Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Nat Immunol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060650

ABSTRACT

Whole-exome sequencing of two unrelated kindreds with systemic autoimmune disease featuring antinuclear antibodies with IgG4 elevation uncovered an identical ultrarare heterozygous TNIP1Q333P variant segregating with disease. Mice with the orthologous Q346P variant developed antinuclear autoantibodies, salivary gland inflammation, elevated IgG2c, spontaneous germinal centers and expansion of age-associated B cells, plasma cells and follicular and extrafollicular helper T cells. B cell phenotypes were cell-autonomous and rescued by ablation of Toll-like receptor 7 (TLR7) or MyD88. The variant increased interferon-ß without altering nuclear factor kappa-light-chain-enhancer of activated B cells signaling, and impaired MyD88 and IRAK1 recruitment to autophagosomes. Additionally, the Q333P variant impaired TNIP1 localization to damaged mitochondria and mitophagosome formation. Damaged mitochondria were abundant in the salivary epithelial cells of Tnip1Q346P mice. These findings suggest that TNIP1-mediated autoimmunity may be a consequence of increased TLR7 signaling due to impaired recruitment of downstream signaling molecules and damaged mitochondria to autophagosomes and may thus respond to TLR7-targeted therapeutics.

2.
Nature ; 605(7909): 349-356, 2022 05.
Article in English | MEDLINE | ID: mdl-35477763

ABSTRACT

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Subject(s)
Gain of Function Mutation , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Animals , Autoimmunity/genetics , B-Lymphocytes , Cyclic GMP/analogs & derivatives , Guanosine , Humans , Lupus Erythematosus, Systemic/genetics , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
3.
J Allergy Clin Immunol ; 153(4): 1125-1139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072195

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE: Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS: We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS: EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION: This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.


Subject(s)
Gain of Function Mutation , STAT1 Transcription Factor , Stem Cells , Humans , Mutation , Phosphorylation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Stem Cells/immunology , Stem Cells/metabolism
4.
Article in English | MEDLINE | ID: mdl-38710235

ABSTRACT

BACKGROUND: LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematologic and immune defects. OBJECTIVE: This study aimed to determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS: We performed genetic, protein, and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS: A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect resulted in at least 2 aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshift deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T-cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunologic analysis revealed defective actin organization in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12; impaired germinal center B-cell expansion after immunization; and reduced cytokinesis during T cell proliferation. CONCLUSIONS: We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes, and platelets arising from partial LCP1 deficiency.

5.
Clin Immunol ; 252: 109646, 2023 07.
Article in English | MEDLINE | ID: mdl-37209807

ABSTRACT

BACKGROUND: Kikuchi-Fujimoto disease (KFD) is a self-limited inflammatory disease of unknown pathogenesis. Familial cases have been described and defects in classical complement components C1q and C4 have been identified in some patients. MATERIAL AND METHODS: We describe genetic and immune investigations of a 16 years old Omani male, a product of consanguineous marriage, who presented with typical clinical and histological features of KFD. RESULTS: We identified a novel homozygous single base deletion in C1S (c.330del; p. Phe110LeufsTer23) resulting in a defect in the classical complement pathway. The patient was negative for all serological markers of SLE. In contrast, two female siblings (also homozygous for the C1S mutation), one has autoimmune thyroid disease (Hashimoto thyroiditis) and a positive ANA and the other sibling has serology consistent with SLE. CONCLUSION: We report the first association between C1s deficiency and KFD.


Subject(s)
Histiocytic Necrotizing Lymphadenitis , Adolescent , Humans , Male , Complement C1s/genetics , Histiocytic Necrotizing Lymphadenitis/genetics , Histiocytic Necrotizing Lymphadenitis/complications , Histiocytic Necrotizing Lymphadenitis/pathology , Loss of Function Mutation
6.
Am J Hum Genet ; 107(2): 175-182, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32763188

ABSTRACT

Expanded carrier screening (ECS) for recessive monogenic diseases requires prior knowledge of genomic variation, including DNA variants that cause disease. The composition of pathogenic variants differs greatly among human populations, but historically, research about monogenic diseases has focused mainly on people with European ancestry. By comparison, less is known about pathogenic DNA variants in people from other parts of the world. Consequently, inclusion of currently underrepresented Indigenous and other minority population groups in genomic research is essential to enable equitable outcomes in ECS and other areas of genomic medicine. Here, we discuss this issue in relation to the implementation of ECS in Australia, which is currently being evaluated as part of the national Government's Genomics Health Futures Mission. We argue that significant effort is required to build an evidence base and genomic reference data so that ECS can bring significant clinical benefit for many Aboriginal and/or Torres Strait Islander Australians. These efforts are essential steps to achieving the Australian Government's objectives and its commitment "to leveraging the benefits of genomics in the health system for all Australians." They require culturally safe, community-led research and community involvement embedded within national health and medical genomics programs to ensure that new knowledge is integrated into medicine and health services in ways that address the specific and articulated cultural and health needs of Indigenous people. Until this occurs, people who do not have European ancestry are at risk of being, in relative terms, further disadvantaged.


Subject(s)
Metagenomics/methods , Population Groups/genetics , Australia , Genetic Variation/genetics , Humans
7.
Clin Immunol ; 236: 108938, 2022 03.
Article in English | MEDLINE | ID: mdl-35121105

ABSTRACT

Many patients with immunodeficiencies require lifelong immunoglobulin replacement therapy (IgRT). In a multicenter, randomized, open-label, crossover, non-inferiority 3-month-trial, we compared the impact of the subcutaneous immunoglobulin Gammanorm® administered via pump or syringe (rapid push). Primary endpoint was the life quality index (LQI), secondary endpoints were QoL (SF36v2), satisfaction (TSQM-11), disease and treatment burden (PRISM), incidence of infections and adverse events (AE), treatment costs, and IgG levels. 28/30 patients completed the study. Most of the endpoints were comparable. Drug administrations with rapid push were more frequent, but reduced total time expenditure and some costs. Of the TSQM-11/LQI/SF36 components only "treatment interference with daily activities" was superior with pump and two QoL domains with rapid push. Both delivery devices showed favorable safety. Rapid push was preferred by 34.5% of patients. It proved to be an efficacious and cost-effective alternative to pumps adding to patient choice and increasing flexibility during long-term IgRT.


Subject(s)
Immunologic Deficiency Syndromes , Quality of Life , Adult , Humans , Immunization, Passive , Immunoglobulin G , Immunologic Deficiency Syndromes/therapy , Infusions, Subcutaneous
8.
Immunity ; 38(4): 669-80, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23583642

ABSTRACT

Accumulation of T follicular helper (Tfh) cells and proinflammatory cytokines drive autoantibody-mediated diseases. The RNA-binding protein Roquin-1 (Rc3h1) represses the inducible costimulator ICOS and interferon-γ (IFN-γ) in T cells to prevent Tfh cell accumulation. Unlike Rc3h1(san) mice with a mutation in the ROQ domain of Roquin-1, mice lacking the protein, paradoxically do not display increased Tfh cells. Here we have analyzed mice with mutations that eliminate the RING domain from Roquin-1 or its paralog, Roquin-2 (Rc3h2). RING or ROQ mutations both disrupted Icos mRNA regulation by Roquin-1, but, unlike the ROQ mutant that still occupied mRNA-regulating stress granules, RING-deficient Roquin-1 failed to localize to stress granules and allowed Roquin-2 to compensate in the repression of ICOS and Tfh cells. These paralogs also targeted tumor necrosis factor (TNF) in nonlymphoid cells, ameliorating autoantibody-induced arthritis. The Roquin family emerges as a posttranscriptional brake in the adaptive and innate phases of antibody responses.


Subject(s)
Inducible T-Cell Co-Stimulator Protein/metabolism , RNA, Messenger/metabolism , Repressor Proteins/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Tumor Necrosis Factor-alpha/immunology , Ubiquitin-Protein Ligases/metabolism , Adaptive Immunity/genetics , Animals , Antibody Formation/genetics , Cell Line , Immunity, Innate/genetics , Mice , Mice, Mutant Strains , Mutation/genetics , RING Finger Domains/genetics , Repressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics
9.
Immunity ; 39(4): 770-81, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24138884

ABSTRACT

Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory.


Subject(s)
Antibodies/immunology , Immunologic Memory , Programmed Cell Death 1 Receptor/immunology , Receptors, CXCR5/immunology , Receptors, CXCR/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , B-Lymphocytes/virology , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Expression , Germinal Center/immunology , Germinal Center/pathology , Germinal Center/virology , Humans , Immunity, Humoral , Immunophenotyping , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , Mice , Programmed Cell Death 1 Receptor/genetics , Proto-Oncogene Proteins c-bcl-6 , Receptors, CXCR/genetics , Receptors, CXCR5/genetics , T-Lymphocytes, Helper-Inducer/pathology , T-Lymphocytes, Helper-Inducer/virology
10.
J Infect Dis ; 223(1): 10-14, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33009908

ABSTRACT

Estimates of seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies have been hampered by inadequate assay sensitivity and specificity. Using an enzyme-linked immunosorbent assay-based approach that combines data about immunoglobulin G responses to both the nucleocapsid and spike receptor binding domain antigens, we show that excellent sensitivity and specificity can be achieved. We used this assay to assess the frequency of virus-specific antibodies in a cohort of elective surgery patients in Australia and estimated seroprevalence in Australia to be 0.28% (95% Confidence Interval, 0-1.15%). These data confirm the low level of transmission of SARS-CoV-2 in Australia before July 2020 and validate the specificity of our assay.


Subject(s)
Antibodies, Viral/analysis , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Seroepidemiologic Studies , Antigens, Viral/immunology , Australia , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin G/analysis , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
11.
Lupus ; 30(11): 1756-1763, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34266320

ABSTRACT

OBJECTIVE: To compare the frequency of rare variants in genes of the pathophysiologically relevant endosomal Toll-like receptor (eTLR) pathway and any quantifiable differences in variant rarity, predicted deleteriousness, or molecular proximity in patients with systemic lupus erythematosus (SLE) and healthy controls. PATIENTS AND METHODS: 65 genes associated with the eTLR pathway were identified by literature search and pathway analysis. Using next generation sequencing techniques, these were compared in two randomised cohorts of patients with SLE (n = 114 and n = 113) with 197 healthy controls. Genetically determined ethnicity was used to normalise minor allele frequencies (MAF) for the identified genetic variants and these were then compared by their frequency: rare (MAF < 0.005), uncommon (MAF 0.005-0.02), and common (MAF >0.02). This was compared to the results for 65 randomly selected genes. RESULTS: Patients with SLE are more likely to carry a rare nonsynonymous variant affecting proteins within the eTLR pathway than healthy controls. Furthermore, individuals with SLE are more likely to have multiple rare variants in this pathway. There were no differences in rarity, Combined Annotation Dependent Depletion (CADD) score, or molecular proximity for rare eTLR pathway variants. CONCLUSIONS: Rare non-synonymous variants are enriched in patients with SLE in the eTLR pathway. This supports the hypothesis that SLE arises from several rare variants of relatively large effect rather than many common variants of small effect.


Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptors , Endosomes/genetics , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Lupus Erythematosus, Systemic/genetics , Mutation , Toll-Like Receptors/genetics
12.
Europace ; 23(3): 441-450, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33200177

ABSTRACT

AIMS: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS: Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION: A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.


Subject(s)
Infanticide , Tachycardia, Ventricular , Arrhythmias, Cardiac , Australia , Child , Child, Preschool , Death, Sudden, Cardiac/etiology , Female , Humans , Infant , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
13.
Intern Med J ; 51(6): 939-947, 2021 06.
Article in English | MEDLINE | ID: mdl-32388900

ABSTRACT

BACKGROUND: Haemophagocytic lymphohistiocytosis (HLH) is a rare disorder with a poor prognosis characterised by substantial immune activation leading to end-organ failure. In childhood, genetic defects that impair cytotoxic function of natural killer cells and T cells. (HLH) are often identified. In adults, clinical manifestations are similar to those observed in children but the aetiology is often unclear. AIMS: To evaluate whether poor prognosis for adult HLH is in part due to lack of awareness of the disorder, which results in incomplete investigation and failure to implement timely treatment. METHODS: We performed a retrospective case series of adult-onset HLH in a tertiary hospital in Australia. We evaluated clinical characteristics, treatment and outcome, and related these to application of standard diagnostic criteria for HLH. RESULTS: In our centre, incomplete assessment of HLH criteria was common. Serum ferritin was the criterion most commonly assessed. Hyperferritinaemia ≥10 000 µg/L was highly sensitive in detecting patients with adult-onset HLH; however, the majority of patients who had hyperferritinaemia ≥10 000 µg/L did not have adult-onset HLH. CONCLUSION: The present study highlights the importance of comprehensive application of diagnostic criteria to improve accuracy and timelines of the diagnosis of adult onset HLH.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Adult , Australia , Child , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/therapy , Retrospective Studies
14.
Immunity ; 34(1): 10-2, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21272784

ABSTRACT

Expression of the chemokine receptor CXCR5 identifies B follicular helper T cells. In this issue of Immunity, Morita et al. (2011) describe a heterogeneous circulating CXCR5(+)CD4(+) B cell helper population overrepresented in juvenile dermatomyositis patients.

15.
BMC Genomics ; 20(Suppl 8): 546, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31307400

ABSTRACT

BACKGROUND: Short-read resequencing of genomes produces abundant information of the genetic variation of individuals. Due to their numerous nature, these variants are rarely exhaustively validated. Furthermore, low levels of undetected variant miscalling will have a systematic and disproportionate impact on the interpretation of individual genome sequence information, especially should these also be carried through into in reference databases of genomic variation. RESULTS: We find that sequence variation from short-read sequence data is subject to recurrent-yet-intermittent miscalling that occurs in a sequence intrinsic manner and is very sensitive to sequence read length. The miscalls arise from difficulties aligning short reads to redundant genomic regions, where the rate of sequencing error approaches the sequence diversity between redundant regions. We find the resultant miscalled variants to be sensitive to small sequence variations between genomes, and thereby are often intrinsic to an individual, pedigree, strain or human ethnic group. In human exome sequences, we identify 2-300 recurrent false positive variants per individual, almost all of which are present in public databases of human genomic variation. From the exomes of non-reference strains of inbred mice, we identify 3-5000 recurrent false positive variants per mouse - the number of which increasing with greater distance between an individual mouse strain and the reference C57BL6 mouse genome. We show that recurrently miscalled variants may be reproduced for a given genome from repeated simulation rounds of read resampling, realignment and recalling. As such, it is possible to identify more than two-thirds of false positive variation from only ten rounds of simulation. CONCLUSION: Identification and removal of recurrent false positive variants from specific individual variant sets will improve overall data quality. Variant miscalls arising are highly sequence intrinsic and are often specific to an individual, pedigree or ethnicity. Further, read length is a strong determinant of whether given false variants will be called for any given genome - which has profound significance for cohort studies that pool datasets collected and sequenced at different points in time.


Subject(s)
Genomics/methods , Mutation, Missense/genetics , Sequence Analysis, DNA/methods , Animals , Databases, Genetic , Ethnicity/genetics , False Positive Reactions , Humans , Mice , Research Design
16.
PLoS Genet ; 12(5): e1006067, 2016 05.
Article in English | MEDLINE | ID: mdl-27227454

ABSTRACT

Most humans harbor both CD177neg and CD177pos neutrophils but 1-10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1), which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation.


Subject(s)
Isoantigens/biosynthesis , Neutropenia/immunology , Neutrophils/immunology , Pseudogenes/genetics , Receptors, Cell Surface/biosynthesis , Antibodies, Antineutrophil Cytoplasmic/biosynthesis , Antibodies, Antineutrophil Cytoplasmic/immunology , Blood Transfusion, Autologous/adverse effects , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , Gene Expression Regulation , Genetic Heterogeneity , Humans , Isoantigens/blood , Isoantigens/genetics , Isoantigens/immunology , Neutropenia/pathology , Neutrophils/metabolism , Polymorphism, Single Nucleotide , Pseudogenes/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Thrombocytopenia, Neonatal Alloimmune
17.
Proc Natl Acad Sci U S A ; 111(6): 2067-74, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24520172

ABSTRACT

The NDFIP1 (neural precursor cell expressed, developmentally down-regulated protein 4 family-interacting protein 1) adapter for the ubiquitin ligase ITCH is genetically linked to human allergic and autoimmune disease, but the cellular mechanism by which these proteins enable foreign and self-antigens to be tolerated is unresolved. Here, we use two unique mouse strains--an Ndfip1-YFP reporter and an Ndfip1-deficient strain--to show that Ndfip1 is progressively induced during T-cell differentiation and activation in vivo and that its deficiency causes a cell-autonomous, Forkhead box P3-independent failure of peripheral CD4(+) T-cell tolerance to self and exogenous antigen. In small cohorts of antigen-specific CD4(+) cells responding in vivo, Ndfip1 was necessary for tolerogen-reactive T cells to exit cell cycle after one to five divisions and to abort Th2 effector differentiation, defining a step in peripheral tolerance that provides insights into the phenomenon of T-cell anergy in vivo and is distinct from the better understood process of Bcl2-interacting mediator of cell death-mediated apoptosis. Ndfip1 deficiency precipitated autoimmune pancreatic destruction and diabetes; however, this depended on a further accumulation of nontolerant anti-self T cells from strong stimulation by exogenous tolerogen. These findings illuminate a peripheral tolerance checkpoint that aborts T-cell clonal expansion against allergens and autoantigens and demonstrate how hypersensitive responses to environmental antigens may trigger autoimmunity.


Subject(s)
Adaptation, Physiological , CD4-Positive T-Lymphocytes/immunology , Carrier Proteins/physiology , Cell Cycle , Membrane Proteins/physiology , Animals , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation , Cell Proliferation , Forkhead Transcription Factors/metabolism , Intercellular Signaling Peptides and Proteins , Lymphocyte Activation , Mice , Mice, Inbred C57BL
18.
Bioinformatics ; 31(14): 2377-9, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25755272

ABSTRACT

MOTIVATION: Increasingly, cost-effective high-throughput DNA sequencing technologies are being utilized to sequence human pedigrees to elucidate the genetic cause of a wide variety of human diseases. While numerous tools exist for variant prioritization within a single genome, the ability to concurrently analyze variants within pedigrees remains a challenge, especially should there be no prior indication of the underlying genetic cause of the disease. Here, we present a tool, variant analysis of sequenced pedigrees (VASP), a flexible data integration environment capable of producing a summary of pedigree variation, providing relevant information such as compound heterozygosity, genome phasing and disease inheritance patterns. Designed to aggregate data across a sequenced pedigree, VASP allows both powerful filtering and custom prioritization of both single nucleotide variants (SNVs) and small indels. Hence, clinical and research users with prior knowledge of a disease are able to dramatically reduce the variant search space based on a wide variety of custom prioritization criteria. AVAILABILITY AND IMPLEMENTATION: Source code available for academic non-commercial research purposes at https://github.com/mattmattmattmatt/VASP.


Subject(s)
Genetic Linkage , Genetic Predisposition to Disease , Genetic Variation/genetics , Software , Female , Genetic Markers/genetics , Heterozygote , High-Throughput Nucleotide Sequencing/methods , Humans , INDEL Mutation/genetics , Male , Pedigree , Polymorphism, Single Nucleotide/genetics
19.
Blood ; 124(19): 2964-72, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25237204

ABSTRACT

Most genetic defects that arrest B-cell development in the bone marrow present early in life with agammaglobulinemia, whereas incomplete antibody deficiency is usually associated with circulating B cells. We report 3 related individuals with a novel form of severe B-cell deficiency associated with partial persistence of serum immunoglobulin arising from a missense mutation in NFKB2. Significantly, this point mutation results in a D865G substitution and causes a failure of p100 phosphorylation that blocks processing to p52. Severe B-cell deficiency affects mature and transitional cells, mimicking the action of rituximab. This phenotype appears to be due to disruption of canonical and noncanonical nuclear factor κB pathways by the mutant p100 molecule. These findings could be informative for therapeutics as well as immunodeficiency.


Subject(s)
Alopecia/genetics , Alopecia/immunology , B-Lymphocytes/immunology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , NF-kappa B p52 Subunit/genetics , Adult , Alopecia/pathology , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Family Health , Female , Genes, Dominant , HEK293 Cells , Humans , Immunologic Deficiency Syndromes/pathology , Molecular Sequence Data , NF-kappa B/immunology , NF-kappa B p52 Subunit/metabolism , Pedigree , Phosphorylation/immunology , Point Mutation , Sequence Homology, Amino Acid , Severity of Illness Index
20.
J Allergy Clin Immunol ; 136(4): 993-1006.e1, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26162572

ABSTRACT

BACKGROUND: Follicular helper T (TFH) cells underpin T cell-dependent humoral immunity and the success of most vaccines. TFH cells also contribute to human immune disorders, such as autoimmunity, immunodeficiency, and malignancy. Understanding the molecular requirements for the generation and function of TFH cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunologic abnormalities. OBJECTIVE: We sought to determine the signaling pathways and cellular interactions required for the development and function of TFH cells in human subjects. METHODS: Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating follicular helper T (cTFH) cell subsets, memory B cells, and serum immunoglobulin levels were quantified and functionally assessed in healthy control subjects, as well as in patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS, or BTK. RESULTS: Loss-of-function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS, or BTK reduced cTFH cell frequencies. STAT3 and IL21/R LOF and STAT1 gain-of-function mutations skewed cTFH cell differentiation toward a phenotype characterized by overexpression of IFN-γ and programmed death 1. IFN-γ inhibited cTFH cell function in vitro and in vivo, as corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1, and IL12RB1 LOF mutations. CONCLUSION: Specific mutations affect the quantity and quality of cTFH cells, highlighting the need to assess TFH cells in patients by using multiple criteria, including phenotype and function. Furthermore, IFN-γ functions in vivo to restrain TFH cell-induced B-cell differentiation. These findings shed new light on TFH cell biology and the integrated signaling pathways required for their generation, maintenance, and effector function and explain the compromised humoral immunity seen in patients with some PIDs.


Subject(s)
Immunologic Deficiency Syndromes/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Agammaglobulinaemia Tyrosine Kinase , B-Lymphocytes/immunology , CD40 Ligand/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Humans , I-kappa B Kinase/genetics , Immunity, Humoral/genetics , Immunologic Deficiency Syndromes/genetics , Immunologic Memory , Inducible T-Cell Co-Stimulator Protein/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lymphocyte Activation , Mutation/genetics , Protein-Tyrosine Kinases/genetics , Receptors, Cytokine/genetics , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL