Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Mol Cell ; 77(1): 82-94.e4, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31630970

ABSTRACT

FUS is a nuclear RNA-binding protein, and its cytoplasmic aggregation is a pathogenic signature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It remains unknown how the FUS-RNA interactions contribute to phase separation and whether its phase behavior is affected by ALS-linked mutations. Here we demonstrate that wild-type FUS binds single-stranded RNA stoichiometrically in a length-dependent manner and that multimers induce highly dynamic interactions with RNA, giving rise to small and fluid condensates. In contrast, mutations in arginine display a severely altered conformation, static binding to RNA, and formation of large condensates, signifying the role of arginine in driving proper RNA interaction. Glycine mutations undergo rapid loss of fluidity, emphasizing the role of glycine in promoting fluidity. Strikingly, the nuclear import receptor Karyopherin-ß2 reverses the mutant defects and recovers the wild-type FUS behavior. We reveal two distinct mechanisms underpinning potentially disparate pathogenic pathways of ALS-linked FUS mutants.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Mutation/genetics , RNA-Binding Protein FUS/genetics , RNA/genetics , Active Transport, Cell Nucleus/genetics , Glycine/genetics , Humans
2.
Neurobiol Dis ; 197: 106525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729272

ABSTRACT

RNA-binding proteins (RBPs) bind to RNAs and are crucial for regulating RNA splicing, stability, translation, and transport. Among these proteins, the CUGBP Elav-like family (CELF) is a highly conserved group crucial for posttranscriptional regulation by binding to CUG repeats. Comprising CELF1-6, this family exhibits diverse expression patterns and functions. Dysregulation of CELF has been implicated in various neural disorders, encompassing both neurodegenerative and neurodevelopmental conditions, such as Alzheimer's disease and autism. This article aims to provide a comprehensive summary of the CELF family's role in neurodevelopment and neurodevelopmental disorders. Understanding CELF's mechanisms may offer clues for potential therapeutic strategies by regulating their targets in neurodevelopmental disorders.


Subject(s)
CELF Proteins , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Animals , CELF Proteins/metabolism , CELF Proteins/genetics
3.
Anal Chem ; 96(18): 7005-7013, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38657082

ABSTRACT

Hydrogen sulfide (H2S), a critical gas signaling molecule, and N-acetyltransferase 2 (NAT2), a key enzyme in drug metabolism, are both known active biomarkers for liver function. However, the interactions and effects of H2S and NAT2 in living cells or lesion sites remain unknown due to the lack of imaging tools to achieve simultaneous detection of these two substances, making it challenging to implement real-time imaging and precise tracking. Herein, we report an activity-based two-photon fluorescent probe, TPSP-1, for the cascade detection of H2S and NAT2 in living liver cells. Continuous conversion from TPSP-1 to TPSP-3 was achieved in liver cells and tissues. Significantly, leveraging the outstanding optical properties of this two-photon fluorescent probe, TPSP-1, has been effectively used to identify pathological tissue samples directly from clinical liver cancer patients. This work provides us with this novel sensing and two-photon imaging probe, which can be used as a powerful tool to study the physiological functions of H2S and NAT2 and will help facilitate rapid and accurate diagnosis and therapeutic evaluation of hepatocellular carcinoma.


Subject(s)
Arylamine N-Acetyltransferase , Carcinoma, Hepatocellular , Fluorescent Dyes , Hydrogen Sulfide , Liver Neoplasms , Photons , Hydrogen Sulfide/analysis , Hydrogen Sulfide/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Arylamine N-Acetyltransferase/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Animals , Mice , Hep G2 Cells , Optical Imaging
4.
J Biomol NMR ; 77(3): 121-130, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37289306

ABSTRACT

Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-ß arrangement rich in ß-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.


Subject(s)
Amyloid , Magnetic Resonance Imaging , Amyloid/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Magnetic Resonance Spectroscopy/methods , Amyloidogenic Proteins
5.
BMC Med ; 21(1): 161, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37106440

ABSTRACT

BACKGROUND: The objective response rate of microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC) patients with first-line anti-programmed cell death protein-1 (PD-1) monotherapy is only 40-45%. Single-cell RNA sequencing (scRNA-seq) enables unbiased analysis of the full variety of cells comprising the tumor microenvironment. Thus, we used scRNA-seq to assess differences among microenvironment components between therapy-resistant and therapy-sensitive groups in MSI-H/mismatch repair-deficient (dMMR) mCRC. Resistance-related cell types and genes identified by this analysis were subsequently verified in clinical samples and mouse models to further reveal the molecular mechanism of anti-PD-1 resistance in MSI-H or dMMR mCRC. METHODS: The response of primary and metastatic lesions to first-line anti-PD-1 monotherapy was evaluated by radiology. Cells from primary lesions of patients with MSI-H/dMMR mCRC were analyzed using scRNA-seq. To identify the marker genes in each cluster, distinct cell clusters were identified and subjected to subcluster analysis. Then, a protein‒protein interaction network was constructed to identify key genes. Immunohistochemistry and immunofluorescence were applied to verify key genes and cell marker molecules in clinical samples. Immunohistochemistry, quantitative real-time PCR, and western blotting were performed to examine the expression of IL-1ß and MMP9. Moreover, quantitative analysis and sorting of myeloid-derived suppressor cells (MDSCs) and CD8+ T cells were performed using flow cytometry. RESULTS: Tumor responses in 23 patients with MSI-H/dMMR mCRC were evaluated by radiology. The objective response rate was 43.48%, and the disease control rate was 69.57%. ScRNA-seq analysis showed that, compared with the treatment-resistant group, the treatment-sensitive group accumulated more CD8+ T cells. Experiments with both clinical samples and mice indicated that infiltration of IL-1ß-driven MDSCs and inactivation of CD8+ T cells contribute to anti-PD-1 resistance in MSI-H/dMMR CRC. CONCLUSIONS: CD8+ T cells and IL-1ß were identified as the cell type and gene, respectively, with the highest correlation with anti-PD-1 resistance. Infiltration of IL-1ß-driven MDSCs was a significant factor in anti-PD-1 resistance in CRC. IL-1ß antagonists are expected to be developed as a new treatment for anti-PD-1 inhibitor resistance.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Animals , Mice , CD8-Positive T-Lymphocytes/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Immunohistochemistry , Tumor Microenvironment
6.
Nucleic Acids Res ; 49(21): 12377-12393, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850123

ABSTRACT

Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.


Subject(s)
Recombinant Proteins/metabolism , Shelterin Complex/metabolism , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Telomeric Repeat Binding Protein 2/metabolism , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Microscopy, Fluorescence/methods , Protein Binding , Shelterin Complex/genetics , Telomere/genetics , Telomere-Binding Proteins/genetics , Telomeric Repeat Binding Protein 2/genetics , Tripeptidyl-Peptidase 1/genetics , Tripeptidyl-Peptidase 1/metabolism
7.
Pain Manag Nurs ; 24(2): 216-221, 2023 04.
Article in English | MEDLINE | ID: mdl-36396530

ABSTRACT

BACKGROUND: Patients with lumbar degenerative spine diseases (LDSDs) commonly report sensory symptoms before and after lumbar spine surgery. AIM: To explore the changing patterns of sensory symptoms-namely pain, numbness, stinging, itching, and burning-and investigate the influences of sensory symptom changes on the health-related quality of life (HRQoL) of patients who experienced lumbar spine surgery. METHODS: All sensory symptoms (i.e., pain, numbness, paresthesia) were measured using a visual analog scale. The Chinese versions of the Oswestry Disability Index, Pittsburgh Sleep Quality Index, Clinically Useful Depression Outcome Scale, and EuroQol-five dimensions (EQ-5D) Scale were used to assess patients 1 week prior to surgery and 6 weeks and 6 months after surgery. A generalized estimating equation was used for data analysis. RESULTS: A total of 101 patients with mean age of 58.38 years were included. All sensory symptoms declined significantly over time (all p < .05) with the exception of itching (feeling on toes and thighs). Patients experiencing moderate-to-severe pain had poorer QoL over time, even after controlling for other sensory symptoms and potential confounders. CONCLUSIONS: Sensory symptoms gradually declined after surgery, but itching symptom did not. Moderate-to-severe pain was the only sensory symptom that influenced HRQoL over time in patients with LDSDs.


Subject(s)
Hypesthesia , Quality of Life , Humans , Middle Aged , Pain , Lumbar Vertebrae/surgery , Treatment Outcome
8.
J Environ Sci (China) ; 124: 602-616, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182166

ABSTRACT

Herein, a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots (MSQDs) and 3D honeycomb-like conjugated triazine polymers (CTP) (namely, CTP-MSQD). The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property, while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators. The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI) reduction and H2 evolution, featured a rate of 0.069 min-1 and 1070 µmol/(hr∙g), respectively, which were 8 times than those of pure 3D-CTP (0.009 min-1 and 129 µmol/(hr∙g)). We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.

9.
BMC Musculoskelet Disord ; 23(1): 794, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986271

ABSTRACT

BACKGROUND: Oblique lumbar interbody fusion (OLIF) is an important surgical modality for the treatment of degenerative lumbar spine disease. Various supplemental fixations can be co-applied with OLIF, increasing OLIF stability and reducing complications. However, it is unclear whether osteoporosis affects the success of supplemental fixations; therefore, this study analyzed the effects of osteoporosis on various supplemental fixations co-applied with OLIF. METHODS: We developed and validated an L3-S1 finite element (FE) model; we assigned different material properties to each component and established models of the osteoporotic and normal bone lumbar spine. We explored the outcomes of OLIF combined with each of five supplemental fixations: standalone OLIF; OLIF with lateral plate fixation (OLIF + LPF); OLIF with translaminar facet joint fixation and unilateral pedicle screw fixation (OLIF + TFJF + UPSF); OLIF with unilateral pedicle screw fixation (OLIF + UPSF); and OLIF with bilateral pedicle screw fixation (OLIF + BPSF). Under the various working conditions, we calculated the ranges of motion (ROMs) of the normal bone and osteoporosis models, the maximum Mises stresses of the fixation instruments (MMSFIs), and the average Mises stresses on cancellous bone (AMSCBs). RESULTS: Compared with the normal bone OLIF model, no demonstrable change in any segmental ROM was apparent. The MMSFIs increased in all five osteoporotic OLIF models. In the OLIF + TFJF + UPSF model, the MMSFIs increased sharply in forward flexion and extension. The stress changes of the OLIF + UPSF, OLIF + BPSF, and OLIF + TFJF + UPSF models were similar; all stresses trended upward. The AMSCBs decreased in all five osteoporotic OLIF models during flexion, extension, lateral bending, and axial rotation. The average stress change of cancellous bone was most obvious under extension. The AMSCBs of the five OLIF models decreased by 14%, 23.44%, 21.97%, 40.56%, and 22.44% respectively. CONCLUSIONS: For some supplemental fixations, the AMSCBs were all reduced and the MMSFIs were all increased in the osteoporotic model, compared with the OLIF model of normal bone. Therefore, the biomechanical performance of an osteoporotic model may be inferior to the biomechanical performance of a normal model for the same fixation method; in some instances, it may increase the risks of fracture and internal fixation failure.


Subject(s)
Osteoporosis , Pedicle Screws , Spinal Fusion , Biomechanical Phenomena , Finite Element Analysis , Humans , Lumbar Vertebrae/surgery , Osteoporosis/complications , Osteoporosis/surgery , Range of Motion, Articular , Spinal Fusion/methods
10.
Ecotoxicol Environ Saf ; 232: 113254, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35104781

ABSTRACT

China is the largest producer and consumer of plastics worldwide. Microplastic (MP) pollution has been a recent research hotspot in environmental science and ecology. This study collects and analyzes the statistical data for microplastics (MPs) 86 lakes in entire China's lake ecosystems in past five years (2016-2020), their range in area is 0.056-4543.000 km2 (average: 566.045 km2), and the water storage varies from 0.162 × 108 to 1050.000 × 108 m3 (average: 77.884 ×108 m3). The results showed (1) The MP abundance in lake surface water is significantly correlated with lake area (ρ = -0.562, p <0.01), provincial GDP (Gross Domestic Product, GDP) (ρ = 0.377, p = 0.002), GDP per capita (ρ = 0.346, p = 0.006), urban waste water discharge and ratio of agricultural land area (ρ = 0.369, p = 0.003). (2) The MP abundance in lake sediment is significantly correlated with per capita domestic volume of garbage disposal (ρ = -0.536, p <0.001), per capita urban waste water discharge (ρ = -0.544, p <0.001) and ratio of agricultural land area (ρ = 0.635, p <0.001). (3) Irrespective of whether the samples were from surface water or sediment, MPs were primarily transparent, and the dominant types were fragments, films, and fibers. In addition, the size of MPs samples was mostly less than 2 mm, and the major polymers were polyethylene (PE), polypropylene (PP), and polystyrene (PS). (4) The degree of MP pollution in organisms was related to the degree of environmental pollution. These findings could provide a theoretical basis for the control and management of MP pollution in China's lake ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring/methods , Environmental Pollution/analysis , Plastics , Water Pollutants, Chemical/analysis
11.
Ecotoxicol Environ Saf ; 241: 113755, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35689889

ABSTRACT

Lead (Pb) is one of the most harmful, toxic pollutants to the ecological environment and humans. Centipedegrass, a fast-growing warm-season turfgrass, is excellent for Pb pollution remediation. Exogenous low-molecular-weight organic acid (LMWOA) treatment is a promising approach for assisted phytoremediation. However, the effects of this treatment on the tolerance and Pb accumulation of centipedegrass are unclear. This study investigated these effects on the physiological growth response and Pb accumulation distribution characteristics of centipedegrass. Applications of 400 µM citric acid (CA), malic acid (MA) and tartaric acid (TA) significantly reduced membrane lipid peroxidation levels of leaves and improved biomass production of Pb-stressed plants. These treatments mainly increased peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and enhanced free protein (Pro), ascorbic acid (AsA) and phytochelatins (PCs) contents, ultimately improving the Pb tolerance of centipedegrass. Their promoting effects decreased as follows: TA>CA>MA. All the treatments decreased root Pb concentrations and increased stem and leaf Pb concentrations, thus increasing total Pb accumulation and TF values. MA had the best and worst effects on Pb accumulation and Pb transportation, respectively. CA had the best and worst effects on Pb transportation and Pb accumulation, respectively. TA exhibited strong effects on both Pb accumulation and transport. Furthermore, all treatments changed the subcellular Pb distribution patterns and distribution models of the chemical forms of Pb in each tissue. The root Pb concentration was more highly correlated with the Pb subcellular fraction distribution pattern, while the stem and leaf Pb concentrations were more highly correlated with the distribution models of the chemical forms of Pb. Overall, TA improved plant Pb tolerance best and promoted both Pb absorption and transportation well and is considered the best candidate for Pb-contaminated soil remediation with centipedegrass. This study provides a new idea for Pb-contaminated soil remediation with centipedegrass combined with LMWOAs.


Subject(s)
Lead , Soil Pollutants , Antioxidants/metabolism , Biodegradation, Environmental , Citric Acid/metabolism , Humans , Lead/metabolism , Phytochelatins/metabolism , Plant Roots/metabolism , Plants/metabolism , Soil , Soil Pollutants/metabolism , Stress, Physiological
12.
Pestic Biochem Physiol ; 182: 105038, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35249656

ABSTRACT

Echinochloa crus-galli L., a notorious weed in rice paddy fields, is usually kept under control by mefenacet application at the pre-emergence or early post-emergence stage. Due to continuous and repeated usage, E. crus-galli is developing resistance to mefenacet in China. Two putative resistant and one susceptible E. crus-galli populations were collected from paddy fields in Jiangsu Province to characterize their herbicide resistance. Compared with the susceptible population, the two mefenacet-resistant populations had 2.8- and 4.1-times greater pre-emergence resistance, and 10- and 6.8-times greater early post-emergence resistance to mefenacet. These mefenacet-resistant E. crus-galli populations also exhibited cross- or multiple-resistance to acetochlor, pyraclonil, imazamox, and quinclorac. However, when the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) was applied prior to post-emergence treatment, mefenacet resistance levels were reduced in both populations. Additionally, GST activity in vivo in one resistant population was much higher than the susceptible population after mefenacet application. The very long chain fatty acid elongases (VLCFAEs) from both mefenacet-resistant populations required much higher mefenacet concentration to inhibit their activity. The reduced sensitivity of VLCFAEs to mefenacet indicates the presence of a target-site resistance mechanism and induction of high GST activity may provide additional contribution to E. crus-galli mefenacet resistance through a non-target-site mechanism.


Subject(s)
Echinochloa , Herbicides , Acetanilides , Benzothiazoles , Herbicide Resistance , Herbicides/pharmacology
13.
Angew Chem Int Ed Engl ; 61(35): e202209343, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35816355

ABSTRACT

Highly efficient organic thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) emitters for organic light-emitting diodes (OLEDs) generally consist of a twisted donor-acceptor skeleton with aromatic amine donors. Herein, through introducing sulfur atoms into isomeric pentaphene and pentacene frameworks, we demonstrate a set of polycyclic luminophores exhibiting efficient TADF and RTP characters. The incorporation of sulfur atoms confirms a folded molecular plane, while intensifies singlet-triplet spin-orbit coupling. Further, the isomeric effect has a significant effect on the electronic structure of excited state, giving rise to the investigated compounds tunable luminescence mechanisms of TADF and RTP. With efficient triplet harvesting ability, maximum external quantum efficiencies up to 25.1 % and 8.7 % are achieved for the corresponding TADF and RTP OLEDs, verifying the great potential of sulfur-bridged frameworks for highly efficient devices.

14.
Chemistry ; 27(50): 12758-12762, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34181286

ABSTRACT

Dynamic nuclear polarization (DNP) is a powerful method to enhance the sensitivity of solid-state magnetic nuclear resonance (ssNMR) spectroscopy. However, its biomolecular applications at high magnetic fields (preferably>14 T) have so far been limited by the intrinsically low efficiency of polarizing agents and sample preparation aspects. Herein, we report a new class of trityl-nitroxide biradicals, dubbed SNAPols that combine high DNP efficiency with greatly enhanced hydrophilicity. SNAPol-1, the best compound in the series, shows DNP enhancement factors at 18.8 T of more than 100 in small molecules and globular proteins and also exhibits strong DNP enhancements in membrane proteins and cellular preparations. By integrating optimal sensitivity and high resolution, we expect widespread applications of this new polarizing agent in high-field DNP/ssNMR spectroscopy, especially for complex biomolecules.


Subject(s)
Magnetic Fields , Nitrogen Oxides , Magnetic Resonance Spectroscopy , Membrane Proteins
15.
Ecotoxicol Environ Saf ; 207: 111500, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33254388

ABSTRACT

Dwarf bamboos are clonal plants with potential applications in the remediation of heavy metal-polluted soils, although their pollution adaptation strategies are unknown. This study examined the biomass allocation strategies and lead (Pb) enrichment characteristics of various dwarf bamboo tissues by the end of the growing season and explored their potential for phytoremediation of Pb stress in the soils. Six dwarf bamboo genotypes were treated with three levels (0, 300, and 1500 mg kg-1) of soil Pb stress. The majority of the bamboos adopted two biomass allocation strategies to adapt to Pb stress, namely, "reducing biomass allocation into new bamboo growth" and "increasing/stabilizing biomass allocation into rhizomes". Pb accumulation was highest in the roots, rhizomes, and old stems and showed the following trend: rhizomes/old stems> new roots/old roots> old leaves> new leaves> new stems among various tissues. Moreover, the six bamboos used three different Pb-enrichment strategies, as follows: (i) "rhizome domination and old stem synergy" (Sasaella glabra (Nakai) f. albo-striata Muroi, Sasa auricoma (Mitford) E.G. Camus, Sasa fortunei (Van Houtte) Fiori, and Shibataea lanceifolia C.H. Hu); (ii) "old stem domination and rhizome synergy" (Indocalamus decorus Q.H. Dai); and (iii) "old stem domination and new root synergy" (Sasa argenteostriata (Regel) E.G. Camus). In Pb-contaminated soils, genotypes with TFs greater than 1 were Sasa fortunei (Van Houtte) Fiori, Sasa argenteostriata (Regel) E.G. Camus, and Indocalamus decorus Q.H. Dai; in addition, only S. argenteostriata had BCF values greater than 1. Furthermore, this study provides the first evidence that S. argenteostriata can extract 0.22 and 0.58 mgplant-1 of Pb ions in soil polluted with 300 and 1500 mg kg-1 Pb, respectively. S. argenteostriata showed the greatest potential for phytoremediation among the bamboo genotypes in both Pb-contaminated urban and mining sites.


Subject(s)
Lead/toxicity , Sasa/toxicity , Soil Pollutants/toxicity , Biodegradation, Environmental , Biomass , Environmental Pollutants , Lead/metabolism , Metals, Heavy/analysis , Mining , Plant Leaves/chemistry , Plant Roots/chemistry , Plants , Poaceae/metabolism , Poaceae/toxicity , Sasa/metabolism , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism
16.
Fish Shellfish Immunol ; 102: 140-144, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32311460

ABSTRACT

Whitespotted bamboo shark (Chiloscyllium plagiosum) is a demersal cartilaginous fish with an adaptive immune system founded upon immunoglobulins. In this manuscript, we characterize the IgNAR of the whitespotted bamboo shark. A newly discovered alternative splicing form of IgNAR Sec (IgNARshort (ΔC2-C3) Sec) was identified, in which the C1 domain was spliced directly to the C4 domain, the process resulted in a molecule containing three constant domains. However, a single unpaired cysteine remains in the highly flexible hinge region, contributing in the formation of an interchain disulfide bond. Two types of C1 domain were found, and the one lacking a short α-helix showed lower proportion. This finding suggests that short α-helices might be important to the stability of IgNAR. High-throughput sequencing revealed that the percentage of VNAR types significantly vary between the diverse species of sharks. The variable region of IgNAR (the VNAR) with small size and stabilization is a potential candidate for immunotherapeutic agents. The structure and stability analysis in this manuscript may be useful in future biomedical applications.


Subject(s)
Gene Expression Regulation/immunology , Receptors, Antigen/genetics , Receptors, Antigen/immunology , Sharks/genetics , Sharks/immunology , Amino Acid Sequence , Animals , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Immunoglobulins/chemistry , Phylogeny , Receptors, Antigen/chemistry
17.
Ecotoxicol Environ Saf ; 193: 110329, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32088553

ABSTRACT

Dwarf bamboo Sasa argenteostriata (Regel) E.G. Camus is considered as potential plants for metal phytoremediation in previous filed observations. However, the mechanisms of lead (Pb) detoxification has not been described. The objective of this study was to explore the difference strategies or mechanisms of Pb detoxification in plant tissues. In this regard, four Pb treatments with hydroponics including 0 (control), 300, 600, and 900 mg L-1 were conducted to examine subcellular compartmentalization, Pb accumulation/species and antioxidant-assisted chelation. Our findings showed the retention of Pb by the whip-root system is one of its detoxification mechanisms to avoid damage the shoots. In addition, the cell wall retention is the dominant detoxification strategy of whips, new roots, old roots and new/old stems, while vacuolar compartmentalization is for new/old leaves. Interestingly, four low-mobility/-toxicity Pb species (i.e., FNaCl, FHAc, FHCl and FR) are distributed in roots, whips and stems, while two high-mobility/-toxicity Pb species (FE and FW) in leaves. The conversion of Pb to low-toxicity/-migration is a Pb-detoxification strategy in roots, whips and stems but not in leaves. Besides, the new/old roots and leaves can alleviate Pb damage through the synthesis of non-protein thiol, glutathione and phytochelatins. Among these, phytochelatins play a leading role in the detoxification in new/old roots, while glutathione is in new/old leaves. This study provides the first comprehensive evidence regarding the different strategies for Pb detoxification in dwarf bamboo tissues from physiological to cellular level, supporting that this plant could be rehabilitated for phytoremediation in Pb-contaminated media.


Subject(s)
Environmental Pollutants/pharmacokinetics , Lead/pharmacokinetics , Sasa/metabolism , Antioxidants/metabolism , Biodegradation, Environmental , Cell Wall/metabolism , Environmental Pollutants/toxicity , Glutathione/metabolism , Hydroponics , Inactivation, Metabolic , Lead/toxicity , Phytochelatins/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism
18.
J Cell Biochem ; 120(3): 2828-2835, 2019 03.
Article in English | MEDLINE | ID: mdl-28929517

ABSTRACT

OBJECTIVE: To investigate the biocompatibility and differentiation of human brain-derived neurotrophic factor (hBDNF) gene-modified bone marrow mesenchymal stem cells (hBDNF-rMSCs) in a functionalized self-assembling peptide hydrogel. METHODS: hBDNF was engineered in rMSCs using adenovirus vector and the enhanced green fluorescence protein (eGFP) was used as a reporter gene. Mesenchymal stem cell-specific surface markers (CD90, CD29, and CD45) were used for identifying rat-derived MSCs. Fluorescence microscope was used to detect the transfection of rMSCs. hBDNF-rMSCs and control cells (eGFP-rMSCs) were seeded in a functional self-assembling peptide hydrogel (RADA16-PRG hydrogel) and a control hydrogel (RADA16 hydrogel). Cells were divided into three groups (hBDNF-rMSCs + RADA16 hydrogel, hBDNF-rMSCs + RADA16-PRG hydrogel, and eGFP-rMSCs + RADA16-PRG hydrogel) and a control group (eGFP-rMSCs + RADA16 hydrogel). Cell growth, cell proliferation, expression of hBDNF-mRNA, the level of hBDNF, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP) protein were analyzed for each group. RESULTS: rMSCs were positive for CD90 and CD29 and negative for CD45, green fluorescence was strongly visible at 72 hours after transfection. Compared with control group, the expression of hBDNF-mRNA and levels of hBDNF protein in both hBDNF group were significantly increased (P < 0.01), the cell growth, cell proliferation, and levels of NSE and GFAP protein were significantly increased in three groups ( P < 0.01). Cell growth, cell proliferation, expression of hBDNF-mRNA, and levels of hBDNF, NSE, and GFAP protein in hBDNF-rMSCs + RADA16-PRG hydrogel group were significantly higher than that of hBDNF-rMSCs + RADA16 hydrogel group ( P < 0.01). CONCLUSION: Bone marrow MSCs can be induced into neural cells by the human brain-derived neurotrophic factor gene in a RADA16-PRG functionalized self-assembling peptide hydrogel.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Cell Differentiation , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Neurons/cytology , Peptides/chemistry , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cell Proliferation , Cell Shape , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
19.
Mol Cell Biochem ; 462(1-2): 33-40, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31432387

ABSTRACT

Long non-coding RNAs (lncRNAs) are emerging as pivotal regulators in human cancer. LINC01082 was expressed as decreased in colon cancer by previous lncRNA-seq result and TCGA database, however, the role and function of LINC0182 is not clear in colon cancer. Here, we aimed to explore the role of LINC01082 in colon cancer for exploring the etiopathogenesis of colon cancer. RT-qPCR for LINC01082 expression in tissues (colon cancer vs. their matched adjacent non-cancerous tissues, ANT, n = 39) and cells (colon cancer cells vs. normal colon cells, n = 4) were performed. CCK-8 assay for proliferation of colon cancer, Transwell assay for migration and invasion were carried out in sw480 and sw620 cells. The results revealed that LINC01082 was significantly decreased in tissues and cell lines of colon cancer. Overexpressed LINC01082 significantly suppressed the proliferation ability of colon cancer cells. The migration and invasion of colon cancer cells were also suppressed after LINC01082 overexpression. These findings demonstrated that LINC01082 may act in suppressing the incidence and development of colon cancer via suppressing cell proliferation, migration and invasion, indicating that LINC01082 may act as a new tumor suppressor and may be a promising therapy target for colon cancer.


Subject(s)
Cell Movement/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Female , Humans , Male , Middle Aged , Neoplasm Invasiveness , RNA, Long Noncoding/metabolism
20.
Fish Shellfish Immunol ; 84: 704-710, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30359751

ABSTRACT

Japanese eel (Anguilla japonica) has become a commercially important fish species all over the world. High-density aquaculture has led to congestion and contributed to bacterial infection outbreaks that have caused high mortality. Therefore a 56-days feeding trial was conducted to determine the effects of dietary Bacillus amyloliquefaciens (GB-9) and Yarrowia lipolytica lipase2 (YLL2) on growth performance, digestive enzymes activity, innate immunity and resistance to pathogens of A. japonica. Fish growth performance was significantly affected by dietary YLL2 supplementation but not by GB-9. Fish fed diets with YLL2 at 2.0 g/kg diet in combination of high and low levels of GB-9 (5.0 g/kg and 2.0 g/kg) produced the highest growth. For digestive enzyme, lipase and trypsin activities was promoted by dietary containing YLL2, while amylase activities was increased by dietary containing YLL2, GB-9 single or combination. For innate immunity, the mucus lysozyme activity, leukocytes phagocytosis activity and reactive oxygen species level of skin, peroxidase and lysozyme activity of serum were enhanced in fish fed with GB-9 compared to those in control group (p < 0.05). The highest resistance to Vibrio anguillarum and Aeromonas hydrophila was determined in fish fed with 5.0 g kg-1 GB-9 + 2.0 g/kg YLL2. This study demonstrated that GB-9 and YLL2 enhanced non-specific immune defense system of A. japonica, providing them with higher resistance to pathogens. The present results suggested that the combination of these supplements could be considered as potential biological additives for aquaculture farmed fish.


Subject(s)
Anguilla/immunology , Bacillus amyloliquefaciens/chemistry , Carboxylic Ester Hydrolases/administration & dosage , Fish Diseases/immunology , Fungal Proteins/administration & dosage , Immunity, Innate/drug effects , Immunity, Mucosal/drug effects , Probiotics/pharmacology , Aeromonas hydrophila/physiology , Anguilla/growth & development , Anguilla/metabolism , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gastrointestinal Tract/enzymology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Random Allocation , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL