Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
BMC Cancer ; 15: 869, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26547689

ABSTRACT

BACKGROUND: Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells. METHODS: Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs activity was examined by western blotting and the methylation profile of SHP-1 was studied using MS-PCR and pyrosequencing analysis. Repeated-measures ANOVA and Kruskal-Wallis tests were used for statistical analysis. RESULTS: The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis compared with other cells (p < 0.001). Expression of SHP-1 was 7-fold higher in MV4-11R-cep + 5-Aza cells compared to parental and resistant cells (p = 0.011). STAT3 was activated in resistant cells. Methylation of SHP-1 was significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0.002). CONCLUSIONS: The restoration of SHP-1 expression induces sensitivity towards CEP-701 and could serve as a target in the treatment of AML. Our findings support the hypothesis that, the tumor-suppressor effect of SHP-1 is lost due to epigenetic silencing and its re-expression might play an important role in re-inducing sensitivity to TKIs. Thus, SHP-1 is a plausible candidate for a role in the development of CEP-701 resistance in FLT3-ITD+ AML patients.


Subject(s)
Azacitidine/pharmacology , Gene Duplication , Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , STAT3 Transcription Factor/metabolism , fms-Like Tyrosine Kinase 3/genetics , Apoptosis/drug effects , Apoptosis/genetics , Carbazoles/pharmacology , Cell Line, Tumor , Cells, Cultured , DNA Methylation , Drug Resistance, Neoplasm/genetics , Furans , Humans , Leukemia, Myeloid, Acute/drug therapy
2.
Front Nutr ; 10: 1155947, 2023.
Article in English | MEDLINE | ID: mdl-37284649

ABSTRACT

Introduction: Obesity and iron deficiency are prevalent health problems that affect billions of people all over the world. Obesity is postulated to relate to iron deficiency via reduced intestinal iron absorption due to increased serum hepcidin level, which is mediated by chronic inflammation. Weight loss in individuals with overweight or obesity and iron deficiency anemia is believed to be associated with an improvement in iron status however the evidence from clinical trials is scarce. This study was conducted to evaluate the effect of diet-induced weight loss on iron status and its markers among young women with overweight/obesity and iron deficiency anemia. Methods: The study design was a single-blinded, randomized controlled trial with two parallel arms (weight loss intervention vs control). Study participants were recruited using the convenience sampling method through public advertisements posted and disseminated through social media. Interested and potential participants were asked to visit the Diet Clinic for eligibility screening. A total of 62 women were recruited and randomized into weight loss intervention and control group. The intervention duration was three months. The intervention group received individual consultation sessions with the dietitian and tailored energy-restricted diets. Physical activity levels, dietary intake, anthropometric measurements and clinical markers were measured at baseline and end of the trial. Results: There was a significant decrease (p < 0.001) in body weight of the intervention group (-7.4 ± 2.7 kg) that was associated with significant improvements in iron status and its markers (p < 0.01). The intervention group experienced a significant increase in hemoglobin (0.5 ± 0.6 g/dL), serum ferritin (5.6 ± 5.8 ng/mL), and serum iron (13.0 ± 16.2 µg/dL), and a significant decrease in high-sensitivity C-reactive protein (-5.2 ± 5.6 mg/L), and serum hepcidin level (-1.9 ± 2.2 ng/mL) at the end of the trial. Conclusion: Our findings indicate that diet-induced weight loss among participants was associated with an improvement in iron status and its related clinical markers. Clinical Trial Registration: [https://www.thaiclinicaltrials.org/show/TCTR20221009001], identifier [TCTR20221009001].

3.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375831

ABSTRACT

The epigenetic silencing of tumor suppressor genes (TSGs) is critical in the development of chronic myeloid leukemia (CML). SHP-1 functions as a TSG and negatively regulates JAK/STAT signaling. Enhancement of SHP-1 expression by demethylation provides molecular targets for the treatment of various cancers. Thymoquinone (TQ), a constituent of Nigella sativa seeds, has shown anti-cancer activities in various cancers. However, TQs effect on methylation is not fully clear. Therefore, the aim of this study is to assess TQs ability to enhance the expression of SHP-1 through modifying DNA methylation in K562 CML cells. The activities of TQ on cell cycle progression and apoptosis were evaluated using a fluorometric-red cell cycle assay and Annexin V-FITC/PI, respectively. The methylation status of SHP-1 was studied by pyrosequencing analysis. The expression of SHP-1, TET2, WT1, DNMT1, DNMT3A, and DNMT3B was determined using RT-qPCR. The protein phosphorylation of STAT3, STAT5, and JAK2 was assessed using Jess Western analysis. TQ significantly downregulated the DNMT1 gene, DNMT3A gene, and DNMT3B gene and upregulated the WT1 gene and TET2 gene. This led to hypomethylation and restoration of SHP-1 expression, resulting in inhibition of JAK/STAT signaling, induction of apoptosis, and cell cycle arrest. The observed findings imply that TQ promotes apoptosis and cell cycle arrest in CML cells by inhibiting JAK/STAT signaling via restoration of the expression of JAK/STAT-negative regulator genes.

4.
Diagnostics (Basel) ; 13(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37046464

ABSTRACT

BACKGROUND: ß-thalassaemia is a disorder caused by mutations in the ß-globin gene, leading to defective production of haemoglobins (Hb) and red blood cells (RBCs). It is characterised by anaemia, ineffective erythropoiesis, and iron overload. Patients with severe ß-thalassaemia require lifelong blood transfusions. Haemoglobin E beta-thalassaemia (HbE/ß-thalassaemia) is a severe form of ß-thalassaemia in Asian countries. More than 200 alleles have been recognised in the ß-globin region. Different geographical regions show different frequencies of allelic characteristics. In this study, the spectrum of ß-thalassaemia (ß-thal) alleles and their correlation with iron overload, in HbE/ß-thalassaemia patients, ß-thalassaemia trait, and HbE trait were studied. METHODS: Blood samples (n = 260) were collected from 65 ß-thalassaemia patients, 65 parents (fathers and/or mothers) and 130 healthy control individuals. Haematological analyses, iron profiles, and serum hepcidin levels were examined for all participants. DNA was extracted from patients' and their parents' blood samples, then subjected to PCR amplification. Multiplex amplification refractory mutation system PCR (MARMS-PCR) was conducted for eighteen primers to detect the mutations. RESULTS: There was severe anaemia present in HbE/ß-thalassaemia patients compared to their parents and healthy controls. The ferritin and iron levels were significantly increased in patients compared to their parents and healthy controls (p = 0.001). Two common mutations were detected among the patient group and three mutations were detected among their parents, in addition to seven novel mutations in HbE/ß-thalassaemia patients (explained in results). CONCLUSION: Some mutations were associated with severe anaemia in ß-thalassaemia patients. The detection of mutations is a prognostic marker, and could enhance the appropriate management protocols and improve the haematological and biochemical statuses of ß-thalassaemia patients.

5.
Noncoding RNA ; 9(6)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37987364

ABSTRACT

The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.

6.
Biomedicines ; 10(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35052868

ABSTRACT

Iron homeostasis is regulated by hepcidin, a hepatic hormone that controls dietary iron absorption and plasma iron concentration. Hepcidin binds to the only known iron export protein, ferroportin (FPN), which regulates its expression. The major factors that implicate hepcidin regulation include iron stores, hypoxia, inflammation, and erythropoiesis. When erythropoietic activity is suppressed, hepcidin expression is hampered, leading to deficiency, thus causing an iron overload in iron-loading anemia, such as ß-thalassemia. Iron overload is the principal cause of mortality and morbidity in ß-thalassemia patients with or without blood transfusion dependence. In the case of thalassemia major, the primary cause of iron overload is blood transfusion. In contrast, iron overload is attributed to hepcidin deficiency and hyperabsorption of dietary iron in non-transfusion thalassemia. Beta-thalassemia patients showed marked hepcidin suppression, anemia, iron overload, and ineffective erythropoiesis (IE). Recent molecular research has prompted the discovery of new diagnostic markers and therapeutic targets for several diseases, including ß-thalassemia. In this review, signal transducers and activators of transcription (STAT) and SMAD (structurally similar to the small mothers against decapentaplegic in Drosophila) pathways and their effects on hepcidin expression have been discussed as a therapeutic target for ß-thalassemia patients. Therefore, re-expression of hepcidin could be a therapeutic target in the management of thalassemia patients. Data from 65 relevant published experimental articles on hepcidin and ß-thalassemia between January 2016 and May 2021 were retrieved by using PubMed and Google Scholar search engines. Published articles in any language other than English, review articles, books, or book chapters were excluded.

7.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35337104

ABSTRACT

Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Next-generation sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ's effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes' effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways.

8.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145344

ABSTRACT

Constitutive activation of Janus tyrosine kinase-signal transducer and activator of transcription (JAK/STAT) and Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathways plays a crucial role in the development of acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Thymoquinone (TQ), one of the main constituents of Nigella sativa, has shown anti-cancer activities in several cancers. However, the inhibitory effect mechanism of TQ on leukemia has not been fully understood. Therefore, this study aimed to investigate the effect of TQ on JAK/STAT and PI3K/Akt/mTOR pathways in MV4-11 AML cells and K562 CML cells. FLT3-ITD positive MV4-11 cells and BCR-ABL positive K562 cells were treated with TQ. Cytotoxicity assay was assessed using WSTs-8 kit. The expression of the target genes was evaluated using RT-qPCR. The phosphorylation status and the levels of proteins involved in JAK/STAT and PI3K/Akt/mTOR pathways were investigated using Jess western analysis. TQ induced a dose and time dependent inhibition of K562 cells proliferation. TQ significantly downregulated PI3K, Akt, and mTOR and upregulated PTEN expression with a significant inhibition of JAK/STAT and PI3K/Akt/mTOR signaling. In conclusion, TQ reduces the expression of PI3K, Akt, and mTOR genes and enhances the expression of PTEN gene at the mRNA and protein levels. TQ also inhibits JAK/STAT and PI3K/Akt/mTOR pathways, and consequently inhibits proliferation of myeloid leukemia cells, suggesting that TQ has potential anti-leukemic effects on both AML and CML cells.

9.
Exp Ther Med ; 22(5): 1268, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34594405

ABSTRACT

Obesity is a risk factor for several comorbidities and complications, including iron deficiency anemia. Iron deficiency anemia is a serious global public health problem, with a worldwide prevalence. The high prevalence of obesity in combination with iron deficiency incidence observed in different age and sex categories suggests an association between obesity and iron status. Obesity may disrupt iron homeostasis, resulting in iron deficiency anemia. The association between obesity and iron deficiency may be due to increased hepcidin levels mediated by chronic inflammation. Hepcidin is a small peptide hormone that functions as a negative regulator of intestinal iron absorption. Significant body weight loss in overweight and obese individuals decreases chronic inflammation and serum hepcidin levels, resulting in improved iron status due to increased iron absorption. However, further randomized controlled trials are required to confirm this effect.

10.
Exp Ther Med ; 22(6): 1402, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34675995

ABSTRACT

Iron homeostasis is regulated by hepcidin (HEPC) that controls the dietary iron absorption and iron recycling. HEPC deficiency contributes to iron overload in ß-thalassemia patients. The present study aimed to investigate the correlation between HEPC concentration and serum iron status among hemoglobin E (HbE)/ß-thalassemia patients and their parents (HbE trait and ß-thalassemia trait) compared with healthy controls. This study is a comparative cross-sectional study in which iron profile and HEPC level were examined in 65 HbE/ß-thalassemia patients (pretransfusion) and 65 parents at the Hospital Sultanah Nur Zahirah and in 130 students as healthy controls from Univesiti Sultan Zainal Abidin, Terengganu, Malaysia. Furthermore, six samples from each group (HbE/ß-thalassemia patients, parents and healthy controls) were randomly selected for gene expression analysis of HEPC and ferroportin1 (FPN1) using reverse transcription quantitative PCR. The results demonstrated that serum HEPC level were significantly decreased in HbE/ß-thalassemia patients and their parents (P<0.001) compared with healthy controls. In addition, the gene expression analysis showed a dramatically downregulated HEPC in HbE/ß-thalassemia patients and their parents (P=0.001) compared with healthy controls. However, there was a marked upregulation of FPN1 in HbE/ß-thalassemia patients and their parents (P=0.001) compared with healthy controls. Iron profiling results revealed a significantly increased serum ferritin in HbE/ß-thalassemia patients and their parents compared with healthy controls (P<0.001). In summary, the present study demonstrated that HEPC expression level and serum level were significantly decreased in HbE/ß-thalassemia patients and their parents, which was combined with a marked increased FPN1 expression level and serum ferritin level compared with healthy volunteers. These findings supported the hypothesis that downregulated HEPC could lose its function as a negative regulator of FPN1, resulting in iron overload in HbE/ß-thalassemia patients. Subsequently, assessing HEPC and FPN1 gene expression may be a useful tool to determine the risk of iron toxicity in patients with HbE/ß-thalassemia and their parents, and could therefore be considered as a therapeutic target in the management of iron burden in these patients.

11.
Asian Pac J Cancer Prev ; 22(12): 3959-3965, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34967577

ABSTRACT

OBJECTIVE: BCR ABL oncogene encodes the BCR-ABL chimeric protein, which is a constitutively activated non-receptor tyrosine kinase. The BCR-ABL oncoprotein is a key molecular basis for the pathogenesis of chronic myeloid leukemia (CML) via activation of several downstream signaling pathways including JAK/STAT pathway. Development of leukemia involves constitutive activation of signaling molecules including, JAK2, STAT3, STAT5A and STAT5B. Thymoquinone (TQ) is a bioactive constituent of Nigella sativa that has shown anticancer properties in various cancers. The present study aimed to evaluate the effect of TQ on the expression of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes and their consequences on the cell proliferation and apoptosis in K562 CML cells. METHODS: BCR-ABL positive K562 CML cells were treated with TQ. Cytotoxicity was determined by Trypan blue exclusion assay. Apoptosis assay was performed by annexin V-FITC/PI staining assay and analyzed by flow cytometry. Transcription levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein levels of JAK2 and STAT5 were determined by Jess Assay analysis. RESULTS: TQ markedly decreased the cell proliferation and induced apoptosis in K562 cells (P < 0.001) in a concentration dependent manner. TQ caused a significant decrease in the transcriptional levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes (P < 0.001). TQ induced a significant decrease in JAK2 and STAT5 protein levels (P < 0.001). CONCLUSION: our results indicated that TQ inhibited cell growth of K562 cells via downregulation of BCR ABL/ JAK2/STAT3 and STAT5 signaling and reducing JAK2 and STAT5 protein levels.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoquinones/pharmacology , Genes, abl/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Signal Transduction/drug effects , Apoptosis/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Janus Kinase 2/drug effects , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , STAT3 Transcription Factor/drug effects , STAT5 Transcription Factor/drug effects , Signal Transduction/genetics , Tumor Suppressor Proteins/drug effects
12.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923474

ABSTRACT

To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.

13.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34959687

ABSTRACT

Epigenetic silencing of tumor suppressor genes (TSGs) plays an essential role in cancer pathogenesis, including acute myeloid leukemia (AML). All of SHP-1, SOCS-1, and SOCS-3 are TSGs that negatively regulate JAK/STAT signaling. Enhanced re-expression of TSGs through de-methylation represents a therapeutic target in several cancers. Thymoquinone (TQ) is a major component of Nigella sativa seeds with anticancer effects against several cancers. However, the effects of TQ on DNA methylation are not entirely understood. This study aimed to evaluate the ability of TQ to re-express SHP-1, SOCS-1, and SOCS-3 in MV4-11 AML cells through de-methylation. Cytotoxicity, apoptosis, and cell cycle assays were performed using WSTs-8 kit, Annexin V-FITC/PI apoptosis detection kit, and fluorometric-red cell cycle assay kit, respectively. The methylation of SHP-1, SOCS-1, and SOCS-3 was evaluated by pyrosequencing analysis. The expression of SHP-1, SOCS-1, SOCS-3, JAK2, STAT3, STAT5A, STAT5B, FLT3-ITD, DNMT1, DNMT3A, DNMT3B, TET2, and WT1 was assessed by RT-qPCR. The molecular docking of TQ to JAK2, STAT3, and STAT5 was evaluated. The results revealed that TQ significantly inhibited the growth of MV4-11 cells and induced apoptosis in a dose- and time-dependent manner. Interestingly, the results showed that TQ binds the active pocket of JAK2, STAT3, and STAT5 to inhibit their enzymatic activity and significantly enhances the re-expression of SHP-1 and SOCS-3 through de-methylation. In conclusion, TQ curbs MV4-11 cells by inhibiting the enzymatic activity of JAK/STAT signaling through hypomethylation and re-expression of JAK/STAT negative regulators and could be a promising therapeutic candidate for AML patients.

14.
Sci Rep ; 11(1): 16772, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408192

ABSTRACT

This study sought to determine the potential role of HBB haplotypes to predict beta-thalassemia in the Malaysian population. A total of 543 archived samples were selected for this study. Five tagging SNPs in the beta-globin gene (HBB; NG_000007.3) were analyzed for SNP-based and haplotype association using SHEsis online software. Single-SNP-based association analysis showed three SNPs have a statistically significant association with beta-thalassemia. When Bonferroni correction was applied, four SNPs were found statistically significant with beta-thalassemia; IVS2-74T>G (padj = 0.047), IVS2-16G>C (padj = 0.017), IVS2-666C>T (padj = 0.017) and 3'UTR + 314G>A (padj = 0.002). However, 3'UTR + 233G>C did not yield a significant association with padj value = 0.076. Further investigation using combined five SNPs for haplotype association analysis revealed three susceptible haplotypes with significant p values of which, haplotypes 1-2-2-1-1 (p = 6.49 × 10-7, OR = 10.371 [3.345-32.148]), 1-2-1-1-1 (p = 0.009, OR = 1.423 [1.095-1.850] and 1-1-1-1-1 (p = 1.39 × 10-4, OR = 10.221 [2.345-44.555]). Three haplotypes showed protective effect with significant p value of which, 2-2-1-1-1 (p = 0.006, OR = 0.668 [0.500-0.893]), 1-1-2-2-1 (p = 0.013, OR = 0.357 [0.153-0.830]) and 1-1-2-1-1 (p = 0.033, OR = 0.745 [0.567-0.977]). This study has identified the potential use of intragenic polymorphic markers in the HBB gene, which were significantly associated with beta-thalassemia. Combining these five SNPs defined a new haplotype model for beta-thalassemia and further evaluation for predicting severity in beta-thalassemia.


Subject(s)
Haplotypes , Models, Genetic , Polymorphism, Single Nucleotide , beta-Globins/genetics , beta-Thalassemia/genetics , Female , Humans , Malaysia , Male
15.
Asian Pac J Cancer Prev ; 22(3): 879-885, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33773553

ABSTRACT

OBJECTIVE: The natural compound, thymoquinone (TQ) has demonstrated potential anticancer properties in inhibiting cell proliferation and promoting apoptosis in myeloid leukemia cells, breast cancer cells, and others. However, the effect mechanism of TQ on AML cells still not fully understood. In this study, the authors examined the effects of TQ on the expression of JAK/STAT-negative regulator genes SOCS-1, SOCS-3, and SHP-1, and their consequences on cell proliferation and apoptosis in HL60 leukemia cells. METHODS: MTT and trypan blue exclusion tests were conducted to determine the 50% inhibitory concentration (IC50) and cell proliferation. FITC Annexin and Guava® reagent were used to study the cell apoptosis and examine the cell cycle phases, respectively. The expression of JAK/STAT-negative regulator genes, SOCS-1, SOCS-3, and SHP-1, was investigated using reverse transcriptase- quantitative PCR (RT-qPCR). RESULTS: TQ demonstrated a potential inhibition of HL60 cell proliferation and a significant increase in apoptotic cells in dose and time-dependent manner. TQ significantly induced cycle arrest at G0-G1 phase (P < 0.001) and enhanced the re-expression of JAK/STAT-negative regulator genes. CONCLUSION: TQ potentially inhibited HL60 cell proliferation and significantly increased apoptosis with re-expression of JAK/STAT-negative regulator genes suggesting that TQ could be a new therapeutic candidate for leukemia therapy.
.


Subject(s)
Apoptosis/drug effects , Benzoquinones/pharmacology , Cell Proliferation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/drug effects , Suppressor of Cytokine Signaling 1 Protein/drug effects , Suppressor of Cytokine Signaling 3 Protein/drug effects , HL-60 Cells , Humans , Inhibitory Concentration 50 , Janus Kinases , Leukemia, Promyelocytic, Acute/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , STAT Transcription Factors , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics
16.
Int J Lab Hematol ; 43(6): 1451-1457, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34125992

ABSTRACT

INTRODUCTION: Calreticulin (CALR) mutations in myeloproliferative neoplasms (MPN) have been reported to be key markers in the molecular diagnosis, particularly in patients lacking JAK2 V617F mutation. In most current reports, CALR mutations were analysed by either allele-specific PCR (AS-PCR), or the more expensive quantitative real-time PCR, pyrosequencing and next-generation sequencing. Hence, we report the use of an alternative method, the conformation sensitive gel electrophoresis (CSGE) for the detection of CALR mutations in BCR-ABL1-negative MPN patients. METHODS: Forty BCR-ABL1-negative MPN patients' DNA: 19 polycythemia vera (PV), 7 essential thrombocytosis (ET) and 14 primary myelofibrosis (PMF), were screened for CALR mutations by CSGE. PCR primers were designed to amplify sequences spanning between exons 8 and 9 to target the mutation hotspots in CALR. Amplicons displaying abnormal CSGE profiles by electrophoresis were directly sequenced, and results were analysed by BioEdit Sequence Alignment Editor v7.2.6. CSGE results were compared with AS-PCR and confirmed by Sanger sequencing. RESULTS: CSGE identified 4 types of mutations; 2 PMF patients with either CALR type 1 (c.1099_1150del52) or type 2 (c.1155_1156insTTGTC), 1 ET patient with nucleotide deletion (c.1121delA) and insertion (c.1190insA) and 1 PV patient with p.K368del (c.1102_1104delAAG) and insertion (c.1135insA) inframe mutations. Three patients have an altered KDEL motif at the C-terminal of CALR protein. In comparison, AS-PCR only able to detect two PMF patients with mutations, either type 1 and type 2. CONCLUSION: CSGE is inexpensive, sensitive and reliable alternative method for the detection of CALR mutations in BCR-ABL1-negative MPN patients.


Subject(s)
Biomarkers , Calreticulin/genetics , Calreticulin/metabolism , Electrophoresis/methods , Mutation , Myeloproliferative Disorders/etiology , Myeloproliferative Disorders/metabolism , Alleles , Calreticulin/chemistry , DNA Mutational Analysis , Diagnosis, Differential , Disease Susceptibility , Fusion Proteins, bcr-abl/genetics , Genetic Predisposition to Disease , Genotype , Humans , Myeloproliferative Disorders/diagnosis , Polymerase Chain Reaction , Prognosis
17.
Iran J Microbiol ; 12(6): 565-576, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33613911

ABSTRACT

BACKGROUND AND OBJECTIVES: Tualang honey (TH) is a Malaysian multifloral jungle honey. In recent years, there has been a marked increase in the number of studies published in medical databases regarding its potential health benefits. The study aimed to investigate the effect of TH against Pseudomonas aeruginosa and Streptococcus pyogenes. MATERIALS AND METHODS: The effect of TH on both bacteria was investigated using MIC, MBC, growth curve, time-kill curve, scanning electron microscopy (SEM) and RT-qPCR. RESULTS: The MIC of TH against P. aeruginosa and S. pyogenes was 18.5% (w/v) and 13% (w/v) respectively and MBC was 25% (w/v) for both bacteria. Spectrophotometric readings of at least 90% inhibition yielded MIC90 values of TH, 18.5% (w/v) and 15% (w/v) for P. aeruginosa and S. pyogenes respectively. A time-kill curve demonstrated a bactericidal with a 4-log reduction estimated within 8 hours. Using SEM, loss of structural integrity and marked changes in cell shape were observed. RT-qPCR analysis showed that TH reduced the pattern of gene expression in both bacteria, with a trend toward reduced expression of the virulence genes of interest. CONCLUSION: This study suggests that TH could potentially be used as an alternative therapeutic agent for microbial infection particularly against these two organisms.

18.
Asian Pac J Cancer Prev ; 19(6): 1585-1590, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29936783

ABSTRACT

Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways. Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/ ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively. Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.


Subject(s)
Azacitidine/pharmacology , Bone Marrow/metabolism , Drug Resistance, Neoplasm , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Proteoglycans/metabolism , STAT3 Transcription Factor/metabolism , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation , Eosinophil Major Basic Protein/genetics , Eosinophil Major Basic Protein/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Proteoglycans/genetics , Tumor Cells, Cultured
19.
Asian Pac J Cancer Prev ; 17(11): 4857-4861, 2016 11 01.
Article in English | MEDLINE | ID: mdl-28030911

ABSTRACT

Background: Imatinib mesylate, a tyrosine kinase inhibitor specifically targeting the BCR/ABL fusion protein, induces hematological remission in patients with chronic myeloid leukemia (CML). However, the majority of CML patients treated with imatinib develop resistance with prolonged therapy. Dendrophthoe pentandra (L.) Miq. is a Malaysian mistletoe species that has been used as a traditional treatment for several ailments such as smallpox, ulcers, and cancers. Methods: We developed a resistant cell line (designated as K562R) by long-term co-culture of a BCR/ ABL positive CML cell line, K562, with imatinib mesylate. We then investigated the anti-proliferative effects of D. pentandra methanol extract on parental K562 and resistant K562R cells. Trypan blue exclusion assays were performed to determine the IC50 concentration; apoptosis and cell cycle analysis were conducted by flow cytometry. Results: D. pentandra extract had greater anti-proliferative effects towards K562R (IC50= 192 µg/mL) compared to K562 (500 µg/ mL) cells. Upon treatment with D. pentandra extract at the IC50. concentration: K562 but not K562R demonstrated increase in apoptosis and cell cycle arrest in the G2/M phase. Conclusion: D. pentandra methanol extract exerts potent anti-proliferative effect on BCR/ABL positive K562 cells.

20.
Asian Pac J Cancer Prev ; 15(1): 475-81, 2014.
Article in English | MEDLINE | ID: mdl-24528077

ABSTRACT

BACKGROUND: Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. MATERIALS AND METHODS: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. RESULTS: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. CONCLUSIONS: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.


Subject(s)
Apoptosis/drug effects , Cactaceae , Plant Extracts/pharmacology , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Plant Leaves , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL