coat protein p29 of CiLV-C in the crude citrus extracts of CiLV-C infected tissues in DAS-ELISA, whereas G10 was also selected based on performance for use in the DBIA and IC-RT-PCR diagnostic assays. Sensitivity analysis comparing the three methods for detection of coat protein p29 of CiLV-C determined that IC-RT-PCR was more sensitive than DAS-ELISA and DBIA. The creation of MAbs to CiLV-C allows for the sensitive and accurate detection of the virus from CiLV-C infected citrus leaf tissues. Successful detection of the virus in three diagnostic assays formats provides flexibility to diagnosticians who can use either ELISA or DBIA for screening large numbers of samples, and IC-RT-PCR for rapid, sensitive confirmation testing.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Proteínas do Capsídeo/análise , Citrus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/análise , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Imunoensaio/métodos , Camundongos , Vírus de Plantas/genética , Vírus de Plantas/imunologia , Sensibilidade e Especificidade
6.
J Virol Methods ; 193(2): 548-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911294

RESUMO

Citrus leprosis virus C (CiLV-C), a causal agent for citrus leprosis disease, is present in South and Central America and is a threat for introduction into the U.S. citrus industry. A specific, inexpensive and reliable antibody based detection system is needed for the rapid identification of CiLV-C. The CiLV-C is very labile and has not been purified in sufficient amount for antibody production. The p29 gene of CiLV-C genome that codes for the putative coat protein (PCP) was codon optimized for expression in Escherichia coli and synthesized in vitro. The optimized gene was sub-cloned into the bacterial expression vector pDEST17 and transferred into E. coli BL21AI competent cells. The expression of PCP containing N-terminal His-tag was optimized by induction with l-arabinose. Induced cells were disrupted by sonication and expressed PCP was purified by affinity chromatography using Ni-NTA agarose. The purified expressed PCP was then used as an immunogen for injections into rabbits to produce polyclonal antibody (PAb). The PAb specific to the expressed PCP was identified using Western blotting. The antibody was successfully used to detect CiLV-C in the symptomatic CiLV-C infected tissues using double antibody sandwich-enzyme-linked-immunosorbent (DAS-ELISA), indirect ELISA and dot-blot immunoassay (DBIA) formats.


Assuntos
Proteínas do Capsídeo/imunologia , Citrus/virologia , Testes Imunológicos/métodos , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Animais , Anticorpos Antivirais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/isolamento & purificação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Códon/genética , Ensaio de Imunoadsorção Enzimática/métodos , Escherichia coli/genética , Expressão Gênica , Vírus de Plantas/imunologia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
7.
Phytopathology ; 102(1): 122-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21916557

RESUMO

A Citrus volkameriana tree displaying symptoms similar to citrus leprosis on its leaves and bark was found in Hawaii. Citrus leprosis virus C (CiLV-C)-specific detection assays, however, were negative for all tissues tested. Short, bacilliform virus-like particles were observed by transmission electron microscopy in the cytoplasm of symptomatic leaves but not in healthy controls. Double-stranded (ds) RNAs ≈8 and 3 kbp in size were present in symptomatic leaf tissue but not in healthy controls. Excluding poly(A) tails, the largest molecule, RNA1, was 8,354 bp in length. The ≈3 kbp dsRNA band was found to be composed of two distinct molecules, RNA2 and RNA3, which were 3,169 and 3,113 bp, respectively. Phylogenetic analyses indicated that the RNA-dependent RNA polymerase (RdRp) domain located in RNA1 was most closely related to the RdRp domain of CiLV-C. A reverse-transcription polymerase chain reaction assay developed for the detection of this virus was used to screen nearby citrus trees as well as Hibiscus arnottianus plants with symptoms of hibiscus green spot, a disease associated with infection by Hibiscus green spot virus (HGSV). All nearby citrus trees tested negative with the assay; however, symptomatic H. arnottianus plants were positive. All three RNAs were present in symptomatic H. arnottianus and were >98% identical to the RNAs isolated from C. volkameriana. We contend that the virus described in this study is HGSV, and propose that it be the type member of a new virus genus, Higrevirus.


Assuntos
Citrus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Citrus/ultraestrutura , DNA Complementar/química , DNA Complementar/genética , Genoma Viral/genética , Havaí , Hibiscus/virologia , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Casca de Planta/virologia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de Plantas/ultraestrutura , Estrutura Terciária de Proteína/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/ultraestrutura , RNA de Cadeia Dupla/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vírion/ultraestrutura
8.
Exp Appl Acarol ; 30(1-3): 135-60, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14756414

RESUMO

An increasing number of diseases transmitted by Brevipalpus mite species (Acari: Tenuipalpidae) is being identified that affect economically important plants such as citrus, coffee, passion fruit, orchids, and several ornamentals. All of these diseases are characterized by localized lesions (chlorotic, green spots, or ringspots) on leaves, stems, and fruits. Virus or virus-like agents are considered to be the causal agents, possibly transmitted in a circulative-propagative manner by Brevipalpus mites. The virus or virus-like particles are short, rod-like, or bacilliform, that induce two characteristic types of cell alteration: (1) 'Nuclear type'--nuclei of parenchyma and epidermal cells in the lesions often contain a large electron lucent inclusion. Short, naked, rod-like (40-50 nm x 100-110 nm) particles may be seen in the viroplasm or nucleoplasm and in the cytoplasm. These particles are commonly arranged perpendicularly on the membranes of the nuclear envelope or endoplasmic reticulum (ER). In a very few instances, they were found to be membrane-bound, within the ER cavities. (2) 'Cytoplasmic type'--short bacilliform particles (60-70 nm x 110-120 nm) are present within the cisternae of the ER and often have electron dense viroplasm of varied shapes present in the cytoplasm. Bacilliform particles may be seen budding into the ER lumen near the viroplasm. These particles resemble those of members of the Rhabdoviridae, but are shorter. The only sequenced virus of this group, orchid fleck virus (OFV), has a negative sense (bipartite) type ssRNA genome, but its organization is similar to known rhabdoviruses, which are monopartite. Both types of cytopathological effects have been found associated with citrus leprosis. In orchids, OFV has a 'nuclear type' of cytopathology, but in some species the 'cytoplasmic type' has been found associated with ringspot symptoms. In Hibiscus and Clerodendron, green spot symptoms have been associated with the cytoplasmic type of cell alteration, while chlorotic spots, in the same species, are associated with the nuclear type. In a few cases, both types of cytopathological effects have been found in the same tissue and cell.


Assuntos
Ácaros/patogenicidade , Ácaros/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Animais , Nepovirus/isolamento & purificação , Nepovirus/patogenicidade , Nepovirus/ultraestrutura , Doenças das Plantas/parasitologia , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/ultraestrutura , Viroses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA