Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Viruses ; 8(6)2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27275832

RESUMO

Citrus leprosis virus C (CiLV-C) causes a severe disease affecting citrus orchards in the Western hemisphere. This study reveals the molecular variability of the virus by analyzing four genomic regions (p29, p15, MP and RNA2-intergenic region) distributed over its two RNAs. Nucleotide diversity (π) values were relatively low but statistically different over the analyzed genes and subpopulations, indicating their distinct evolutionary history. Values of πp29 and πMP were higher than those of πp15 and πRNA2-IR, whereas πMP was increased due to novel discovered isolates phylogenetically clustered in a divergent clade that we called SJP. Isolate BR_SP_SJP_01 RNA1 and RNA2 sequences, clade SJP, showed an identity of 85.6% and 88.4%, respectively, with those corresponding to CiLV-C, the type member of the genus Cilevirus, and its RNA2 5'-proximal region was revealed as a minor donor in a putative inter-clade recombination event. In addition to citrus, BR_SP_SJP_01 naturally infects the weed Commelina benghalensis and is efficiently transmitted by Brevipalpus yothersi mites. Our data demonstrated that negative selection was the major force operating in the evaluated viral coding regions and defined amino acids putatively relevant for the biological function of cilevirus proteins. This work provides molecular tools and sets up a framework for further epidemiological studies.


Assuntos
Citrus/virologia , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Animais , Commelina/virologia , Transmissão de Doença Infecciosa , Genes Virais , Insetos Vetores/virologia , Ácaros/virologia , Homologia de Sequência
2.
Phytopathology ; 105(4): 564-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25423071

RESUMO

Citrus leprosis is one of the most destructive diseases of Citrus spp. and is associated with two unrelated virus groups that produce particles primarily in either the cytoplasm or nucleus of infected plant cells. Symptoms of leprosis, including chlorotic spots surrounded by yellow haloes on leaves and necrotic spots on twigs and fruit, were observed on leprosis-affected mandarin and navel sweet orange trees in the state of Querétaro, Mexico. Serological and molecular assays showed that the cytoplasmic types of Citrus leprosis virus (CiLV-C) often associated with leprosis symptomatic tissues were absent. However, using transmission electron microscopy, bullet-shaped rhabdovirus-like virions were observed in the nuclei and cytoplasm of the citrus leprosis-infected leaf tissues. An analysis of small RNA populations from symptomatic tissue was carried out to determine the genome sequence of the rhabdovirus-like particles observed in the citrus leprosis samples. The complete genome sequence showed that the nuclear type of CiLV (CiLV-N) present in the samples consisted of two negative-sense RNAs: 6,268-nucleotide (nt)-long RNA1 and 5,847-nt-long RNA2, excluding the poly(A) tails. CiLV-N had a genome organization identical to that of Orchid fleck virus (OFV), with the exception of shorter 5' untranslated regions in RNA1 (53 versus 205 nt) and RNA2 (34 versus 182 nt). Phylogenetic trees constructed with the amino acid sequences of the nucleocapsid (N) and glycoproteins (G) and the RNA polymerase (L protein) showed that CiLV-N clusters with OFV. Furthermore, phylogenetic analyses of N protein established CiLV-N as a member of the proposed genus Dichorhavirus. Reverse-transcription polymerase chain reaction primers for the detection of CiLV-N were designed based on the sequence of the N gene and the assay was optimized and tested to detect the presence of CiLV-N in both diseased and symptom-free plants.


Assuntos
Citrus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de RNA/classificação , Sequência de Aminoácidos , DNA Complementar/química , DNA Complementar/genética , Frutas/virologia , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , México , Dados de Sequência Molecular , Nucleocapsídeo/genética , Filogenia , Folhas de Planta/virologia , Vírus de Plantas/genética , Vírus de Plantas/ultraestrutura , Vírus de RNA/genética , Vírus de RNA/ultraestrutura , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Vírion
3.
Viruses ; 6(7): 2602-22, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25004279

RESUMO

The causal agents of Citrus leprosis are viruses; however, extant diagnostic methods to identify them have failed to detect known viruses in orange, mandarin, lime and bitter orange trees with severe leprosis symptoms in Mexico, an important citrus producer. Using high throughput sequencing, a virus associated with citrus leprosis was identified, belonging to the proposed Dichorhavirus genus. The virus was termed Citrus Necrotic Spot Virus (CNSV) and contains two negative-strand RNA components; virions accumulate in the cytoplasm and are associated with plasmodesmata-channels interconnecting neighboring cells-suggesting a mode of spread within the plant. The present study provides insights into the nature of this pathogen and the corresponding plant response, which is likely similar to other pathogens that do not spread systemically in plants.


Assuntos
Citrus/virologia , Genoma Viral , Nucleocapsídeo/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Citrus/imunologia , Frutas/imunologia , Frutas/virologia , Regulação Viral da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , México , Nucleocapsídeo/ultraestrutura , Filogenia , Células Vegetais/imunologia , Células Vegetais/virologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta/imunologia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/ultraestrutura , Plasmodesmos/imunologia , Plasmodesmos/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Vírus de RNA/ultraestrutura
4.
J Gen Virol ; 95(Pt 6): 1390-1395, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24646751

RESUMO

In 2005, we isolated a new species of virus from mosquitoes in the Philippines. The virion was elliptical in shape and had a short single projection. The virus was named Tanay virus (TANAV) after the locality in which it was found. TANAV genomic RNA was a 9562 nt+poly-A positive strand, and polycistronic. The longest ORF contained putative RNA-dependent RNA polymerase (RdRP); however, conserved short motifs in the RdRP were permuted. TANAV was phylogenetically close to Negevirus, a recently proposed taxon of viruses isolated from haemophagic insects, and to some plant viruses, such as citrus leprosis virus C, hibiscus green spot virus and blueberry necrotic ring blotch virus. In this paper, we describe TANAV and the permuted structure of its RdRP, and discuss its phylogeny together with those of plant viruses and negevirus.


Assuntos
Culicidae/virologia , Vírus de Insetos/isolamento & purificação , Vírus de RNA/isolamento & purificação , Vírus não Classificados/isolamento & purificação , Sequência de Aminoácidos , Animais , Culex/virologia , Genoma Viral , Vírus de Insetos/classificação , Vírus de Insetos/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fases de Leitura Aberta , Filipinas , Filogenia , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Vírion/ultraestrutura , Vírus não Classificados/classificação , Vírus não Classificados/genética
5.
Arch Virol ; 158(11): 2421-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23732930

RESUMO

The complete nucleotide sequence of a virus infecting ornamental hibiscus (Hibiscus sp.) in Hawaii with symptoms of green ringspots on senescing leaves was determined from double-stranded RNA isolated from symptomatic tissue. Excluding polyadenylated regions at the 3' termini, the bipartite RNA genome was 8748 and 5019 nt in length for RNA1 and RNA2, respectively. The genome organization was typical of a cilevirus: RNA1 encoded a large replication-associated protein with methyltransferase, protease, helicase and RNA-dependent RNA polymerase domains as well as a 29-kDa protein of unknown function. RNA2 possessed five open reading frames that potentially encoded proteins with molecular masses of 15, 7, 62, 32, and 24 kDa. The 32-kDa protein is homologous to 3A movement proteins of RNA viruses; the other proteins are of unknown function. A proteome comparison revealed that this virus was 92 % identical to citrus leprosis virus cytoplasmic type 2 (CiLV-C2), a recently characterized cilevirus infecting citrus with leprosis-like symptoms in Colombia. The high sequence similarity suggests that the virus described in this study could be a strain of CiLV-C2, but since the new genus Cilevirus does not have species demarcation criteria established at present, the classification of this virus infecting hibiscus is open to interpretation. This study represents the first documented case of a cilevirus established in the United States and provides insight into the diversity within the genus Cilevirus.


Assuntos
Genoma Viral , Hibiscus/virologia , Doenças das Plantas/virologia , Vírus de RNA/isolamento & purificação , Sequência de Bases , Citrus/virologia , Havaí , Dados de Sequência Molecular , Fases de Leitura Aberta , Folhas de Planta/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/patogenicidade , RNA de Cadeia Dupla/genética , RNA Viral/genética , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas Virais/genética
6.
Phytopathology ; 103(5): 488-500, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23268581

RESUMO

Citrus leprosis in Colombia was previously shown to be caused by cytoplasmic Citrus leprosis virus (CiLV-C). In 2011, enzyme-linked immunosorbent assay and reverse-transcription polymerase chain reaction (RT-PCR)-based diagnostic methods failed to identify CiLV-C from citrus samples with symptoms similar to citrus leprosis; however, virions similar to CiLV-C were observed in the cytoplasm of the symptomatic leaves by transmission electron microscopy. Furthermore, the causal organism was transmitted by the false spider mite, Brevipalpus phoenicis, to healthy citrus seedlings. A library of small RNAs was constructed from symptomatic leaves and used as the template for Illumina high-throughput parallel sequencing. The complete genome sequence and structure of a new bipartite RNA virus was determined. RNA1 (8,717 nucleotides [nt]) contained two open reading frames (ORFs). ORF1 encoded the replication module, consisting of five domains: namely, methyltransferase (MTR), cysteine protease-like, FtsJ-MTR, helicase (Hel), and RNA-dependent RNA polymerase (RdRp); whereas ORF2 encoded the putative coat protein. RNA2 (4,989 nt) contained five ORFs that encode the movement protein (MP) and four hypothetical proteins (p7, p15, p24, and p61). The structure of this virus genome resembled that of CiLV-C except that it contained a long 3' untranslated terminal region and an extra ORF (p7) in RNA2. Both the RNA1 and RNA2 of the new virus had only 58 and 50% nucleotide identities, respectively, with known CiLV-C sequences and, thus, it appears to be a novel virus infecting citrus. Phylogenetic analyses of the MTR, Hel, RdRp, and MP domains also indicated that the new virus was closely related to CiLV-C. We suggest that the virus be called Citrus leprosis virus cytoplasmic type 2 (CiLV-C2) and it should be unambiguously classified as a definitive member of the genus Cilevirus. A pair of CiLV-C2 genome-specific RT-PCR primers was designed and validated to detect its presence in citrus leprosis samples collected from the Casanare and Meta states in Colombia.


Assuntos
Vetores Aracnídeos/virologia , Citrus/virologia , Ácaros/virologia , Doenças das Plantas/virologia , Vírus de RNA/isolamento & purificação , Sequência de Aminoácidos , Animais , Citrus/ultraestrutura , Colômbia , Frutas , Biblioteca Gênica , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Folhas de Planta/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Plântula/ultraestrutura , Plântula/virologia , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Phytopathology ; 102(1): 122-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21916557

RESUMO

A Citrus volkameriana tree displaying symptoms similar to citrus leprosis on its leaves and bark was found in Hawaii. Citrus leprosis virus C (CiLV-C)-specific detection assays, however, were negative for all tissues tested. Short, bacilliform virus-like particles were observed by transmission electron microscopy in the cytoplasm of symptomatic leaves but not in healthy controls. Double-stranded (ds) RNAs ≈8 and 3 kbp in size were present in symptomatic leaf tissue but not in healthy controls. Excluding poly(A) tails, the largest molecule, RNA1, was 8,354 bp in length. The ≈3 kbp dsRNA band was found to be composed of two distinct molecules, RNA2 and RNA3, which were 3,169 and 3,113 bp, respectively. Phylogenetic analyses indicated that the RNA-dependent RNA polymerase (RdRp) domain located in RNA1 was most closely related to the RdRp domain of CiLV-C. A reverse-transcription polymerase chain reaction assay developed for the detection of this virus was used to screen nearby citrus trees as well as Hibiscus arnottianus plants with symptoms of hibiscus green spot, a disease associated with infection by Hibiscus green spot virus (HGSV). All nearby citrus trees tested negative with the assay; however, symptomatic H. arnottianus plants were positive. All three RNAs were present in symptomatic H. arnottianus and were >98% identical to the RNAs isolated from C. volkameriana. We contend that the virus described in this study is HGSV, and propose that it be the type member of a new virus genus, Higrevirus.


Assuntos
Citrus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Citrus/ultraestrutura , DNA Complementar/química , DNA Complementar/genética , Genoma Viral/genética , Havaí , Hibiscus/virologia , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Casca de Planta/virologia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de Plantas/ultraestrutura , Estrutura Terciária de Proteína/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/ultraestrutura , RNA de Cadeia Dupla/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vírion/ultraestrutura
8.
Virus Genes ; 32(3): 289-98, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16732481

RESUMO

The Citrus leprosis disease (CiL) is associated to a virus (CiLV) transmitted by Brevipalpus spp. mites (Acari: Tenuipalpidae). CiL is endemic in Brazil and its recently spreading to Central America represents a threat to citrus industry in the USA. Electron microscopy images show two forms of CiLV: a rare nuclear form, characterized by rod-shaped naked particle (CiLV-N) and a common cytoplasmic form (CiLV-C) associated with bacilliform-enveloped particle and cytoplasmic viroplasm. Due to this morphological feature, CiLV-C has been treated as Rhabdovirus-like. In this paper we present the complete nucleotide sequence and genomic organization of CiLV-C. It is a bipartite virus with sequence similarity to ssRNA positive plant virus. RNA1 encodes a putative replicase polyprotein and an ORF with no known function. RNA2 encodes 4 ORFs. pl5, p24 and p61 have no significant similarity to any known proteins and p32 encodes a protein with similarity to a viral movement protein. The CiLV-C sequences are associated with typical symptoms of CiL by RT-PCR. Phylogenetic analysis suggests that CiLV-C is probably a member of a new family of plant virus evolutionarily related to Tobamovirus.


Assuntos
Sequência de Bases , Citrus sinensis/virologia , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de RNA/classificação , RNA Viral/análise , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
9.
Virology ; 252(2): 287-303, 1998 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-9878607

RESUMO

RNA-dependent RNA polymerases (RdRps) function as the catalytic subunit of the viral replicase required for the replication of all positive strand RNA viruses. The vast majority of RdRps have been identified solely on the basis of sequence similarity. Structural studies of RdRps have lagged behind those of the DNA-dependent DNA polymerases, DNA-dependent RNA polymerases, and reverse transcriptases until the recent report of the partial crystal structure of the poliovirus RdRp, 3Dpol [Hansen, J. L., et al. (1997). Structure 5, 1109-1122]. We seek to address whether all RdRps will have structures similar to those found in the poliovirus polymerase structure. Therefore, the PHD method of Rost and Sander [Rost, B., and Sander, C. (1993a). J. Mol. Biol. 232, 584-599; Rost, B., and Sander, C. (1994). Protein 19, 55-77] was used to predict the secondary structure of the RdRps from six different viral families: bromoviruses, tobamoviruses, tombusvirus, leviviruses, hepatitis C-like viruses, and picornaviruses. These predictions were compared with the known crystal structure of the poliovirus polymerase. The PHD method was also used to predict picornavirus structures in places in which the poliovirus crystal structure was disordered. All five families and the picornaviruses share a similar order of secondary structure elements present in their polymerase proteins. All except the leviviruses have the unique region observed in the poliovirus 3Dpol that is suggested to be involved in polymerase oligomerization. These structural predictions are used to explain the phenotypes of a collection of mutations that exist in several RNA polymerases. This analysis will help to guide further characterization of RdRps.


Assuntos
Estrutura Secundária de Proteína , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Sequência de Aminoácidos , Simulação por Computador , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Vírus de RNA/classificação , Vírus de RNA/fisiologia , Alinhamento de Sequência , Replicação Viral
10.
J Virol ; 68(3): 1765-72, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8107238

RESUMO

Killer toxin-secreting strains of the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii were shown to contain linear double-stranded RNAs (dsRNAs) that persist within the cytoplasm of the infected host cell as encapsidated virus-like particles. In both yeasts, L- and M-dsRNAs were associated with 85-kDa major capsid protein, whereas the additional Z-dsRNA (2.8 kb), present only in the wild-type Z. bailii killer strain, was capsid protein, whereas the additional Z-dsRNA (2.8 kb), present only in the wild-type Z. bailii killer strain, was shown to be encapsidated by a 35-kDa coat protein. Although Northern (RNA) blot hybridizations indicated that L-dsRNA from Z. bailii is a LA species, additional peptide maps of the purified 85-kDa capsid from Z. bailii and the 88- and 80-kDa major coat proteins from K1 and K28 killer viruses of Saccharomyces cerevisiae revealed distinctly different patterns of peptides. Electron microscopy of purified Z. bailii viruses (ZbV) identified icosahedral particles 40 nm in diameter which were undistinguishable from the S. cerevisiae killer viruses. We demonstrated that purified ZbVs are sufficient to confer the Z. bailii killer phenotype on transfected spheroplasts of a S. cerevisiae nonkiller strain and that the resulting transfectants secreted even more killer toxin that the original ZbV donor strain did. Curing experiments with ZbV-transfected S. cerevisiae strains indicated that the M-dsRNA satellite from Z. bailii contains the genetic information for toxin production, whereas expression of toxin immunity might be dependent on Z-dsRNA, which resembles a new dsRNA replicon in yeasts that is not dependent on an LA helper virus to be stably maintained and replicated within the cell.


Assuntos
Micotoxinas/genética , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Leveduras/genética , Northern Blotting , Capsídeo/genética , Mapeamento de Peptídeos , Fenótipo , Vírus de RNA/classificação , Vírus de RNA/ultraestrutura , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA