Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Cell ; 156(5): 963-74, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24581495

ABSTRACT

Protein folding in the cell relies on the orchestrated action of conserved families of molecular chaperones, the Hsp70 and Hsp90 systems. Hsp70 acts early and Hsp90 late in the folding path, yet the molecular basis of this timing is enigmatic, mainly because the substrate specificity of Hsp90 is poorly understood. Here, we obtained a structural model of Hsp90 in complex with its natural disease-associated substrate, the intrinsically disordered Tau protein. Hsp90 binds to a broad region in Tau that includes the aggregation-prone repeats. Complementarily, a 106-Å-long substrate-binding interface in Hsp90 enables many low-affinity contacts. This allows recognition of scattered hydrophobic residues in late folding intermediates that remain after early burial of the Hsp70 sites. Our model resolves the paradox of how Hsp90 specifically selects for late folding intermediates but also for some intrinsically disordered proteins-through the eyes of Hsp90 they look the same.


Subject(s)
tau Proteins/chemistry , Alzheimer Disease/drug therapy , Amino Acid Sequence , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Folding , Scattering, Small Angle , X-Ray Diffraction , tau Proteins/metabolism
2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055033

ABSTRACT

The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510. Our results show that Hsp22 protected against deficits in synaptic plasticity and cognition in the tauopathic brain. However, we did not detect a significant change in tau phosphorylation or levels in these mice. This led us to hypothesize that the functional benefit was realized through the restoration of dysfunctional pathways in hippocampi of tau transgenic mice since no significant benefit was measured in non-transgenic mice expressing wtHsp22 or mtHsp22. To identify these pathways, we performed mass spectrometry of tissue lysates from the injection site. Overall, our data reveal that Hsp22 overexpression in neurons promotes synaptic plasticity by regulating canonical pathways and upstream regulators that have been characterized as potential AD markers and synaptogenesis regulators, like EIF4E and NFKBIA.


Subject(s)
Brain/metabolism , Cognition , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Learning , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Tauopathies/etiology , Tauopathies/metabolism , Animals , Biomarkers , Brain/pathology , Disease Models, Animal , Disease Susceptibility , Energy Metabolism , Gene Expression , Mice , Mice, Transgenic , Mutation , Neurons/metabolism , Phosphorylation , Signal Transduction , Tauopathies/pathology , Transduction, Genetic , tau Proteins/genetics , tau Proteins/metabolism
3.
J Biol Chem ; 294(34): 12717-12728, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31270212

ABSTRACT

Nonsynonymous gene mutations can be beneficial, neutral, or detrimental to the stability, structure, and biological function of the encoded protein, but the effects of these mutations are often not readily predictable. For example, the ß-propeller olfactomedin domain of myocilin (mOLF) exhibits a complex interrelationship among structure(s), stability, and aggregation. Numerous mutations within mOLF are linked to glaucoma; the resulting variants are less stable, aggregation-prone, and sequestered intracellularly, causing cytotoxicity. Here, we report the first stable mOLF variants carrying substitutions in the calcium-binding site that exhibit solution characteristics indistinguishable from those of glaucoma variants. Crystal structures of these stable variants at 1.8-2.0-Å resolution revealed features that we could not predict by molecular dynamics simulations, including loss of loop structure, helix unwinding, and a blade shift. Double mutants that combined a stabilizing substitution and a selected glaucoma-causing single-point mutant rescued in vitro folding and stability defects. In the context of full-length myocilin, secretion of stable single variants was indistinguishable from that of the WT protein, and the double mutants were secreted to varying extents. In summary, our finding that mOLF can tolerate particular substitutions that render the protein stable despite a conformational switch emphasizes the complexities in differentiating between benign and glaucoma-causing variants and provides new insight into the possible biological function of myocilin.


Subject(s)
Cytoskeletal Proteins/genetics , Extracellular Matrix Proteins/genetics , Eye Proteins/genetics , Glaucoma/genetics , Glycoproteins/genetics , Mutation , Cytoskeletal Proteins/chemistry , Extracellular Matrix Proteins/chemistry , Eye Proteins/chemistry , Genetic Variation/genetics , Glycoproteins/chemistry , HEK293 Cells , Humans , Molecular Dynamics Simulation
4.
EMBO J ; 35(14): 1537-49, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27261198

ABSTRACT

It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.


Subject(s)
HSC70 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , tau Proteins/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Humans , alpha-Synuclein/metabolism
5.
PLoS Biol ; 15(6): e2001336, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28654636

ABSTRACT

The accumulation of amyloidogenic proteins is a pathological hallmark of neurodegenerative disorders. The aberrant accumulation of the microtubule associating protein tau (MAPT, tau) into toxic oligomers and amyloid deposits is a primary pathology in tauopathies, the most common of which is Alzheimer's disease (AD). Intrinsically disordered proteins, like tau, are enriched with proline residues that regulate both secondary structure and aggregation propensity. The orientation of proline residues is regulated by cis/trans peptidyl-prolyl isomerases (PPIases). Here we show that cyclophilin 40 (CyP40), a PPIase, dissolves tau amyloids in vitro. Additionally, CyP40 ameliorated silver-positive and oligomeric tau species in a mouse model of tau accumulation, preserving neuronal health and cognition. Nuclear magnetic resonance (NMR) revealed that CyP40 interacts with tau at sites rich in proline residues. CyP40 was also able to interact with and disaggregate other aggregating proteins that contain prolines. Moreover, CyP40 lacking PPIase activity prevented its capacity for disaggregation in vitro. Finally, we describe a unique structural property of CyP40 that may permit disaggregation to occur in an energy-independent manner. This study identifies a novel human protein disaggregase and, for the first time, demonstrates its capacity to dissolve intracellular amyloids.


Subject(s)
Amyloid/metabolism , Cyclophilins/metabolism , Neurodegenerative Diseases/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid/genetics , Amyloid/ultrastructure , Animals , Blotting, Western , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cognition Disorders/genetics , Cognition Disorders/metabolism , Cognition Disorders/physiopathology , Peptidyl-Prolyl Isomerase F , Cyclophilins/genetics , Cyclosporine/pharmacology , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , Mice, Transgenic , Microscopy, Electron, Transmission , Neurodegenerative Diseases/genetics , Protein Aggregates/drug effects , Protein Aggregation, Pathological , Tauopathies/genetics , Tauopathies/metabolism , alpha-Synuclein/genetics , tau Proteins/genetics
6.
Proc Natl Acad Sci U S A ; 114(36): 9707-9712, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827321

ABSTRACT

The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer's disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood-brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Cell Line , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Protein Aggregates , Protein Aggregation, Pathological/etiology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/prevention & control , Tauopathies/etiology , Tauopathies/metabolism , Tauopathies/prevention & control , tau Proteins/chemistry , tau Proteins/metabolism
7.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751642

ABSTRACT

Misfolding, aggregation and accumulation of proteins are toxic elements in the progression of a broad range of neurodegenerative diseases. Molecular chaperones enable a cellular defense by reducing or compartmentalizing these insults. Small heat shock proteins (sHsps) engage proteins early in the process of misfolding and can facilitate their proper folding or refolding, sequestration, or clearance. Here, we evaluate the effects of the sHsp Hsp22, as well as a pseudophosphorylated mutant and an N-terminal domain deletion (NTDΔ) variant on tau aggregation in vitro and tau accumulation and aggregation in cultured cells. Hsp22 wild-type (WT) protein had a significant inhibitory effect on heparin-induced aggregation in vitro and the pseudophosphorylated mutant Hsp22 demonstrated a similar effect. When co-expressed in a cell culture model with tau, these Hsp22 constructs significantly reduced soluble tau protein levels when transfected at a high ratio relative to tau. However, the Hsp22 NTDΔ protein drastically reduced the soluble protein expression levels of both tau WT and tau P301L/S320F even at lower transfection ratios, which resulted in a correlative reduction of the triton-insoluble tau P301L/S320F aggregates.


Subject(s)
Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , tau Proteins/genetics , Animals , Gene Expression Regulation/genetics , Heat-Shock Proteins, Small/genetics , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/pathology , Protein Aggregation, Pathological/genetics , Protein Binding/genetics , Proteostasis Deficiencies/genetics
8.
Hum Mol Genet ; 26(20): 3973-3988, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29016855

ABSTRACT

Accumulation of amyloid ß (Aß) and tau represent the two major pathological hallmarks of Alzheimer's disease (AD). Despite the critical importance of Aß accumulation as an early event in AD pathogenesis, multiple lines of evidence indicate that tau is required to mediate Aß-induced neurotoxic signals in neurons. We have previously shown that the scaffolding protein Ran-binding protein 9 (RanBP9), which is highly elevated in brains of AD and AD mouse models, both enhances Aß production and mediates Aß-induced neurotoxicity. However, it is unknown whether and how RanBP9 transmits Aß-induced neurotoxic signals to tau. Here we show for the first time that overexpression or knockdown of RanBP9 directly enhances and reduces tau levels, respectively, in vitro and in vivo. Such changes in tau levels are associated with the ability of RanBP9 to physically interact with tau and heat shock protein 90/heat shock cognate 70 (Hsp90/Hsc70) complexes. Meanwhile, both RanBP9 and tau levels are simultaneously reduced by Hsp90 or Hsc70 inhibitors, whereas overexpression or knockdown of RanBP9 significantly diminishes the anti-tau potency of Hsp90/Hsc70 inhibitors as well as Hsc70 variants (WT & E175S). Further, RanBP9 increases the capacity for Hsp90 and Hsc70 complexes to bind ATP and enhances their ATPase activities in vitro. These observations in vitro and cell lines are recapitulated in primary neurons and in vivo, as genetic reduction in RanBP9 not only ameliorates tauopathy in Tau-P301S mice but also rescues the deficits in synaptic integrity and plasticity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Nuclear Proteins/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cells, Cultured , HeLa Cells , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Tauopathies/metabolism
9.
Int J Mol Sci ; 20(11)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167373

ABSTRACT

Clinical studies show a significant association of childhood adversities and FK506-binding protein 5 (FKBP5) polymorphisms on increasing the susceptibility for neuropsychiatric disorders. However, the mechanisms by which early life stress (ELS) influences FKBP5 actions have not been fully elucidated. We hypothesized that interactions between ELS and high FKBP5 induce phenotypic changes that correspond to underlying molecular changes in the brain. To test this, we exposed newborn mice overexpressing human FKBP5 in the forebrain, rTgFKBP5, to ELS using a maternal separation. Two months after ELS, we observed that ELS increased anxiety levels, specifically in mice overexpressing FKBP5, an effect that was more pronounced in females. Biochemically, Protein kinase B (AKT) phosphorylation was reduced in the dorsal hippocampus in rTgFKBP5 mice, which demonstrates that significant molecular changes occur as a result of ELS when FKBP5 levels are altered. Taken together, our results have a significant impact on our understanding mechanisms underlying the gene x environment interaction showing that anxiety and AKT signaling in the hippocampus were affected by the combination of ELS and FKBP5. An increased knowledge of the molecular mechanisms underlying these interactions may help determine if FKBP5 could be an effective target for the treatment of anxiety and other mood-related illnesses.


Subject(s)
Anxiety Disorders/etiology , Anxiety Disorders/metabolism , Hippocampus/metabolism , Life Change Events , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stress, Psychological , Tacrolimus Binding Proteins/metabolism , Animals , Anxiety , Anxiety Disorders/diagnosis , Behavior, Animal , Disease Models, Animal , Disease Susceptibility , Female , Genotype , Hippocampus/physiopathology , Humans , Male , Maze Learning , Mice , Mice, Transgenic , Phosphorylation , Protein Binding , Symptom Assessment , Tacrolimus Binding Proteins/genetics
10.
J Biol Chem ; 291(34): 17897-906, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27334923

ABSTRACT

Single nucleotide polymorphisms in the FKBP5 gene increase the expression of the FKBP51 protein and have been associated with increased risk for neuropsychiatric disorders such as major depression and post-traumatic stress disorder. Moreover, levels of FKBP51 are increased with aging and in Alzheimer disease, potentially contributing to disease pathogenesis. However, aside from its glucocorticoid responsiveness, little is known about what regulates FKBP5 In recent years, non-coding RNAs, and in particular microRNAs, have been shown to modulate disease-related genes and processes. The current study sought to investigate which miRNAs could target and functionally regulate FKBP5 Following in silico data mining and initial target expression validation, miR-511 was found to suppress FKBP5 mRNA and protein levels. Using luciferase p-miR-Report constructs and RNA pulldown assays, we confirmed that miR-511 bound directly to the 3'-UTR of FKBP5, validating the predicted gene-microRNA interaction. miR-511 suppressed glucocorticoid-induced up-regulation of FKBP51 in cells and primary neurons, demonstrating functional, disease-relevant control of the protein. Consistent with a regulator of FKBP5, miR-511 expression in the mouse brain decreased with age but increased following chronic glucocorticoid treatment. Analysis of the predicted target genes of miR-511 revealed that neurogenesis, neuronal development, and neuronal differentiation were likely controlled by these genes. Accordingly, miR-511 increased neuronal differentiation in cells and enhanced neuronal development in primary neurons. Collectively, these findings show that miR-511 is a functional regulator of FKBP5 and can contribute to neuronal differentiation.


Subject(s)
3' Untranslated Regions/physiology , Brain/metabolism , Cell Differentiation/physiology , Gene Expression Regulation/physiology , MicroRNAs/metabolism , Molecular Chaperones/biosynthesis , Neurogenesis/physiology , Neurons/metabolism , Tacrolimus Binding Proteins/biosynthesis , Animals , HeLa Cells , Humans , Mice , MicroRNAs/genetics , Molecular Chaperones/genetics , Tacrolimus Binding Proteins/genetics
11.
Hum Mol Genet ; 24(14): 3971-81, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25882706

ABSTRACT

The pathological accumulation of abnormally hyperphosphorylated and aggregated tau, a neuronal microtubule (MT)-associated protein that functions to maintain MT stability, is implicated in a number of hereditary and sporadic neurodegenerative diseases including frontotemporal dementia and Alzheimer's disease. Targeting tau for the treatment of these diseases is an area of intense interest and toward that end, modulation of cellular molecular chaperones is a potential therapeutic target. In particular, the constitutive Hsp70 isoform, Hsc70, seems highly interconnected with tau, preserving tau protein levels and synergizing with it to assemble MTs. But the relationship between tau and Hsc70, as well as the impact of this interaction in neurons and its therapeutic implications remain unknown. Using a human dominant negative Hsc70 that resembles isoform selective inhibition of this important chaperone, we found for the first time that Hsc70 activity is required to stimulate MT assembly in cells and brain. However, surprisingly, active Hsc70 also requires active tau to regulate MT assembly in vivo, suggesting that tau acts in some ways as a co-chaperone for Hsc70 to coordinate MT assembly. This was despite tau binding to Hsc70 as substrate, as determined biochemically. Moreover, we show that while chronic Hsc70 inhibition damaged MT dynamics, intermittent treatment with a small molecule Hsp70 inhibitor lowered tau in brain tissue without disrupting MT integrity. Thus, in tauopathies, where MT injury would be detrimental to neurons, the unique relationship of tau with the Hsc70 machinery can be exploited to deplete tau levels without damaging MT networks.


Subject(s)
HSC70 Heat-Shock Proteins/metabolism , Microtubules/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Gene Expression Regulation , HEK293 Cells , HSC70 Heat-Shock Proteins/genetics , Humans , Magnetic Resonance Spectroscopy , Mice, Knockout , Neurons/metabolism , Oocytes , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tauopathies/genetics , Tauopathies/therapy , Xenopus , tau Proteins/genetics
12.
J Neurosci ; 35(41): 13853-9, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26468185

ABSTRACT

Cellular protein homeostasis (proteostasis) maintains the integrity of the proteome and includes protein synthesis, folding, oligomerization, and turnover; chaperone proteins assist with all of these processes. Neurons appear to be especially susceptible to failures in proteostasis, and this is now increasingly recognized as a major origin of neurodegenerative disease. This review, based on a mini-symposium presented at the 2015 Society for Neuroscience meeting, describes new work in the area of neuronal proteostasis, with a specific focus on the roles and therapeutic uses of protein chaperones. We first present a brief review of protein misfolding and aggregation in neurodegenerative disease. We then discuss different aspects of chaperone control of neuronal proteostasis on topics ranging from chaperone engineering, to chaperone-mediated blockade of protein oligomerization and cytotoxicity, to the potential rescue of neurodegenerative processes using modified chaperone proteins. SIGNIFICANCE STATEMENT: Aberrant protein homeostasis within neurons results in protein misfolding and aggregation. In this review, we discuss specific roles for protein chaperones in the oligomerization, assembly, and disaggregation of proteins known to be abnormally folded in neurodegenerative disease. Collectively, our goal is to identify therapeutic mechanisms to reduce the cellular toxicity of abnormal aggregates.


Subject(s)
Molecular Chaperones/metabolism , Neurodegenerative Diseases/metabolism , Animals , Humans , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics
13.
J Neurosci ; 35(44): 14842-60, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26538654

ABSTRACT

Tau accumulation remains one of the closest correlates of neuronal loss in Alzheimer's disease. In addition, tau associates with several other neurodegenerative diseases, collectively known as tauopathies, in which clinical phenotypes manifest as cognitive impairment, behavioral disturbances, and motor impairment. Polyamines act as bivalent regulators of cellular function and are involved in numerous biological processes. The regulation of the polyamines system can become dysfunctional during disease states. Arginase 1 (Arg1) and nitric oxide synthases compete for l-arginine to produce either polyamines or nitric oxide, respectively. Herein, we show that overexpression of Arg1 using adeno-associated virus (AAV) in the CNS of rTg4510 tau transgenic mice significantly reduced phospho-tau species and tangle pathology. Sustained Arg1 overexpression decreased several kinases capable of phosphorylating tau, decreased inflammation, and modulated changes in the mammalian target of rapamycin and related proteins, suggesting activation of autophagy. Arg1 overexpression also mitigated hippocampal atrophy in tau transgenic mice. Conversely, conditional deletion of Arg1 in myeloid cells resulted in increased tau accumulation relative to Arg1-sufficient mice after transduction with a recombinant AAV-tau construct. These data suggest that Arg1 and the polyamine pathway may offer novel therapeutic targets for tauopathies.


Subject(s)
Arginase/biosynthesis , Disease Models, Animal , Gene Expression Regulation, Enzymologic , Tauopathies/enzymology , Tauopathies/pathology , tau Proteins/metabolism , Animals , Arginase/genetics , HeLa Cells , Hippocampus/enzymology , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Tauopathies/genetics , tau Proteins/genetics
14.
J Biol Chem ; 290(21): 13115-27, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25864199

ABSTRACT

The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.


Subject(s)
Adenosine Triphosphatases/metabolism , HSC70 Heat-Shock Proteins/antagonists & inhibitors , HSC70 Heat-Shock Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Folding , tau Proteins/metabolism , Blotting, Western , Cells, Cultured , Cytosol/metabolism , Fluorescence Polarization , Fluorescent Antibody Technique , HSC70 Heat-Shock Proteins/genetics , Humans , Magnetic Resonance Spectroscopy , Mutation/genetics , Protein Binding , Protein Conformation , Protein Isoforms , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , tau Proteins/genetics
15.
Hum Mol Genet ; 23(24): 6470-80, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25027323

ABSTRACT

Gain-of-function mutations in the olfactomedin domain of the MYOC gene facilitate the toxic accumulation of amyloid-containing myocilin aggregates, hastening the onset of the prevalent ocular disorder primary open-angle glaucoma. Aggregation of wild-type myocilin has been reported in other glaucoma subtypes, suggesting broader relevance of misfolded myocilin across the disease spectrum, but the absence of myocilin does not cause disease. Thus, strategies aimed at eliminating myocilin could be therapeutically relevant for glaucoma. Here, a novel and selective Grp94 inhibitor reduced the levels of several mutant myocilin proteins as well as wild-type myocilin when forced to misfold in cells. This inhibitor rescued mutant myocilin toxicity in primary human trabecular meshwork cells. Mechanistically, in vitro kinetics studies demonstrate that Grp94 recognizes on-pathway aggregates of the myocilin olfactomedin domain (myoc-OLF), accelerates rates of aggregation and co-precipitates with myoc-OLF. These results indicate that aberrant myocilin quaternary structure drives Grp94 recognition, rather than peptide motifs exposed by unfolded protein. Inhibition of Grp94 ameliorates the effects of Grp94-accelerated myoc-OLF aggregation, and Grp94 remains in solution. In cells, when wild-type myocilin is driven to misfold and aggregate, it becomes a client of Grp94 and sensitive to Grp94 inhibition. Taken together, the interaction of Grp94 with myocilin aggregates can be manipulated by cellular environment and genetics; this process can be exploited with Grp94 inhibitors to promote the clearance of toxic forms of myocilin.


Subject(s)
Cytoskeletal Proteins/metabolism , Eye Proteins/metabolism , Glaucoma, Open-Angle/metabolism , Glycoproteins/metabolism , Imidazoles/pharmacology , Membrane Glycoproteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Dose-Response Relationship, Drug , Eye Proteins/genetics , Gene Expression Regulation , Glaucoma, Open-Angle/drug therapy , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/pathology , Glycoproteins/genetics , HEK293 Cells , Humans , Imidazoles/chemical synthesis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Docking Simulation , Protein Aggregates/drug effects , Protein Binding/drug effects , Protein Folding/drug effects , Protein Structure, Quaternary , Protein Structure, Tertiary , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Trabecular Meshwork
16.
Anal Chem ; 88(16): 8272-8, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27434096

ABSTRACT

Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.


Subject(s)
Antigen-Antibody Reactions/physiology , Apoptosis Regulatory Proteins/chemistry , Cross-Linking Reagents/chemistry , Electrophoresis, Capillary , Heat-Shock Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Binding Sites , Calorimetry , Dimerization , Fluorescent Dyes/chemistry , Formaldehyde/chemistry , Heat-Shock Proteins/metabolism , Muramidase/chemistry , Muramidase/metabolism , Protein Binding
17.
Exp Eye Res ; 144: 38-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26302411

ABSTRACT

A major drainage network involved in aqueous humor dynamics is the conventional outflow pathway, which is gated by the trabecular meshwork (TM). The TM acts as a molecular sieve, providing resistance to aqueous outflow, which is responsible for regulating intraocular pressure (IOP). If the TM is damaged, aqueous outflow is impaired, IOP increases and glaucoma can manifest. Mutations in the MYOC gene cause hereditary primary open-angle glaucoma (POAG) by promoting the abnormal amyloidosis of the myocilin protein in the endoplasmic reticulum (ER), leading to ER stress-induced TM cell death. Myocilin accumulation is observed in approximately 70-80% of all glaucoma cases suggesting that environmental or other genetic factors may also promote myocilin toxicity. For example, simply preventing myocilin glycosylation is sufficient to promote its abnormal accretion. These myocilin amyloids are unique as there are no other known pathogenic proteins that accumulate within the ER of TM cells and cause toxicity. Moreover, this pathogenic accumulation only kills TM cells, despite expression of this protein in other cell types, suggesting that another modifier exclusive to the TM participates in the proteotoxicity of myocilin. ER autophagy (reticulophagy) is one of the pathways essential for myocilin clearance that can be impacted dramatically by aging and other environmental factors such as nutrition. This review will discuss the link between myocilin and autophagy, evaluating the role of this degradation pathway in glaucoma as well as its potential as a therapeutic target.


Subject(s)
Autophagy/drug effects , Endoplasmic Reticulum/drug effects , Glaucoma, Open-Angle/drug therapy , Molecular Targeted Therapy , Animals , Aqueous Humor/physiology , Cytoskeletal Proteins/metabolism , Eye Proteins/metabolism , Glaucoma, Open-Angle/metabolism , Glycoproteins/metabolism , Humans , Intraocular Pressure/physiology , Trabecular Meshwork
18.
Cell Mol Life Sci ; 72(10): 1863-79, 2015 May.
Article in English | MEDLINE | ID: mdl-25666877

ABSTRACT

Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones.


Subject(s)
Alzheimer Disease/physiopathology , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Aggregation, Pathological/metabolism , tau Proteins/metabolism , Acetylation , Glycosylation , Humans , Microtubules/metabolism , Phosphorylation , Proteolysis , tau Proteins/genetics
19.
J Neurochem ; 133(1): 1-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25628064

ABSTRACT

Peptidyl-prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule-associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease, the other being amyloid beta (Ab). PPIases, including Pin1, FK506-binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline-directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Ab production or the toxicity associated with Ab pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in Alzheimer's disease and represent a family rich in targets for modulating the accumulation and toxicity.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Molecular Chaperones/metabolism , Peptidylprolyl Isomerase/metabolism , tau Proteins/metabolism , Animals , Humans
20.
J Neurosci ; 33(22): 9498-507, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23719816

ABSTRACT

In Alzheimer's disease (AD), the mechanisms of neuronal loss remain largely unknown. Although tau pathology is closely correlated with neuronal loss, how its accumulation may lead to activation of neurotoxic pathways is unclear. Here we show that tau increased the levels of ubiquitinated proteins in the brain and triggered activation of the unfolded protein response (UPR). This suggested that tau interferes with protein quality control in the endoplasmic reticulum (ER). Consistent with this, ubiquitin was found to associate with the ER in human AD brains and tau transgenic (rTg4510) mouse brains, but this was not always colocalized with tau. The increased levels of ubiquitinated protein were accompanied by increased levels of phosphorylated protein kinase R-like ER kinase (pPERK), a marker that indicates UPR activation. Depleting soluble tau levels in cells and brain could reverse UPR activation. Tau accumulation facilitated its deleterious interaction with ER membrane and associated proteins that are essential for ER-associated degradation (ERAD), including valosin-containing protein (VCP) and Hrd1. Based on this, the effects of tau accumulation on ERAD efficiency were evaluated using the CD3δ reporter, an ERAD substrate. Indeed, CD3δ accumulated in both in vitro and in vivo models of tau overexpression and AD brains. These data suggest that soluble tau impairs ERAD and the result is activation of the UPR. The reversibility of this process, however, suggests that tau-based therapeutics could significantly delay this type of cell death and therefore disease progression.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/physiology , Unfolded Protein Response/physiology , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Blotting, Western , Brain/pathology , Brain/ultrastructure , Brain Chemistry , CD3 Complex/metabolism , Cells, Cultured , Data Interpretation, Statistical , Female , Humans , Immunohistochemistry , Male , Mice , Microsomes/metabolism , Ubiquitin/metabolism , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL