Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nature ; 623(7988): 820-827, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938771

ABSTRACT

The majority of oncogenic drivers are intracellular proteins, constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient for generating responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins essential for tumorigenesis. We focused on targeting the unmutated peptide QYNPIRTTF discovered on HLA-A*24:02, which is derived from the neuroblastoma-dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (PC-CARs) through a counter panning strategy using predicted potentially cross-reactive peptides. We further proposed that PC-CARs can recognize peptides on additional HLA allotypes when presenting a similar overall molecular surface. Informed by our computational modelling results, we show that PHOX2B PC-CARs also recognize QYNPIRTTF presented by HLA-A*23:01, the most common non-A2 allele in people with African ancestry. Finally, we demonstrate potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that PC-CARs have the potential to expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and allow targeting through additional HLA allotypes in a clinical setting.


Subject(s)
Antigens, Neoplasm , Neuroblastoma , Oncogene Proteins , Peptides , Receptors, Chimeric Antigen , Animals , Humans , Mice , Africa/ethnology , Alleles , Amino Acid Sequence , Carcinogenesis , Cross Reactions , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/therapy , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/immunology , Peptides/antagonists & inhibitors , Peptides/chemistry , Peptides/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use
2.
Nature ; 599(7885): 477-484, 2021 11.
Article in English | MEDLINE | ID: mdl-34732890

ABSTRACT

The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Subject(s)
Antigens, Neoplasm/immunology , HLA Antigens/immunology , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Oncogene Proteins/immunology , Receptors, Chimeric Antigen/immunology , Animals , Antigens, Neoplasm/metabolism , Cell Line , Cell Line, Tumor , Cross Reactions , Cross-Priming , Female , HLA Antigens/metabolism , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Interferon-gamma/immunology , Mice , Neoplasms/metabolism , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/metabolism , T-Lymphocytes/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
3.
N Engl J Med ; 385(10): 921-929, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34469647

ABSTRACT

Human papillomavirus (HPV) infections underlie a wide spectrum of both benign and malignant epithelial diseases. In this report, we describe the case of a young man who had encephalitis caused by herpes simplex virus during adolescence and currently presented with multiple recurrent skin and mucosal lesions caused by HPV. The patient was found to have a pathogenic germline mutation in the X-linked interleukin-2 receptor subunit gamma gene (IL2RG), which was somatically reverted in T cells but not in natural killer (NK) cells. Allogeneic hematopoietic-cell transplantation led to restoration of NK cytotoxicity, with normalization of the skin microbiome and persistent remission of all HPV-related diseases. NK cytotoxicity appears to play a role in containing HPV colonization and the ensuing HPV-related hyperplastic or dysplastic lesions. (Funded by the National Institutes of Health and the Herbert Irving Comprehensive Cancer Center Flow Cytometry Shared Resources.).


Subject(s)
Germ-Line Mutation , Hematopoietic Stem Cell Transplantation , Killer Cells, Natural/physiology , Papillomavirus Infections/therapy , Cytotoxicity, Immunologic , Encephalitis/virology , Female , Humans , Killer Cells, Natural/drug effects , Male , Microbiota/drug effects , Natural Killer T-Cells/physiology , Papillomaviridae , Papillomavirus Infections/genetics , Papillomavirus Infections/immunology , Pedigree , Skin/microbiology , Transplantation, Homologous , Young Adult
5.
BMC Bioinformatics ; 24(1): 303, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37516886

ABSTRACT

BACKGROUND: The growing power and ever decreasing cost of RNA sequencing (RNA-Seq) technologies have resulted in an explosion of RNA-Seq data production. Comparing gene expression values within RNA-Seq datasets is relatively easy for many interdisciplinary biomedical researchers; however, user-friendly software applications increase the ability of biologists to efficiently explore available datasets. RESULTS: Here, we describe ROGUE (RNA-Seq Ontology Graphic User Environment, https://marisshiny. RESEARCH: chop.edu/ROGUE/ ), a user-friendly R Shiny application that allows a biologist to perform differentially expressed gene analysis, gene ontology and pathway enrichment analysis, potential biomarker identification, and advanced statistical analyses. We use ROGUE to identify potential biomarkers and show unique enriched pathways between various immune cells. CONCLUSIONS: User-friendly tools for the analysis of next generation sequencing data, such as ROGUE, will allow biologists to efficiently explore their datasets, discover expression patterns, and advance their research by allowing them to develop and test hypotheses.


Subject(s)
Biomedical Research , Mobile Applications , High-Throughput Nucleotide Sequencing , Gene Ontology , Sequence Analysis, RNA
6.
Pediatr Blood Cancer ; 67(6): e28267, 2020 06.
Article in English | MEDLINE | ID: mdl-32307821

ABSTRACT

BACKGROUND: The treatment of high-risk neuroblastoma continues to present a formidable challenge to pediatric oncology. Previous studies have shown that Bromodomain and extraterminal (BET) inhibitors can inhibit MYCN expression and suppress MYCN-amplified neuroblastoma in vivo. Furthermore, alterations within RAS-MAPK (mitogen-activated protein kinase) signaling play significant roles in neuroblastoma initiation, maintenance, and relapse, and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors demonstrate efficacy in subsets of neuroblastoma preclinical models. Finally, hyperactivation of RAS-MAPK signaling has been shown to promote resistance to BET inhibitors. Therefore, we examined the antitumor efficacy of combined BET/MEK inhibition utilizing I-BET726 or I-BET762 and trametinib in high-risk neuroblastoma. PROCEDURE: Utilizing a panel of genomically annotated neuroblastoma cell line models, we investigated the in vitro effects of combined BET/MEK inhibition on cell proliferation and apoptosis. Furthermore, we evaluated the effects of combined inhibition in neuroblastoma xenograft models. RESULTS: Combined BET and MEK inhibition demonstrated synergistic effects on the growth and survival of a large panel of neuroblastoma cell lines through augmentation of apoptosis. A combination therapy slowed tumor growth in a non-MYCN-amplified, NRAS-mutated neuroblastoma xenograft model, but had no efficacy in an MYCN-amplified model harboring a loss-of-function mutation in NF1. CONCLUSIONS: Combinatorial BET and MEK inhibition was synergistic in the vast majority of neuroblastoma cell lines in the in vitro setting but showed limited antitumor activity in vivo. Collectively, these data do not support clinical development of this combination in high-risk neuroblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , Neuroblastoma/drug therapy , Proteins/antagonists & inhibitors , Pyridones/pharmacology , Pyrimidinones/pharmacology , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, SCID , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
BMC Bioinformatics ; 18(1): 342, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28715997

ABSTRACT

BACKGROUND: Gene expression is regulated by transcription factors binding to specific target DNA sites. Understanding how and where transcription factors bind at genome scale represents an essential step toward our understanding of gene regulation networks. Previously we developed a structure-based method for prediction of transcription factor binding sites using an integrative energy function that combines a knowledge-based multibody potential and two atomic energy terms. While the method performs well, it is not computationally efficient due to the exponential increase in the number of binding sequences to be evaluated for longer binding sites. In this paper, we present an efficient pentamer algorithm by splitting DNA binding sequences into overlapping fragments along with a simplified integrative energy function for transcription factor binding site prediction. RESULTS: A DNA binding sequence is split into overlapping pentamers (5 base pairs) for calculating transcription factor-pentamer interaction energy. To combine the results from overlapping pentamer scores, we developed two methods, Kmer-Sum and PWM (Position Weight Matrix) stacking, for full-length binding motif prediction. Our results show that both Kmer-Sum and PWM stacking in the new pentamer approach along with a simplified integrative energy function improved transcription factor binding site prediction accuracy and dramatically reduced computation time, especially for longer binding sites. CONCLUSION: Our new fragment-based pentamer algorithm and simplified energy function improve both efficiency and accuracy. To our knowledge, this is the first fragment-based method for structure-based transcription factor binding sites prediction.


Subject(s)
Algorithms , Sequence Analysis, DNA/methods , Transcription Factors/metabolism , Binding Sites , DNA/chemistry , DNA/metabolism , Nucleotide Motifs , Position-Specific Scoring Matrices , Protein Binding
8.
Bioinformatics ; 32(12): i306-i313, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27307632

ABSTRACT

UNLABELLED: Transcription factors (TFs) regulate gene expression through binding to specific target DNA sites. Accurate annotation of transcription factor binding sites (TFBSs) at genome scale represents an essential step toward our understanding of gene regulation networks. In this article, we present a structure-based method for computational prediction of TFBSs using a novel, integrative energy (IE) function. The new energy function combines a multibody (MB) knowledge-based potential and two atomic energy terms (hydrogen bond and π interaction) that might not be accurately captured by the knowledge-based potential owing to the mean force nature and low count problem. We applied the new energy function to the TFBS prediction using a non-redundant dataset that consists of TFs from 12 different families. Our results show that the new IE function improves the prediction accuracy over the knowledge-based, statistical potentials, especially for homeodomain TFs, the second largest TF family in mammals. CONTACT: jguo4@uncc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Transcription Factors/chemistry , Animals , Binding Sites , Computational Biology , DNA-Binding Proteins , Gene Expression Regulation , Protein Binding
9.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005383

ABSTRACT

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins. Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES- dominant to define subtype-specific and pan-neuroblastoma gene sets. Targets were validated with ChIP- sequencing, immunoblotting, and flow cytometry in neuroblastoma cell lines and isogenic ADRN-to-MES transition cell line models. Finally, we evaluated the activity of MES-specific agents in vivo and in vitro . Results: Most immunotherapeutic targets being developed for neuroblastoma showed significantly higher expression in the ADRN subtype with limited expression in MES-like tumor cells. In contrast, CD276 (B7-H3) and L1CAM maintained expression across both ADRN and MES states. We identified several receptor tyrosine kinases (RTKs) enriched in MES-dominant samples and showed that AXL targeting with ADCT-601 was potently cytotoxic in MES-dominant cell lines and showed specific anti-tumor activity in a MES cell line-derived xenograft. Conclusions: Immunotherapeutic strategies for neuroblastoma must address the potential of epigenetic downregulation of antigen density as a mechanism for immune evasion. We identified several RTKs as candidate MES-specific immunotherapeutic target proteins for the elimination of therapy-resistant cells. We hypothesize that the phenomena of immune escape will be less likely when targeting pan-neuroblastoma cell surface proteins such as B7-H3 and L1CAM, and/or dual targeting strategies that consider both the ADRN- and MES-cell states. Key Points: Cellular plasticity influences the abundance of immunotherapeutic targets.Subtype-specific targets may be susceptible to epigenetically-mediated downregulation.Immunotherapeutic targets in development, B7-H3 and L1CAM, show "pan-subtype" expression. Importance of Study: Neuroblastoma is a lethal childhood malignancy that shows cellular plasticity in response to anti-cancer therapies. Several plasma membrane proteins are being developed as immunotherapeutic targets in this disease. Here we define which cell surface proteins are susceptible to epigenetically regulated downregulation during an adrenergic to mesenchymal cell state switch and propose immunotherapeutic strategies to anticipate and circumvent acquired immunotherapeutic resistance.

10.
Cell Rep ; 43(3): 113927, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451815

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor of childhood. While MYCN and mutant anaplastic lymphoma kinase (ALKF1174L) cooperate in tumorigenesis, how ALK contributes to tumor formation remains unclear. Here, we used a human stem cell-based model of neuroblastoma. Mis-expression of ALKF1174L and MYCN resulted in shorter latency compared to MYCN alone. MYCN tumors resembled adrenergic, while ALK/MYCN tumors resembled mesenchymal, neuroblastoma. Transcriptomic analysis revealed enrichment in focal adhesion signaling, particularly the extracellular matrix genes POSTN and FN1 in ALK/MYCN tumors. Patients with ALK-mutant tumors similarly demonstrated elevated levels of POSTN and FN1. Knockdown of POSTN, but not FN1, delayed adhesion and suppressed proliferation of ALK/MYCN tumors. Furthermore, loss of POSTN reduced ALK-dependent activation of WNT signaling. Reciprocally, inhibition of the WNT pathway reduced expression of POSTN and growth of ALK/MYCN tumor cells. Thus, ALK drives neuroblastoma in part through a feedforward loop between POSTN and WNT signaling.


Subject(s)
Neuroblastoma , Receptor Protein-Tyrosine Kinases , Humans , Anaplastic Lymphoma Kinase/genetics , Cell Adhesion Molecules , Cell Line, Tumor , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/pathology , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway
11.
Cancer Discov ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083807

ABSTRACT

Relapse rates in high-risk neuroblastoma remain exceedingly high. The malignant cells that are responsible for relapse have not been identified, and mechanisms of therapy resistance remain poorly understood. Here, we used single nucleus RNA sequencing and bulk whole genome sequencing to identify and characterize the residual malignant persister cells that survive chemotherapy from a cohort of 20 matched diagnosis and definitive surgery tumor samples from patients treated with high-risk neuroblastoma induction chemotherapy. We show that persister cells share common mechanisms of chemotherapy escape including suppression of MYCN activity and activation of NF-κB signaling, the latter is further enhanced by cell-cell communication between the malignant cells and the tumor microenvironment. Overall, our work dissects the transcriptional landscape of cellular persistence in high-risk neuroblastoma and paves the way to the development of new therapeutic strategies to prevent disease relapse.

12.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026781

ABSTRACT

Background: In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell lines. Here, we extend the OpenPBTA to create the Open Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens). Findings: We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation array harmonization workflow to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules which can be leveraged both locally and on AWS. The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and queryable through PedcBioPortal and the NCI's pediatric Molecular Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation information to align with the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research- grade integrated diagnoses for these tumors. Conclusions: OpenPedCan data and its reproducible analysis module framework are openly available and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical translation.

13.
Sci Immunol ; 8(90): eadj5792, 2023 12.
Article in English | MEDLINE | ID: mdl-38039376

ABSTRACT

Peptide-centric chimeric antigen receptors (PC-CARs) recognize oncoprotein epitopes displayed by cell-surface human leukocyte antigens (HLAs) and offer a promising strategy for targeted cancer therapy. We have previously developed a PC-CAR targeting a neuroblastoma-associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes. Here, we determine the 2.1-angstrom crystal structure of the PC-CAR-PHOX2B-HLA-A*24:02-ß2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). This PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactive group, covering a combined global population frequency of up to 46.7%. Biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation, and CAR T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Peptides/chemistry , Epitopes , Antigens, Neoplasm
14.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292750

ABSTRACT

Peptide-Centric Chimeric Antigen Receptors (PC-CARs), which recognize oncoprotein epitopes displayed by human leukocyte antigens (HLAs) on the cell surface, offer a promising strategy for targeted cancer therapy 1 . We have previously developed a PC-CAR targeting a neuroblastoma- associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes 2 . Here, we determine the 2.1 Å structure of the PC-CAR:PHOX2B/HLA-A*24:02/ß2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). The PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactivity group, covering a combined American population frequency of up to 25.2%. Comprehensive characterization using biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation and CAR-T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.

15.
Cancer Res Commun ; 2(7): 616-623, 2022 07.
Article in English | MEDLINE | ID: mdl-36381237

ABSTRACT

Neuroblastomas have neuroendocrine features and often show similar gene expression patterns to small cell lung cancer including high expression of delta-like ligand 3 (DLL3). Here we determine the efficacy of rovalpituzumab tesirine (Rova-T), an antibody drug conjugated (ADC) with a pyrrolobenzodiazepine (PBD) dimer toxin targeting DLL3, in preclinical models of human neuroblastoma. We evaluated DLL3 expression in RNA sequencing data sets and performed immunohistochemistry (IHC) on neuroblastoma patient derived xenograft (PDX), human neuroblastoma primary tumor and normal childhood tissue microarrays (TMAs). We then evaluated the activity of Rova-T against 11 neuroblastoma PDX models using varying doses and schedules and compared anti-tumor activity to expression levels. DLL3 mRNA was differentially overexpressed in neuroblastoma at comparable levels to small cell lung cancer, as well as Wilms and rhabdoid tumors. DLL3 protein was robustly expressed across the neuroblastoma PDX array, but membranous staining was variable. The human neuroblastoma array, however, showed staining in only 44% of cases, whereas no significant staining was observed in the normal childhood tissue array. Rova-T showed a clear dose response effect across the 11 models tested, with a single dose inducing a complete or partial response in 3/11 and stable disease in another 3/11 models. No overt signs of toxicity were observed, and there was no treatment-related mortality. Strong membranous staining was necessary, but not sufficient, for anti-tumor activity. Rova-T has activity in a subset of neuroblastoma preclinical models, but heterogeneous expression in these models and the near absence of expression seen in human tumors suggests that any DLL3-targeting clinical trial should be only performed with a robust companion diagnostic to evaluate DLL3 expression for patient selection.


Subject(s)
Immunoconjugates , Lung Neoplasms , Neuroblastoma , Small Cell Lung Carcinoma , Humans , Child , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/drug therapy , Ligands , Immunoconjugates/pharmacology , Neuroblastoma/drug therapy , Membrane Proteins/genetics , Intracellular Signaling Peptides and Proteins
16.
Commun Biol ; 5(1): 1260, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396952

ABSTRACT

Astatine-211-parthanatine ([211At]PTT) is an alpha-emitting radiopharmaceutical therapeutic that targets poly(adenosine-diphosphate-ribose) polymerase 1 (PARP1) in cancer cells. High-risk neuroblastomas exhibit among the highest PARP1 expression across solid tumors. In this study, we evaluated the efficacy of [211At]PTT using 11 patient-derived xenograft (PDX) mouse models of high-risk neuroblastoma, and assessed hematological and marrow toxicity in a CB57/BL6 healthy mouse model. We observed broad efficacy in PDX models treated with [211At]PTT at the maximum tolerated dose (MTD 36 MBq/kg/fraction x4) administered as a fractionated regimen. For the MTD, complete tumor response was observed in 81.8% (18 of 22) of tumors and the median event free survival was 72 days with 30% (6/20) of mice showing no measurable tumor >95 days. Reversible hematological and marrow toxicity was observed 72 hours post-treatment at the MTD, however full recovery was evident by 4 weeks post-therapy. These data support clinical development of [211At]PTT for high-risk neuroblastoma.


Subject(s)
Neuroblastoma , Humans , Animals , Mice , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Disease Models, Animal
17.
Nat Commun ; 12(1): 7222, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893640

ABSTRACT

Multi-system Inflammatory Syndrome in Children (MIS-C) is a major complication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in pediatric patients. Weeks after an often mild or asymptomatic initial infection with SARS-CoV-2 children may present with a severe shock-like picture and marked inflammation. Children with MIS-C present with varying degrees of cardiovascular and hyperinflammatory symptoms. Here we perform a comprehensive analysis of the plasma proteome of more than 1400 proteins in children with SARS-CoV-2. We hypothesize that the proteome would reflect heterogeneity in hyperinflammation and vascular injury, and further identify pathogenic mediators of disease. We show that protein signatures demonstrate overlap between MIS-C, and the inflammatory syndromes macrophage activation syndrome (MAS) and thrombotic microangiopathy (TMA). We demonstrate that PLA2G2A is an important marker of MIS-C that associates with TMA. We find that IFNγ responses are dysregulated in MIS-C patients, and that IFNγ levels delineate clinical heterogeneity.


Subject(s)
COVID-19/complications , Endothelium, Vascular/physiopathology , Interferon-gamma/immunology , Proteome , Systemic Inflammatory Response Syndrome/pathology , Biomarkers , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Chemokine CXCL9 , Child , Group II Phospholipases A2 , Humans , Inflammation , Interleukin-10 , Proteomics , Systemic Inflammatory Response Syndrome/metabolism , Vascular Diseases
18.
Cell Rep Med ; 1(3): 100036, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32835302

ABSTRACT

Here we propose a SARS-CoV-2 vaccine design concept based on identification of highly conserved regions of the viral genome and newly acquired adaptations, both predicted to generate epitopes presented on major histocompatibility complex (MHC) class I and II across the vast majority of the population. We further prioritize genomic regions that generate highly dissimilar peptides from the human proteome and are also predicted to produce B cell epitopes. We propose sixty-five 33-mer peptide sequences, a subset of which can be tested using DNA or mRNA delivery strategies. These include peptides that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor and within a newly evolved furin cleavage site thought to increase membrane fusion. Validation and implementation of this vaccine concept could specifically target specific vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the population.

19.
bioRxiv ; 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32511347

ABSTRACT

Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.

20.
SSRN ; : 3575161, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32714112

ABSTRACT

Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.

SELECTION OF CITATIONS
SEARCH DETAIL