Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Mol Cell ; 82(1): 44-59.e6, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34875213

ABSTRACT

Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.


Subject(s)
Insect Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Protein Kinases/metabolism , Tribolium/enzymology , Animals , Cell Line, Tumor , Enzyme Activation , Enzyme Stability , Humans , Insect Proteins/genetics , Kinetics , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Molecular Docking Simulation , Mutation , Phosphorylation , Protein Interaction Domains and Motifs , Protein Kinases/genetics , Structure-Activity Relationship , Tribolium/genetics
2.
Physiol Rev ; 102(4): 1721-1755, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35466694

ABSTRACT

As a central hub for cellular metabolism and intracellular signaling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses that increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair, and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, to prevent the deleterious effects of the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Here, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy, with an emphasis on the regulation of PINK1/Parkin-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.


Subject(s)
Parkinson Disease , Autophagy , Humans , Mitochondria/metabolism , Mitophagy/physiology , Parkinson Disease/metabolism , Protein Kinases/metabolism , Protein Kinases/pharmacology
3.
Mol Cell ; 74(4): 637-639, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31100244

ABSTRACT

Despite being among the first discovered mammalian innate immune sensor, NLRP1B (NLR pyrin domain-containing1B) activation and its molecular basis have remained elusive. Two recent studies have unveiled N-terminal degradation as a common mechanism for pathogen-mediated NLRP1B inflammasome activation in mammals.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Immunity, Innate/genetics , Inflammasomes/genetics , Animals , Humans , Inflammasomes/immunology , Interleukin-1beta/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Proteolysis , RAW 264.7 Cells , Shigella flexneri/immunology , Shigella flexneri/pathogenicity
4.
Proc Natl Acad Sci U S A ; 121(10): e2313540121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38416681

ABSTRACT

Mutations in PTEN-induced putative kinase 1 (PINK1) cause autosomal recessive early-onset Parkinson's disease (PD). PINK1 is a Ser/Thr kinase that regulates mitochondrial quality control by triggering mitophagy mediated by the ubiquitin (Ub) ligase Parkin. Upon mitochondrial damage, PINK1 accumulates on the outer mitochondrial membrane forming a high-molecular-weight complex with the translocase of the outer membrane (TOM). PINK1 then phosphorylates Ub, which enables recruitment and activation of Parkin followed by autophagic clearance of the damaged mitochondrion. Thus, Parkin-dependent mitophagy hinges on the stable accumulation of PINK1 on the TOM complex. Yet, the mechanism linking mitochondrial stressors to PINK1 accumulation and whether the translocases of the inner membrane (TIMs) are also involved remain unclear. Herein, we demonstrate that mitochondrial stress induces the formation of a PINK1-TOM-TIM23 supercomplex in human cultured cell lines, dopamine neurons, and midbrain organoids. Moreover, we show that PINK1 is required to stably tether the TOM to TIM23 complexes in response to stress such that the supercomplex fails to accumulate in cells lacking PINK1. This tethering is dependent on an interaction between the PINK1 N-terminal-C-terminal extension module and the cytosolic domain of the Tom20 subunit of the TOM complex, the disruption of which, by either designer or PD-associated PINK1 mutations, inhibits downstream mitophagy. Together, the findings provide key insight into how PINK1 interfaces with the mitochondrial import machinery, with important implications for the mechanisms of mitochondrial quality control and PD pathogenesis.


Subject(s)
Mitochondrial Precursor Protein Import Complex Proteins , Protein Kinases , Humans , Carrier Proteins/metabolism , Mitochondria/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Trends Biochem Sci ; 45(9): 723-725, 2020 09.
Article in English | MEDLINE | ID: mdl-32616332

ABSTRACT

The endoplasmic reticulum-associated degradation (ERAD) pathway eliminates misfolded proteins. The Hrd1 complex represents the main gate mediating retrotranslocation of ER luminal misfolded (ERAD-L) substrates to the cytosol. A recent cryo-electron microscopy (cryo-EM) study by Wu et al. unveils the structural features of active Hrd1, providing mechanistic insights into the movement of proteins directed for degradation across ER membranes.


Subject(s)
Cryoelectron Microscopy , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
6.
Bioessays ; 44(6): e2200008, 2022 06.
Article in English | MEDLINE | ID: mdl-35417040

ABSTRACT

Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting chimeras (DEPTACs). Similar effects can also be achieved through the lysosomal system with autophagy-targeting chimeras (AUTACs), autophagosome tethering compounds (ATTECs), and lysosome targeting chimeras (LYTACs). Other methods act upstream to degrade RNAs (ribonuclease targeting chimeras; RIBOTACs) or transcription factors (transcription factor targeting chimeras; TRAFTACs), offering control throughout the gene expression process. We highlight the evolution and function of these methods and discuss their clinical implications in diverse disease contexts.


Subject(s)
Lysosomes , Proteasome Endopeptidase Complex , Autophagy , Lysosomes/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Transcription Factors/metabolism
7.
Trends Biochem Sci ; 44(3): 181-183, 2019 03.
Article in English | MEDLINE | ID: mdl-30661830

ABSTRACT

Unlike prokaryotes, N-terminal formylation has been confined to a handful of mitochondrial proteins in eukaryotes. A recent study unveils a new role for eukaryotic cytoplasmic N-terminal formylation linking diverse cellular stresses to N-terminal-dependent protein degradation. These findings suggest broad cellular implications in higher eukaryotes for N-terminal methionine formylation.


Subject(s)
Eukaryota , Eukaryotic Cells , Methionine , Prokaryotic Cells , Proteolysis
8.
Bioessays ; 43(2): e2000212, 2021 02.
Article in English | MEDLINE | ID: mdl-33210303

ABSTRACT

Autophagy functions in both selective and non-selective ways to maintain cellular homeostasis. Endoplasmic reticulum autophagy (ER-phagy) is a subclass of autophagy responsible for the degradation of the endoplasmic reticulum through selective encapsulation into autophagosomes. ER-phagy occurs both under physiological conditions and in response to stress cues, and plays a crucial role in maintaining the homeostatic control of the organelle. Although specific receptors that target parts of the ER membrane, as well as, internal proteins for lysosomal degradation have been identified, the molecular regulation of ER-phagy has been elusive. Recent work has uncovered novel regulators of ER-phagy that involve post-translational modifications of ER-resident proteins and functional cross-talk with other cellular processes. Herein, we discuss how morphology affects the function of the peripheral ER, and how ER-phagy modulates the turnover of this organelle. We also address how ER-phagy is regulated at the molecular level, considering implications relevant to human diseases.


Subject(s)
Endoplasmic Reticulum Stress , Membrane Proteins , Autophagy , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Protein Processing, Post-Translational
9.
Trends Biochem Sci ; 43(7): 485-487, 2018 07.
Article in English | MEDLINE | ID: mdl-29789218

ABSTRACT

Neurodegeneration-associated hallmarks include an abundance of protein aggregates and amelioration of mitochondrial function. Despite the knowledge of molecular counteracting mechanisms, the molecular dialogue between protein aggregate accumulation and aberrant mitochondrial import is poorly understood. Recent work unraveled a novel role for the mitochondrial import machinery in regulating cytosolic proteostasis.


Subject(s)
Mitochondria , Mitophagy , Cytosol , Proteins
10.
Mol Biol Rep ; 49(9): 9013-9016, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35902447

ABSTRACT

Mitochondrial quality control is a key element of neuronal health and viability. When left untouched, defective mitochondria can initiate neuronal degeneration. Cytosolic proteins PINK1 and Parkin comprise one key pathway responsible for clearing damaged mitochondria. Neurons, however, pose a unique challenge to this process because proteins need to be abundantly available at locations distant from the cell body. Recent study has confirmed that local translation of PINK1 in axons and dendrites is the solution. Pink1 transcripts are tethered to mitochondria via SYNJ2a and active translation, then subsequently co-transported to distal locations. Once arriving in the neuron's periphery, local translation of PINK1 can facilitate mitophagy and ultimately sustain mitochondrial health.


Subject(s)
Mitophagy , Protein Kinases , Axons/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitophagy/genetics , Neurons/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Proc Natl Acad Sci U S A ; 116(31): 15616-15624, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308240

ABSTRACT

Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10-4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10-5). Mutations in both PRKN and LRRK2 are known causes of Parkinson's disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10-4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.


Subject(s)
Leprosy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mutation , Parkinson Disease , Ubiquitin-Protein Ligases , Female , Humans , Leprosy/genetics , Leprosy/metabolism , Leprosy/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
12.
Bioessays ; 41(11): e1800167, 2019 11.
Article in English | MEDLINE | ID: mdl-31549739

ABSTRACT

The N-end rule denotes the relationship between the identity of the amino-terminal residue of a protein and its in vivo half-life. Since its discovery in 1986, the N-end rule has generally been described by a defined set of rules for determining whether an amino-terminal residue is stabilizing or not. However, recent studies are revealing that this N-end rule (or N-degron concept) is less straightforward than previously appreciated. For instance, it is unveiled that N-terminal acetylation of N-terminal residues may create a degradation signal (Ac-degron) that promotes the degradation of target proteins. A recent high-throughput dissection of degrons in yeast proteins amino termini intriguingly suggested that the hydrophobicity of amino-terminal residues-but not the N-terminal acetylation status-may be the indispensable feature of amino-terminal degrons. Herein, these recent advances in N-terminal acetylation and the complexity of N-terminal degradation signals in the context of the N-degron pathway are analyzed.


Subject(s)
Fungal Proteins/metabolism , Acetylation , Humans , Proteolysis
13.
Curr Genet ; 66(4): 693-701, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32157382

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by a gradual loss of a specific group of dopaminergic neurons in the substantia nigra. Importantly, current treatments only address the symptoms of PD, yet not the underlying molecular causes. Concomitantly, the function of genes that cause inherited forms of PD point to mitochondrial dysfunction as a major contributor in the etiology of PD. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses including high levels of reactive oxygen species and protein misfolding, which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to identify, repair and/or eliminate abnormal dysfunctional mitochondria. One such mechanism is mitophagy, a process which involves PTEN-induced putative kinase 1 (PINK1), a mitochondrial Ser/Thr kinase and Parkin, an E3 ubiquitin ligase, each encoded by genes responsible for early-onset autosomal recessive familial PD. Over 100 loss-of-function mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been reported to cause autosomal recessive early-onset PD. PINK1 acts upstream of Parkin and is essential for the mitochondrial localization and activation of Parkin. Upon mitochondrial damage, PINK1 builds up on the outer mitochondrial membrane (OMM) and mediates the activation of Parkin. Activated Parkin then ubiquitinates numerous OMM proteins, eliciting mitochondrial autophagy (mitophagy). As a result, damaged mitochondrial components can be selectively eliminated. Thus, PINK1 acts a sensor of damage via fine-tuning of its levels on mitochondria, where it activates Parkin to orchestrate the clearance of unhealthy mitochondria. Previous work has unveiled that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of PINK1, and thus fine-tune PINK1-dependent mitochondrial quality control pathway. Herein, we briefly discuss the interconnection between N-end rule degradation pathways and mitophagy in the context of N-degron mediated degradation of mitochondrial kinase PINK1 and highlight some of the future prospects.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Kinases/metabolism , Animals , Glycine/metabolism , Metabolic Networks and Pathways , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitophagy , Mutation , Parkinson Disease/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
14.
Curr Genet ; 66(3): 501-505, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32060627

ABSTRACT

Mitochondrial dysregulation is a pivotal hallmark of aging-related disorders. Although there is a considerable understanding of the molecular counteracting responses toward damaged mitochondria, the molecular underpinnings connecting the abnormal aggregation of mitochondrial precursor protein fragments and abrogation of mitochondrial import machinery are far from clear. Recently, proteasomal-dependent degradation was unveiled as a pivotal fine-tuner of TOM machinery-dependent mitochondrial import. Herein, the role of proteasomal-mediated degradation in regulating fidelity of TOM-dependent import is briefly discussed and analyzed. The insights obtained from the characterization of this process may be applied to targeting mitochondrial import dysfunction in some neurodegenerative disorders.


Subject(s)
Carrier Proteins/metabolism , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Carrier Proteins/genetics , Humans , Membrane Transport Proteins/genetics , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Proteolysis
15.
J Neurochem ; 151(4): 520-533, 2019 11.
Article in English | MEDLINE | ID: mdl-31357232

ABSTRACT

Protein degradation is a crucial regulatory process in maintaining cellular proteostasis. The selective degradation of intracellular proteins controls diverse cellular and biochemical processes in all kingdoms of life. Targeted protein degradation is implicated in controlling the levels of regulatory proteins as well as eliminating misfolded and any otherwise abnormal proteins. Deregulation of protein degradation is concomitant with the progression of various neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Thus, methods of measuring metabolic half-lives of proteins greatly influence our understanding of the diverse functions of proteins in mammalian cells including neuronal cells. Historically, protein degradation rates have been studied via exploiting methods that estimate overall protein degradation or focus on few individual proteins. Notably, with the recent technical advances and developments in proteomic and imaging techniques, it is now possible to measure degradation rates of a large repertoire of defined proteins and analyze the degradation profile in a detailed spatio-temporal manner, with the aim of determining proteome-wide protein stabilities upon different physiological conditions. Herein, we discuss some of the classical and novel methods for determining protein degradation rates highlighting the crucial role of some state of art approaches in deciphering the global impact of dynamic nature of targeted degradation of cellular proteins. This article is part of the Special Issue "Proteomics".


Subject(s)
Cells/metabolism , Proteolysis , Proteomics/methods , Proteostasis , Animals , Humans , Mammals/metabolism
16.
Biochem Cell Biol ; 96(3): 289-294, 2018 06.
Article in English | MEDLINE | ID: mdl-29253354

ABSTRACT

The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.


Subject(s)
Amino Acids/metabolism , Protein Processing, Post-Translational/physiology , Proteins/metabolism , Proteolysis , Amino Acid Sequence , Humans , Substrate Specificity/physiology
17.
Int J Mol Sci ; 19(11)2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30384441

ABSTRACT

A pivotal hallmark of some cancer cells is the evasion of apoptotic cell death. Importantly, the initiation of apoptosis often results in the activation of caspases, which, in turn, culminates in the generation of proteolytically-activated protein fragments with potentially new or altered roles. Recent investigations have revealed that the activity of a significant number of the protease-generated, activated, pro-apoptotic protein fragments can be curbed via their selective degradation by the N-end rule degradation pathways. Of note, previous work revealed that several proteolytically-generated, pro-apoptotic fragments are unstable in cells, as their destabilizing N-termini target them for proteasomal degradation via the N-end rule degradation pathways. Remarkably, previous studies also showed that the proteolytically-generated anti-apoptotic Lyn kinase protein fragment is targeted for degradation by the UBR1/UBR2 E3 ubiquitin ligases of the N-end rule pathway in chronic myeloid leukemia cells. Crucially, the degradation of cleaved fragment of Lyn by the N-end rule counters imatinib resistance in these cells, implicating a possible linkage between the N-end rule degradation pathway and imatinib resistance. Herein, we highlight recent studies on the role of the N-end rule proteolytic pathways in regulating apoptosis in mammalian cells, and also discuss some possible future directions with respect to apoptotic proteolysis signaling.


Subject(s)
Apoptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplasm Proteins , Peptides , Proteolysis , Animals , Drug Resistance, Neoplasm , Humans , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diet therapy , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Peptides/chemistry , Peptides/metabolism
18.
Proteomics ; 17(12)2017 Jun.
Article in English | MEDLINE | ID: mdl-28508578

ABSTRACT

The murine mouse lymphoblastic lymphoma cell line (EL4) tumor model is an established in vivo apoptosis model for the investigation of novel cancer imaging agents and immunological treatments due to the rapid and significant response of the EL4 tumors to cyclophosphamide and etoposide combination chemotherapy. Despite the utility of this model system in cancer research, little is known regarding the molecular details of in vivo tumor cell death. Here, we report the first in-depth quantitative proteomic analysis of the changes that occur in these tumors upon cyclophosphamide and etoposide treatment in vivo. Using a label-free quantitative proteomic approach a total of 5838 proteins were identified in the treated and untreated tumors, of which 875 were determined to change in abundance with statistical significance. Initial analysis of the data reveals changes that may have been predicted, such as the downregulation of ribosomes, but demonstrates the robustness of the dataset. Analysis of the dataset also reveals the unexpected downregulation of caspase-3 and an upregulation of caspase-6 in addition to a global upregulation of lysosomal proteins in the bulk of the tumor.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspase 6/metabolism , Cyclophosphamide/pharmacology , Lymphoma/metabolism , Lysosomes/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Etoposide/pharmacology , Female , Lymphoma/drug therapy , Lymphoma/pathology , Mice , Mice, Inbred C57BL , Proteome/metabolism , Proteomics/methods , Tumor Cells, Cultured
19.
J Biol Chem ; 291(43): 22757-22768, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27601470

ABSTRACT

Cellular signaling leading to the initiation of apoptosis typically results in the activation of caspases, which in turn leads to the proteolytic generation of protein fragments with new or altered cellular functions. Increasing numbers of reports are demonstrating that the activity of many of these proteolytically activated protein fragments can be attenuated by their selective degradation by the N-end rule pathway. Here we report the first evidence that selective degradation of a caspase product by the N-end rule pathway can be modulated by phosphorylation. We demonstrate that the pro-apoptotic fragment of the bone marrow kinase on chromosome X (BMX) generated by caspase cleavage in the prostate cancer-derived PC3 cell line is metabolically unstable in cells because its N-terminal tryptophan targets it for proteasomal degradation via the N-end rule pathway. In addition, we have demonstrated that phosphorylation of tyrosine 566 relatively inhibits degradation of the C-terminal BMX catalytic fragment, and this phosphorylation is crucial for its pro-apoptotic function. Overall, our results demonstrate that cleaved BMX is a novel N-end rule substrate, and its degradation exhibits a novel interplay between substrate phosphorylation and N-end rule degradation, revealing an increasing complex regulatory network of apoptotic proteolytic signaling cascades.


Subject(s)
Apoptosis/physiology , Protein-Tyrosine Kinases/metabolism , Proteolysis , Signal Transduction/physiology , Cell Line, Tumor , Humans , Phosphorylation , Protein-Tyrosine Kinases/genetics
20.
Autophagy ; 20(8): 1903-1905, 2024 08.
Article in English | MEDLINE | ID: mdl-38597070

ABSTRACT

Mutations in the PINK1 kinase cause Parkinson disease (PD) through physiological processes that are not yet fully elucidated. PINK1 kinase accumulates selectively on damaged mitochondria, where it recruits the E3 ubiquitin ligase PRKN/Parkin to mediate mitophagy. Upon mitochondrial import failure, PINK1 accumulates in association with the translocase of outer mitochondrial membrane (TOMM). However, the molecular basis of this PINK1 accumulation on the TOMM complex remain elusive. We recently demonstrated that TIMM23 (translocase of the inner mitochondrial membrane 23) is a component of the PINK1-supercomplex formed in response to mitochondrial stress. We also uncovered that PINK1 is required for the formation of this supercomplex and highlighted the biochemical regulation and significance of this supercomplex; expanding our understanding of mitochondrial quality control and PD pathogenesis.


Subject(s)
Mitochondria , Mitophagy , Protein Kinases , Protein Kinases/metabolism , Humans , Mitochondria/metabolism , Mitophagy/physiology , Mitochondrial Precursor Protein Import Complex Proteins , Membrane Transport Proteins/metabolism , Animals , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Mitochondrial Membranes/metabolism , Models, Biological , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL