Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Plant J ; 119(1): 84-99, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578218

ABSTRACT

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Subject(s)
Phenylalanine , Plant Leaves , Solanum lycopersicum , Volatile Organic Compounds , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Phenylalanine/metabolism , Volatile Organic Compounds/metabolism , Animals , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/parasitology , Benzaldehydes/metabolism , Benzaldehydes/pharmacology , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Acetaldehyde/pharmacology , Moths/physiology , Moths/drug effects , Plant Diseases/parasitology , Plant Diseases/immunology , Manduca/physiology
2.
Plant J ; 113(2): 327-341, 2023 01.
Article in English | MEDLINE | ID: mdl-36448213

ABSTRACT

To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Désirée' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4°C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2 O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response.


Subject(s)
Cold Temperature , Solanum tuberosum , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism , Carbohydrate Metabolism , Hexoses/metabolism , Sucrose/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Tubers/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Physiol Plant ; 175(5): e14001, 2023.
Article in English | MEDLINE | ID: mdl-37882295

ABSTRACT

In trees, nonstructural carbohydrates (NSCs) serve as long-term carbon storage and long-distance carbon transport from source to sink. NSC management in response to drought stress is key to our understanding of drought acclimation. However, the molecular mechanisms underlying these processes remain unclear. By combining a transcriptomic approach with NSC quantification in the leaves, stems, and roots of Populus alba under drought stress, we analyzed genes from 29 gene families related to NSC signaling, translocation, and metabolism. We found starch depletion across organs and accumulation of soluble sugars (SS) in the leaves. Activation of the trehalose-6-phosphate/SNF1-related protein kinase (SnRK1) signaling pathway across organs via the suppression of class I TREHALOSE-PHOSPHATE SYNTHASE (TPS) and the expression of class II TPS genes suggested an active response to drought. The expression of SnRK1α and ß subunits, and SUCROSE SYNTHASE6 supported SS accumulation in leaves. The upregulation of active transporters and the downregulation of most passive transporters implied a shift toward active sugar transport and enhanced regulation over partitioning. SS accumulation in vacuoles supports osmoregulation in leaves. The increased expression of sucrose synthesis genes and reduced expression of sucrose degradation genes in the roots did not coincide with sucrose levels, implying local sucrose production for energy. Moreover, the downregulation of invertases in the roots suggests limited sucrose allocation from the aboveground organs. This study provides an expression atlas of NSC-related genes that respond to drought in poplar trees, and can be tested in tree improvement programs for adaptation to drought conditions.


Subject(s)
Populus , Trees , Trees/metabolism , Populus/genetics , Populus/metabolism , Droughts , Carbohydrates , Carbohydrate Metabolism/genetics , Sucrose/metabolism , Sugars , Carbon
4.
New Phytol ; 234(4): 1394-1410, 2022 05.
Article in English | MEDLINE | ID: mdl-35238413

ABSTRACT

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Subject(s)
Alkaloids , Dioxygenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alkaloids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Solanum lycopersicum/genetics , Solanum/genetics , Solanum/metabolism , Solanum tuberosum/genetics
5.
Plant J ; 104(1): 226-240, 2020 09.
Article in English | MEDLINE | ID: mdl-32645754

ABSTRACT

Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca2+ signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca2+ and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.


Subject(s)
Botrytis , Chrysanthemum/physiology , Flowers/physiology , Phenylalanine/physiology , Plant Diseases/immunology , Chrysanthemum/immunology , Chrysanthemum/microbiology , Ethylenes/metabolism , Flowers/immunology , Phenylalanine/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Reactive Oxygen Species
6.
Plant Cell ; 30(7): 1628-1644, 2018 07.
Article in English | MEDLINE | ID: mdl-29875274

ABSTRACT

In plants, cytosine methylation, an epigenetic mark critical for transposon silencing, is maintained over generations by key enzymes that directly methylate DNA and is facilitated by chromatin remodelers, like DECREASE IN DNA METHYLATION1 (DDM1). Short-interfering RNAs (siRNAs) also mediate transposon DNA methylation through a process called RNA-directed DNA methylation (RdDM). In tomato (Solanum lycopersicum), siRNAs are primarily mapped to gene-rich chromosome arms, and not to pericentromeric regions as in Arabidopsis thaliana Tomato encodes two DDM1 genes. To better understand their functions and interaction with the RdDM pathway, we targeted the corresponding genes via the CRISPR/Cas9 technology, resulting in the isolation of Slddm1a and Slddm1b knockout mutants. Unlike the single mutants, Slddm1a Slddm1b double mutant plants display pleiotropic vegetative and reproductive phenotypes, associated with severe hypomethylation of the heterochromatic transposons in both the CG and CHG methylation contexts. The methylation in the CHH context increased for some heterochromatic transposons and conversely decreased for others localized in euchromatin. We found that the number of heterochromatin-associated siRNAs, including RdDM-specific small RNAs, increased significantly, likely limiting the transcriptional reactivation of transposons in Slddm1a Slddm1b Taken together, we propose that the global production of siRNAs and the CHH methylation mediated by the RdDM pathway are restricted to chromosome arms in tomato. Our data suggest that both pathways are greatly enhanced in heterochromatin when DDM1 functions are lost, at the expense of silencing mechanisms normally occurring in euchromatin.


Subject(s)
Plant Proteins/genetics , RNA, Small Interfering/genetics , Solanum lycopersicum/genetics , Arabidopsis Proteins/genetics , DNA Methylation/genetics , Euchromatin/genetics , Gene Expression Regulation, Plant/genetics , Gene Silencing/physiology , Heterochromatin/genetics
7.
Physiol Plant ; 168(1): 133-147, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30740711

ABSTRACT

Organic acids are important components of overall fruit quality through flavor, taste, nutritional and medicinal values. Pollinated fig (Ficus carica L.) fruit quality is enhanced by increased acidity. We quantified the major organic acids and characterized the expression pattern of organic acid metabolic pathway-related genes in the reproductive part - inflorescence and non-reproductive part - receptacle of parthenocarpic and pollinated fig fruit during ripening. Essentially, pollinated fruit contains seeds in the inflorescence, as opposed to no seeds in the parthenocarpic inflorescence. The major organic acids - citrate and malate - were found in relatively high quantities in the inflorescence compared to the receptacle of both parthenocarpic and pollinated fig fruit. Notably, pollination increased citric acid content significantly in both inflorescence and receptacle. Genes related to the phosphoenolpyruvate carboxylase (PEPC) cycle, tricarboxylic acid cycle, citrate catabolism and glyoxylate cycle were identified in fig fruit. Expression levels of most of these genes were higher in inflorescences than in receptacles. In particular, FcPEPC and FcFUM (encoding fumarase) had significantly higher expression in the inflorescence of pollinated fruit. Most importantly, expression of the glyoxylate cycle genes FcMLS and FcICL (encoding malate synthase and isocitrate lyase, respectively) was induced to strikingly high levels in the inflorescence by pollination, and their expression level was highly positively correlated with the contents of all organic acids. Therefore, the glyoxylate cycle may be responsible for altering the accumulation of organic acids to upgrade the fruit taste during ripening, especially in the pollinated, seeded inflorescence.


Subject(s)
Citric Acid/metabolism , Ficus/metabolism , Fruit/metabolism , Malates/metabolism , Pollination , Fruit/genetics , Gene Expression Regulation, Plant , Inflorescence/metabolism
8.
Plant J ; 94(1): 169-191, 2018 04.
Article in English | MEDLINE | ID: mdl-29385635

ABSTRACT

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Subject(s)
Chromosome Mapping , Cucurbitaceae/genetics , Fruit/genetics , Quantitative Trait Loci/genetics , Cucurbitaceae/metabolism , Food Quality , Fruit/metabolism , Genes, Plant/genetics , Genes, Plant/physiology , Genetic Linkage , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, RNA
9.
BMC Genomics ; 20(1): 1019, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31878870

ABSTRACT

BACKGROUND: Infectious disease outbreaks form major setbacks to aquaculture production and to further development of this important sector. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus widely hampering production of common carp (Cyprinus carpio), one of the most farmed fish species worldwide. Genetically disease resistant strains are highly sought after as a sustainable solution to this problem. To study the genetic basis and cellular pathways underlying disease resistance, RNA-Seq was used to characterize transcriptional responses of susceptible and resistant fish at day 4 after CyHV-3 infection. RESULTS: In susceptible fish, over four times more differentially expressed genes were up-regulated between day 0 and 4 compared to resistant fish. Susceptible and resistant fish responded distinctively to infection as only 55 (9%) of the up-regulated genes were shared by these two fish types. Susceptible fish elicited a typical anti-viral response, involving interferon and interferon responsive genes, earlier than resistant fish did. Furthermore, chemokine profiles indicated that the two fish types elicited different cellular immunity responses. A comparative phylogenetic approach assisted in chemokine copies annotation pointing to different orthologous copies common to bony-fishes and even carp-specific paralogs that were differentially regulated and contributed to the different response of these two fish types. Susceptible fish up-regulated more ccl19 chemokines, which attract T-cells and macrophages, the anti-viral role of which is established, whereas resistant fish up-regulated more cxcl8/il8 chemokines, which attract neutrophils, the antiviral role of which is unfamiliar. CONCLUSIONS: Taken together, by pointing out transcriptional differences between susceptible and resistant fish in response to CyHV-3 infection, this study unraveled possible genes and pathways that take part in disease resistance mechanisms in fish and thus, enhances our understanding of fish immunogenetics and supports the development of sustainable and safe aquaculture.


Subject(s)
Carps/genetics , Carps/virology , Disease Resistance/genetics , Fish Diseases/virology , Genetic Predisposition to Disease/genetics , Herpesviridae/physiology , Transcription, Genetic , Animals , Fish Diseases/immunology , Quantitative Trait Loci/genetics
10.
Proc Natl Acad Sci U S A ; 113(47): E7619-E7628, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27821754

ABSTRACT

The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit). A whole-genome sequencing of Siraitia, leading to a preliminary draft of the genome, was combined with an extensive transcriptomic analysis of developing fruit. A functional expression survey of nearly 200 candidate genes identified the members of the five enzyme families responsible for the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. Protein modeling and docking studies corroborated the experimentally proven functional enzyme activities and indicated the order of the metabolic steps in the pathway. A comparison of the genomic organization and expression patterns of these Siraitia genes with the orthologs of other Cucurbitaceae implicates a strikingly coordinated expression of the pathway in the evolution of this species-specific and valuable metabolic pathway. The genomic organization of the pathway genes, syntenously preserved among the Cucurbitaceae, indicates, on the other hand, that gene clustering cannot account for this novel secondary metabolic pathway.


Subject(s)
Biosynthetic Pathways , Cucurbitaceae/growth & development , Plant Proteins/genetics , Triterpenes/metabolism , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Models, Molecular , Molecular Docking Simulation , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Analysis, DNA/methods , Squalene Monooxygenase/chemistry , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism
11.
Plant J ; 91(2): 325-339, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28390076

ABSTRACT

Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration.


Subject(s)
Aquaporins/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Hexokinase/genetics , Plant Leaves/physiology , Sugars/metabolism , Aquaporins/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Glucose/metabolism , Glucose/pharmacology , Hexokinase/metabolism , Mesophyll Cells/metabolism , Plant Transpiration , Plants, Genetically Modified
13.
J Exp Bot ; 69(16): 4047-4064, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29788446

ABSTRACT

The formation of brown protective skin in onion bulbs can be induced by rapid post-harvest heat treatment. Onions that are peeled to different depths and are exposed to heat stress show that only the outer scales form the dry brown skin, whereas the inner scales maintain high water content and do not change color. Our study demonstrates that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to heat stress. Genes involved in lipid metabolism, oxidation pathways, and cell-wall modification were highly expressed in the outer scale during heating. Defense response-related genes such as those encoding heat-shock proteins, antioxidative stress defense, or production of osmoprotectant metabolites were mostly induced in the inner scale in response to heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for the development of browning and desiccation of the outer scale versus processes associated with defense response and heat tolerance in the inner scales.


Subject(s)
Heat-Shock Response , Onions/physiology , Cell Wall/metabolism , Lipid Metabolism , Onions/genetics , Onions/metabolism , Oxidation-Reduction , Transcriptome
14.
Nature ; 492(7429): 423-7, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23257886

ABSTRACT

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Subject(s)
Biological Evolution , Cotton Fiber , Genome, Plant/genetics , Gossypium/genetics , Polyploidy , Alleles , Cacao/genetics , Chromosomes, Plant/genetics , Diploidy , Gene Duplication/genetics , Genes, Plant/genetics , Gossypium/classification , Molecular Sequence Annotation , Phylogeny , Vitis/genetics
15.
Plant Cell Environ ; 40(10): 2381-2392, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28755442

ABSTRACT

The potato (Solanum tuberosum L.) tuber is a swollen underground stem that can sprout in an apical dominance (AD) pattern. Bromoethane (BE) induces loss of AD and the accumulation of vegetative vacuolar processing enzyme (S. tuberosum vacuolar processing enzyme [StVPE]) in the tuber apical meristem (TAM). Vacuolar processing enzyme activity, induced by BE, is followed by programmed cell death in the TAM. In this study, we found that the mature StVPE1 (mVPE) protein exhibits specific activity for caspase 1, but not caspase 3 substrates. Optimal activity of mVPE was achieved at acidic pH, consistent with localization of StVPE1 to the vacuole, at the edge of the TAM. Downregulation of StVPE1 by RNA interference resulted in reduced stem branching and retained AD in tubers treated with BE. Overexpression of StVPE1 fused to green fluorescent protein showed enhanced stem branching after BE treatment. Our data suggest that, following stress, induction of StVPE1 in the TAM induces AD loss and stem branching.


Subject(s)
Apoptosis , Cysteine Endopeptidases/metabolism , Meristem/cytology , Meristem/enzymology , Solanum tuberosum/enzymology , Apoptosis/drug effects , Apoptosis/genetics , Caspase 1/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Silencing/drug effects , Green Fluorescent Proteins/metabolism , Hydrocarbons, Brominated/pharmacology , Hydrogen-Ion Concentration , Meristem/drug effects , Meristem/genetics , Plant Tubers/drug effects , Plant Tubers/enzymology , Plant Tubers/genetics , Solanum tuberosum/drug effects , Solanum tuberosum/genetics
16.
Plant Physiol ; 169(3): 1683-97, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26157114

ABSTRACT

Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms.


Subject(s)
Alkyl and Aryl Transferases/genetics , Laurus/enzymology , Terpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Base Sequence , Cyclohexanols/metabolism , DNA, Complementary/genetics , Eucalyptol , Evolution, Molecular , Genes, Reporter , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Laurus/chemistry , Laurus/genetics , Models, Molecular , Molecular Sequence Data , Monoterpenes/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/chemistry , RNA, Plant/genetics , Recombinant Proteins , Sequence Analysis, RNA
17.
J Sci Food Agric ; 96(1): 57-65, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-25824867

ABSTRACT

BACKGROUND: Mandarins constitute a large, diverse and important group within the Citrus family. Here, we analysed the aroma volatiles compositions of 13 mandarin varieties belonging to seven genetically different natural sub-groups that included common mandarin (C. reticulata Blanco), clementine (C. clementina Hort. ex. Tan), satsuma (C. unshiu Marcovitch), Mediterranean mandarin (C. deliciosa Tenore), King mandarin (C. nobilis Loureiro), and mandarin hybrids, such as tangor (C. reticulata × C. sinensis) and tangelo (C. reticulata × C. paradisi). RESULTS: We found that mandarin varieties among tangors ('Temple', 'Ortanique'), tangelos ('Orlando', 'Minneola') and King ('King') had more volatiles, at higher levels, and were richer in sesquiterpene and ester volatiles, than other varieties belonging to the sub-groups common mandarin ('Ora', 'Ponkan'), clementine ('Oroval', 'Caffin'), satsuma ('Okitsu', 'Owari') and Mediterranean mandarin ('Avana', 'Yusuf Efendi'). Hierarchical clustering and principal component analysis accurately differentiated between mandarin varieties and natural sub-groups according to their aroma-volatile profiles. CONCLUSIONS: Although we found wide differences in aroma-volatiles compositions among varieties belonging to different natural sub-groups, we detected only minor differences among varieties within any natural sub-group. These findings suggest that selecting appropriate parents would enable manipulation of aroma-volatile compositions in future mandarin breeding programmes.


Subject(s)
Citrus/chemistry , Fruit/chemistry , Odorants/analysis , Volatile Organic Compounds/analysis , Citrus/classification , Humans , Plant Breeding , Species Specificity
18.
New Phytol ; 205(2): 653-65, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25256351

ABSTRACT

In contrast to detailed knowledge regarding the biosynthesis of anthocyanins, the largest group of plant pigments, little is known about their in planta degradation. It has been suggested that anthocyanin degradation is enzymatically controlled and induced when beneficial to the plant. Here we investigated the enzymatic process in Brunfelsia calycina flowers, as they changed color from purple to white. We characterized the enzymatic process by which B. calycina protein extracts degrade anthocyanins. A candidate peroxidase was partially purified and characterized and its intracellular localization was determined. The transcript sequence of this peroxidase was fully identified. A basic peroxidase, BcPrx01, is responsible for the in planta degradation of anthocyanins in B. calycina flowers. BcPrx01 has the ability to degrade complex anthocyanins, it co-localizes with these pigments in the vacuoles of petals, and both the mRNA and protein levels of BcPrx01 are greatly induced parallel to the degradation of anthocyanins. Both isoelectric focusing (IEF) gel analysis and 3D structure prediction indicated that BcPrx01 is cationic. Identification of BcPrx01 is a significant breakthrough both in the understanding of anthocyanin catabolism in plants and in the field of peroxidases, where such a consistent relationship between expression levels, in planta subcellular localization and activity has seldom been demonstrated.


Subject(s)
Anthocyanins/metabolism , Peroxidase/metabolism , Plant Proteins/metabolism , Solanaceae/metabolism , Amino Acid Sequence , Base Sequence , Flowers/enzymology , Flowers/metabolism , Gene Expression Regulation, Plant , Models, Molecular , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Protein Structure, Tertiary , Sequence Analysis, Protein , Solanaceae/enzymology
19.
Proc Natl Acad Sci U S A ; 109(14): 5452-7, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22431592

ABSTRACT

Plasmids are self-replicating genetic elements capable of mobilization between different hosts. Plasmids often serve as mediators of lateral gene transfer, a process considered to be a strong and sculpting evolutionary force in microbial environments. Our aim was to characterize the overall plasmid population in the environment of the bovine rumen, which houses a complex and dense microbiota that holds enormous significance for humans. We developed a procedure for the isolation of total rumen plasmid DNA, termed rumen plasmidome, and subjected it to deep sequencing using the Illumina paired-end protocol and analysis using public and custom-made bioinformatics tools. A large number of plasmidome contigs aligned with plasmids of rumen bacteria isolated from different locations and at various time points, suggesting that not only the bacterial taxa, but also their plasmids, are defined by the ecological niche. The bacterial phylum distribution of the plasmidome was different from that of the rumen bacterial taxa. Nevertheless, both shared a dominance of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. Evidently, the rumen plasmidome is of a highly mosaic nature that can cross phyla. Interestingly, when we compared the functional profile of the rumen plasmidome to two plasmid databases and two recently published rumen metagenomes, it became apparent that the rumen plasmidome codes for functions, which are enriched in the rumen ecological niche and could confer advantages to their hosts, suggesting that the functional profiles of mobile genetic elements are associated with their environment, as has been previously implied for viruses.


Subject(s)
Plastids , Rumen/microbiology , Animals , Cattle , Phylogeny
20.
J Exp Bot ; 65(12): 3029-44, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24706719

ABSTRACT

Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed.


Subject(s)
Abscisic Acid/metabolism , Citrus/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Transcriptome , Citrus/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Developmental , Genome, Plant , High-Throughput Nucleotide Sequencing , Homeostasis , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Trees
SELECTION OF CITATIONS
SEARCH DETAIL