Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Oral Dis ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37994179

ABSTRACT

BACKGROUND: Here, we evaluated whether the histone lysine demethylase 5B (JARID1B), is involved in osteogenic phenotype commitment of periodontal ligament cells (PDLCs), by considering their heterogeneity for osteoblast differentiation. MATERIALS AND METHODS: Epigenetic, transcriptional, and protein levels of a gene set, involved in the osteogenesis, were investigated by performing genome-wide DNA (hydroxy)methylation, mRNA expression, and western blotting analysis at basal (without osteogenic induction), and at the 3rd and 10th days of osteogenic stimulus, in vitro, using PDLCs with low (l) and high (h) osteogenic potential as biological models. RESULTS: h-PDLCs showed reduced levels of JARID1B, compared to l-PDLCs, with significant inversely proportional correlations between RUNX2 and RUNX2/p57. Epigenetically, a significant reduction in the global H3K4me3 content was observed only in h-PDLCs. Immunoblotting data reveal a significant reduction in the global H3K4me3 content, at 3 days of induction only in h-PDLCs, while an increase in the global H3K4me3 content was observed at 10 days for both PDLCs. Additionally, positive correlations were found between global H3K4me3 levels and JARID1B gene expression. CONCLUSIONS: Altogether, our results show the crucial role of JARID1B in repressing PDLCs osteogenic phenotype and this claims to pre-clinical protocols proposing JARID1B as a potential therapeutic target.

2.
Dev Biol ; 470: 37-48, 2021 02.
Article in English | MEDLINE | ID: mdl-33152274

ABSTRACT

Mesenchymal stem cells are candidates for therapeutic strategies in periodontal repair due to their osteogenic potential. In this study, we identified epigenetic markers during osteogenic differentiation, taking advantage of the individual pattern of mesenchymal cells of the periodontal ligament with high (h-PDLCs) and low (l-PDLCs) osteogenic capacity. We found that the involvement of non-coding RNAs in the regulation of the RUNX2 gene is strongly associated with high osteogenic potential. Moreover, we evaluated miRs and genes that encode enzymes to process miRs and their biogenesis. Our data show the high expression of the XPO5 gene, and miRs 7 and 22 observed in the l-PDLCs might be involved in acquiring osteogenic potential, suppressing RUNX2 gene expression. Further, an inversely proportional correlation between lncRNAs (HOTAIR and HOTTIP) and RUNX2 gene expression was observed in both l- and h-PDLCs, and it was also related to the distinct osteogenic phenotypes. Thus, our results indicate the low expression of XPO5 in h-PDLC might be the limiting point for blocking the miRs biogenesis, allowing the high gene expression of RUNX2. In accordance, the low expression of miRs, HOTAIR, and HOTTIP could be a prerequisite for increased osteogenic potential in h-PDLCs. These results will help us to better understand the underlying mechanisms of osteogenesis, considering the heterogeneity in the osteogenic potential of PDLCs that might be related to a distinct transcriptional profile of lncRNAs and the biogenesis machinery.


Subject(s)
Core Binding Factor Alpha 1 Subunit/genetics , Mesenchymal Stem Cells/physiology , MicroRNAs/metabolism , Osteogenesis , Periodontal Ligament/cytology , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/metabolism , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , MicroRNAs/genetics , Periodontal Ligament/metabolism , Phenotype , RNA, Long Noncoding/genetics , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Transcription, Genetic , Transcriptome , Young Adult
3.
Genes (Basel) ; 14(8)2023 08 18.
Article in English | MEDLINE | ID: mdl-37628700

ABSTRACT

Chromatin conformation, DNA methylation pattern, transcriptional profile, and non-coding RNAs (ncRNAs) interactions constitute an epigenetic pattern that influences the cellular phenotypic commitment and impacts the clinical outcomes in regenerative therapies. Here, we investigated the epigenetic landscape of the SP7 transcriptor factor (SP7) and Distal-Less Homeobox 4 (DLX4) osteoblastic transcription factors (TFs), in human periodontal ligament mesenchymal cells (PDLCs) with low (l-PDLCs) and high (h-PDLCs) osteogenic potential. Chromatin accessibility (ATAC-seq), genome DNA methylation (Methylome), and RNA sequencing (RNA-seq) assays were performed in l- and h-PDLCs, cultured at 10 days in non-induced (DMEM) and osteogenic (OM) medium in vitro. Data were processed in HOMER, Genome Studio, and edgeR programs, and metadata was analyzed by online bioinformatics tools and in R and Python environments. ATAC-seq analyses showed the TFs genomic regions are more accessible in l-PDLCs than in h-PDLCs. In Methylome analyses, the TFs presented similar average methylation intensities (AMIs), without differently methylated probes (DMPs) between l- and h-PDLCs; in addition, there were no differences in the expression profiles of TFs signaling pathways. Interestingly, we identified the long non-coding RNAs (lncRNAs), MIR31HG and LINC00939, as upregulated in l-PDLCs, in both DMEM and OM. In the following analysis, the web-based prediction tool LncRRIsearch predicted RNA:RNA base-pairing interactions between SP7, DLX4, MIR31HG, and LINC00939 transcripts. The machine learning program TriplexFPP predicted DNA:RNA triplex-forming potential for the SP7 DNA site and for one of the LINC00939 transcripts (ENST00000502479). PCR data confirmed the upregulation of MIR31HG and LINC00939 transcripts in l-PDLCs (× h-PDLCs) in both DMEM and OM (p < 0.05); conversely, SP7 and DLX4 were downregulated, confirming those results observed in the RNA-Seq analysis. Together, these results indicate the lncRNAs MIR31HG and LINC00939 as possible epigenetic inhibitors of the osteogenic differentiation in PDLCs by (post)transcriptional and translational repression of the SP7 and DLX4 TFs.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Osteogenesis/genetics , Chromatin , Cell Differentiation/genetics , Epigenesis, Genetic , Transcription Factors/genetics , Homeodomain Proteins/genetics
4.
Brain Res ; 1803: 148234, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36634900

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disease, mainly characterized by increased blood glucose and insulin dysfunction. In response to the persistent systemic hyperglycemic state, numerous metabolic and physiological complications have already been well characterized. However, its relationship to bone fragility, cognitive deficits and increased risk of dementia still needs to be better understood. The impact of chronic hyperglycemia on bone physiology and architecture was assessed in a model of chronic hyperglycemia induced by a single intraperitoneal administration of streptozotocin (STZ; 55 mg/kg) in Wistar rats. In addition, the bone-to-brain communication was investigated by analyzing the gene expression and methylation status of genes that encode the main osteokines released by the bone [Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) and their receptors in both, the bone and the brain [Fgfr1 (fibroblast growth factor receptor 1), Gpr6A (G-protein coupled receptor family C group 6 member A), Gpr158 (G protein-coupled receptor 158) and Slc22a17 (Solute carrier family 22 member 17)]. It was observed that chronic hyperglycemia negatively impacted on bone biology and compromised the balance of the bone-brain endocrine axis. Ultrastructural disorganization was accompanied by global DNA hypomethylation and changes in gene expression of DNA-modifying enzymes that were accompanied by changes in the methylation status of the osteokine promoter region Bglap and Lcn2 (lipocalin 2) in the femur. Additionally, the chronic hyperglycemic state was accompanied by modulation of gene expression of the osteokines Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) in the different brain regions. However, transcriptional regulation mediated by DNA methylation was observed only for the osteokine receptors, Fgfr1(fibroblast growth factor receptor 1) in the striatum and Gpr158 (G protein-coupled receptor 158) in the hippocampus. This is a pioneer study demonstrating that the chronic hyperglycemic state compromises the crosstalk between bone tissue and the brain, mainly affecting the hippocampus, through transcriptional silencing of the Bglap receptor by hypermethylation of Gpr158 gene.


Subject(s)
Fibroblast Growth Factor-23 , Hyperglycemia , Receptors, G-Protein-Coupled , Animals , Rats , 1-Carboxyglutamic Acid/genetics , 1-Carboxyglutamic Acid/metabolism , Bone and Bones/metabolism , Brain/metabolism , Epigenetic Repression , Hippocampus/metabolism , Homeostasis , Hyperglycemia/metabolism , Lipocalin-2/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Rats, Wistar , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism
5.
Cells ; 11(7)2022 03 26.
Article in English | MEDLINE | ID: mdl-35406691

ABSTRACT

Periodontal ligament stem cells (PDLCs) can be used as a valuable source in cell therapies to regenerate bone tissue. However, the potential therapeutic outcomes are unpredictable due to PDLCs' heterogeneity regarding the capacity for osteoblast differentiation and mineral nodules production. Here, we identify epigenetic (DNA (hydroxy)methylation), chromatin (ATAC-seq) and transcriptional (RNA-seq) differences between PDLCs presenting with low (l) and high (h) osteogenic potential. The primary cell populations were investigated at basal state (cultured in DMEM) and after 10 days of osteogenic stimulation (OM). At a basal state, the expression of transcription factors (TFs) and the presence of gene regulatory regions related to osteogenesis were detected in h-PDLCs in contrast to neuronal differentiation prevalent in l-PDLCs. These differences were also observed under stimulated conditions, with genes and biological processes associated with osteoblast phenotype activated more in h-PDLCs. Importantly, even after the induction, l-PDLCs showed hypermethylation and low expression of genes related to bone development. Furthermore, the analysis of TFs motifs combined with TFs expression suggested the relevance of SP1, SP7 and DLX4 regulation in h-PDLCs, while motifs for SIX and OLIG2 TFs were uniquely enriched in l-PDLCs. Additional analysis including a second l-PDLC population indicated that the high expression of OCT4, SIX3 and PPARG TFs could be predictive of low osteogenic commitment. In summary, several biological processes related to osteoblast commitment were activated in h-PDLCs from the onset, while l-PDLCs showed delay in the activation of the osteoblastic program, restricted by the persistent methylation of gene related to bone development. These processes are pre-determined by distinguishable epigenetic and transcriptional patterns, the recognition of which could help in selection of PDLCs with pre-osteoblastic phenotype.


Subject(s)
Osteogenesis , Periodontal Ligament , Cells, Cultured , Chromatin/metabolism , Homeodomain Proteins/metabolism , Humans , Methylation , Osteogenesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
J Periodontol ; 93(3): 435-448, 2022 03.
Article in English | MEDLINE | ID: mdl-34291826

ABSTRACT

BACKGROUND: Mesenchymal cells' biology has been an important investigative tool to maximize bone regeneration through tissue engineering. Here we used mesenchymal cells from periodontal ligament (PDLCs) with high (h-) and low (l-) osteogenic potential, isolated from different donors, to investigate the impact of the individual epigenetic and transcriptional profiles on the osteogenic potential. METHODS: Genome-wide and gene-specific DNA (hydroxy) methylation, mRNA expression and immunofluorescence analysis were carried out in h- and l-PDLCs at DMEM (non-induced to osteogenesis) and OM (induced-3rd and 10th days of osteogenic differentiation) groups in vitro. RESULTS: Genome-wide results showed distinct epigenetic profile among PDLCs with most of the differences on 10th day of OM; DMEMs showed higher concentrations (xOM) of differentially methylated probes in gene body, intronic and open sea (3rd day), increasing this concentration in TSS200 and island regions, at 10 days. At basal levels, h- and l-PDLCs showed different transcriptional profiles; l-PDLCs demonstrated higher levels of NANOG/OCT4/SOX2, BAPX1, DNMT3A, TET1/3, and lower levels of RUNX2 transcripts, confirmed by NANOG/OCT4 and RUNX2 immunofluorescence. After osteogenic induction, the distinct transcriptional profile of multipotentiality genes was maintained among PDLCs. In l-PDLCs, the anti-correlation between DNA methylation and gene expression in RUNX2 and NANOG indicates methylation could play a role in modulating both transcripts. CONCLUSIONS: Epigenetic and transcriptional distinct profiles detected at basal levels among PDLCs were maintained after osteogenic induction. We cannot discard the existence of a complex that represses osteogenesis, suggesting the individual donors' characteristics have significant impact on the osteogenic phenotype acquisition.


Subject(s)
Osteogenesis , Periodontal Ligament , Cell Differentiation/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , DNA/metabolism , DNA Methylation , Epigenesis, Genetic , Methylation , Osteogenesis/genetics , Phenotype
7.
DNA Cell Biol ; 40(5): 662-674, 2021 May.
Article in English | MEDLINE | ID: mdl-33751901

ABSTRACT

Periodontal ligament cells (PDLCs) have well documented osteogenic potential; however, this commitment can be highly heterogenous, limiting their applications in tissue regeneration. In this study, we use PDLC populations characterized by high and low osteogenic potential (h-PDLCs and l-PDLCs, respectively) to identify possible sources of such heterogeneity and to investigate whether the osteogenic differentiation can be enhanced by epigenetic modulation. In h-PDLCs, low basal expression levels of pluripotency markers (NANOG, OCT4), DNA methyltransferases (DNMT1, DNMT3B), and enzymes involved in active DNA demethylation (TET1, TET3) were prerequisite to high osteogenic potential. Furthermore, these genes were downregulated upon early osteogenesis, possibly allowing for the increase in expression of the key osteogenic transcription factors, Runt-related transcription factor 2 (RUNX2) and SP7, and ultimately, mineral nodule formation. l-PDLCs appeared locked in the multipotent state and this was further enhanced upon early osteogenic stimulation, correlating with low RUNX2 expression and impaired mineralization. Further upregulation of DNMTs was also evident, while pretreatment with RG108, the DNMTs' inhibitor, enhanced the osteogenic program in l-PDLCs through downregulation of DNMTs, increased RUNX2 expression and nuclear localization, accelerated expression of osteogenic markers, and increased mineralization. These findings point toward the role of DNMTs and Ten Eleven Translocations (TETs) in osteogenic commitment and support application of epigenetic approaches to modulate biomineralization in PDLCs.


Subject(s)
Calcification, Physiologic , Core Binding Factor Alpha 1 Subunit/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Periodontal Ligament/cytology , Calcification, Physiologic/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Down-Regulation/drug effects , Humans , Osteogenesis/genetics , Phthalimides/pharmacology , Tryptophan/analogs & derivatives , Tryptophan/pharmacology , Up-Regulation/drug effects , Young Adult
8.
PLoS One ; 13(12): e0207873, 2018.
Article in English | MEDLINE | ID: mdl-30507955

ABSTRACT

Human bone marrow-derived mesenchymal stem cells (hBMSCs) are important for tissue regeneration but their epigenetic regulation is not well understood. Here we investigate the ability of a non-nucleoside DNA methylation inhibitor, RG108 to induce epigenetic changes at both global and gene-specific levels in order to enhance mesenchymal cell markers, in hBMSCs. hBMSCs were treated with complete culture medium, 50 µM RG108 and DMSO for three days and subjected to viability and apoptosis assays, global and gene-specific methylation/hydroxymethylation, transcript levels' analysis of epigenetic machinery enzymes and multipotency markers, protein activities of DNMTs and TETs, immunofluorescence staining and western blot analysis for NANOG and OCT4 and flow cytometry for CD105. The RG108, when used at 50 µM, did not affect the viability, apoptosis and proliferation rates of hBMSCs or hydroxymethylation global levels while leading to 75% decrease in DNMTs activity and 42% loss of global DNA methylation levels. In addition, DNMT1 was significantly downregulated while TET1 was upregulated, potentially contributing to the substantial loss of methylation observed. Most importantly, the mesenchymal cell markers CD105, NANOG and OCT4 were upregulated being NANOG and OCT4 epigenetically modulated by RG108, at their gene promoters. We propose that RG108 could be used for epigenetic modulation, promoting epigenetic activation of NANOG and OCT4, without affecting the viability of hBMSCs. DMSO can be considered a modulator of epigenetic machinery enzymes, although with milder effect compared to RG108.


Subject(s)
DNA Methylation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Phthalimides/pharmacology , Tryptophan/analogs & derivatives , Apoptosis/drug effects , Biomarkers/metabolism , Cell Survival/drug effects , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Endoglin/metabolism , Epigenesis, Genetic/drug effects , Humans , Mixed Function Oxygenases/genetics , Promoter Regions, Genetic/drug effects , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tryptophan/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL