Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Theor Appl Genet ; 133(1): 23-36, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31595335

ABSTRACT

KEY MESSAGE: ß-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, ß-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while ß-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, ß-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase ß-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and ß-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.


Subject(s)
Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Polyploidy , Quantitative Trait Loci/genetics , Starch/metabolism , beta Carotene/metabolism , Alleles , Environment , Genetic Association Studies , Phenotype , Plant Roots/genetics , Plant Roots/growth & development , Quantitative Trait, Heritable
2.
Plant Biotechnol J ; 17(6): 1119-1129, 2019 06.
Article in English | MEDLINE | ID: mdl-30467980

ABSTRACT

Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by Phytophthora infestans, remains the most devastating disease of potato (Solanum tuberosum L.) with about 15%-30% annual yield loss in sub-Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (R) genes from wild relatives [RB, Rpi-blb2 from Solanum bulbocastanum and Rpi-vnt1.1 from S. venturii] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three R genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3R-gene stack from the potato varieties 'Desiree' and 'Victoria' grew normally without showing pathogen damage and without any fungicide spray, whereas their non-transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long-lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from 'Desiree' and 'Victoria' grown without fungicide to reflect small-scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four-fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers' preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub-Saharan Africa.


Subject(s)
Disease Resistance , Phytophthora infestans , Plants, Genetically Modified , Solanum tuberosum , Cloning, Molecular , Disease Resistance/genetics , Phytophthora infestans/physiology , Plant Diseases/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Solanum tuberosum/genetics , Solanum tuberosum/microbiology
3.
Theor Appl Genet ; 131(9): 1925-1938, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29855674

ABSTRACT

KEY MESSAGE: We have elucidated the Andigena origin of the potato Ryadg gene on chromosome XI of CIP breeding lines and developed two marker assays to facilitate its introgression in potato by marker-assisted selection. Potato virus Y (PVY) is causing yield and quality losses forcing farmers to renew periodically their seeds from clean stocks. Two loci for extreme resistance to PVY, one on chromosome XI and the other on XII, have been identified and used in breeding. The latter corresponds to a well-known source of resistance (Solanum stoloniferum), whereas the one on chromosome XI was reported from S. stoloniferum and S. tuberosum group Andigena as well. To elucidate its taxonomic origin in our breeding lines, we analyzed the nucleotide sequences of tightly linked markers (M45, M6) and screened 251 landraces of S. tuberosum group Andigena for the presence of this gene. Our results indicate that the PVY resistance allele on chromosome XI in our breeding lines originated from S. tuberosum group Andigena. We have developed two marker assays to accelerate the introgression of Ryadg gene into breeding lines by marker-assisted selection (MAS). First, we have multiplexed RYSC3, M6 and M45 DNA markers flanking the Ryadg gene and validated it on potato varieties with known presence/absence of the Ryadg gene and a progeny of 6,521 individuals. Secondly, we developed an allele-dosage assay particularly useful to identify multiplex Ryadg progenitors. The assay based on high-resolution melting analysis at the M6 marker confirmed Ryadg plex level as nulliplex, simplex and duplex progenitors and few triplex progenies. These marker assays have been validated and can be used to facilitate MAS in potato breeding.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Potyvirus , Solanum tuberosum/genetics , Alleles , Base Sequence , Chromosomes, Plant , DNA, Plant/genetics , Gene Dosage , Genetic Loci , Genetic Markers , Plant Breeding , Plant Diseases/virology , Selection, Genetic , Solanum tuberosum/virology
4.
Proc Natl Acad Sci U S A ; 112(18): 5844-9, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25902487

ABSTRACT

Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world's arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp. were discovered. Simple and quantitative PCR, Southern blotting, genome walking, and bacterial artificial chromosome library screening and sequencing unambiguously demonstrated that two different T-DNA regions (IbT-DNA1 and IbT-DNA2) are present in the cultivated sweet potato (Ipomoea batatas [L.] Lam.) genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant. IbT-DNA1 was found to contain four open reading frames (ORFs) homologous to the tryptophan-2-monooxygenase (iaaM), indole-3-acetamide hydrolase (iaaH), C-protein (C-prot), and agrocinopine synthase (Acs) genes of Agrobacterium spp. IbT-DNA1 was detected in all 291 cultigens examined, but not in close wild relatives. IbT-DNA2 contained at least five ORFs with significant homology to the ORF14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n genes of A. rhizogenes. IbT-DNA2 was detected in 45 of 217 genotypes that included both cultivated and wild species. Our finding, that sweet potato is naturally transgenic while being a widely and traditionally consumed food crop, could affect the current consumer distrust of the safety of transgenic food crops.


Subject(s)
Agrobacterium/genetics , Genome, Plant , Ipomoea batatas/genetics , Plants, Genetically Modified , DNA, Bacterial/genetics , DNA, Plant/genetics , Food Safety , Gene Transfer, Horizontal , Open Reading Frames , Phylogeny , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Plant Stems/metabolism , RNA, Small Interfering/genetics , Sequence Analysis, DNA
5.
Transgenic Res ; 25(6): 813-828, 2016 12.
Article in English | MEDLINE | ID: mdl-27544267

ABSTRACT

An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.


Subject(s)
Inverted Repeat Sequences/genetics , Plants, Genetically Modified/genetics , Solanum tuberosum/genetics , Viral Envelope Proteins/genetics , DNA, Bacterial/genetics , Genetic Vectors/genetics , Integrases/genetics , Luteoviridae/genetics , Luteoviridae/pathogenicity , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/virology , RNA Interference , Solanum tuberosum/growth & development , Solanum tuberosum/virology
6.
Appl Environ Microbiol ; 80(24): 7545-50, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25261517

ABSTRACT

Bacillus thuringiensis Cry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genus Cylas, which are important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites in Cylas puncticollis to orient the pest resistance strategy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymotrypsin rendered two fragments of about 70 kDa and 65 kDa. N-terminal sequencing of the trypsin-activated Cry7Aa fragments revealed that processing occurs at Glu(47) for the 70-kDa form or Ile(88) for the 65-kDa form. Homologous binding assays showed specific binding of the two Cry3 proteins and the 65-kDa Cry7Aa fragment to brush border membrane vesicles (BBMV) from C. puncticollis larvae. The 70-kDa fragment did not bind to BBMV. Heterologous-competition assays showed that Cry3Bb, Cry3Ca, and Cry7Aa (65-kDa fragment) competed for the same binding sites. Hence, our results suggest that pest resistance mediated by the alteration of a shared Cry receptor binding site might render all three Cry toxins ineffective.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Coleoptera/microbiology , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Ipomoea batatas/parasitology , Plant Diseases/parasitology , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Coleoptera/chemistry , Coleoptera/growth & development , Endotoxins/chemistry , Endotoxins/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Larva/chemistry , Larva/growth & development , Larva/microbiology
7.
Front Plant Sci ; 14: 1156665, 2023.
Article in English | MEDLINE | ID: mdl-37502707

ABSTRACT

The commercialization of GE crops requires a rigorous safety assessment, which includes a precise DNA level characterization of inserted T-DNA. In the past, several strategies have been developed for identifying T-DNA insertion sites including, Southern blot and different PCR-based methods. However, these methods are often challenging to scale up for screening of dozens of transgenic events and for crops with complex genomes, like potato. Here, we report using target capture sequencing (TCS) to characterize the T-DNA structure and insertion sites of 34 transgenic events in potato. This T-DNA is an 18 kb fragment between left and right borders and carries three resistance (R) genes (RB, Rpi-blb2 and Rpi-vnt1.1 genes) that result in complete resistance to late blight disease. Using TCS, we obtained a high sequence read coverage within the T-DNA and junction regions. We identified the T-DNA breakpoints on either ends for 85% of the transgenic events. About 74% of the transgenic events had their T-DNA with 3R gene sequences intact. The flanking sequences of the T-DNA were from the potato genome for half of the transgenic events, and about a third (11) of the transgenic events have a single T-DNA insertion mapped into the potato genome, of which five events do not interrupt an existing potato gene. The TCS results were confirmed using PCR and Sanger sequencing for 6 of the best transgenic events representing 20% of the transgenic events suitable for regulatory approval. These results demonstrate the wide applicability of TCS for the precise T-DNA insertion characterization in transgenic crops.

8.
GM Crops Food ; 13(1): 290-298, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36263889

ABSTRACT

Late blight, caused by Phytophthora infestans, is the most devastating disease in potato production. Here, we show full late blight resistance in a location with a genetically diverse pathogen population with the use of GM potato stacked with three resistance (R) genes over three seasons. In addition, using this field trials, we demonstrate that in-the-field intervention among consumers led to change for more favorable attitude generally toward GM crops.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genetics , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Phytophthora infestans/genetics , Attitude
9.
Biology (Basel) ; 10(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34681051

ABSTRACT

Transgenic potato event Vic.172, expressing three naturally occurring resistance genes (R genes) conferring complete protection against late blight disease, was evaluated for resistance to late blight, phenotypic characterization, and agronomic performance in field conditions at three locations during three seasons in Uganda. These trials were conducted by comparison to the variety Victoria from which Vic.172 derives, using identical fungicide treatment, except when evaluating disease resistance. During all seasons, the transgenic event Vic.172 was confirmed to have complete resistance to late blight disease, whereas Victoria plants were completely dead by 60-80 days after planting. Tubers from Vic.172 were completely resistant to LB after artificial inoculation. The phenotypic characterization included observations of the characteristics and development of the stems, leaves, flowers, and tubers. Differences in phenotypic parameters between Vic.172 and Victoria were not statistically significant across locations and seasons. The agronomic performance observations covered sprouting, emergence, vigor, foliage growth, and yield. Differences in agronomic performance were not statistically significant except for marketable yield in one location under high productivity conditions. However, yield variation across locations and seasons was not statistically significant, but was influenced by the environment. Hence, the results of the comparative assessment of the phenotype and agronomic performance revealed that transgenic event Vic.172 did not present biologically significant differences in comparison to the variety Victoria it derives from.

10.
Theor Appl Genet ; 121(6): 1187-98, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20734187

ABSTRACT

Solanum section Petota is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. Using DNA sequence data of the waxy gene, we here infer relationships among the four species of cultivated potatoes accepted in the latest taxonomic treatment (S. ajanhuiri, S. curtilobum, S. juzepczukii and S. tuberosum, the latter divided into the Andigenum and Chilotanum Cultivar Groups). The data support prior ideas of hybrid origins of S. ajanhuiri from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. megistacrolobum; S. juzepczukii from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. acaule; and S. curtilobum from the S. tuberosum Andigenum Group (4x = S. tuberosum subsp. andigenum) × S. juzepczukii. For the tetraploid cultivar-groups of S. tuberosum, hybrid origins are suggested entirely within much more closely related species, except for two of three examined accessions of the S. tuberosum Chilotanum Group that appear to have hybridized with the wild species S. maglia. Hybrid origins of the crop/weed species S. sucrense are more difficult to support and S. vernei is not supported as a wild species progenitor of the S. tuberosum Andigenum Group.


Subject(s)
Chimera , Solanum tuberosum/classification , Solanum tuberosum/genetics , Base Sequence , Bayes Theorem , Crops, Agricultural/genetics , Diploidy , Genes, Plant , Hybridization, Genetic , Markov Chains , Monte Carlo Method , Phylogeny , Polyploidy , Species Specificity , Tetraploidy
11.
Proc Natl Acad Sci U S A ; 104(49): 19398-403, 2007 Dec 04.
Article in English | MEDLINE | ID: mdl-18042704

ABSTRACT

Contrasting taxonomic treatments of potato landraces have continued over the last century, with the recognition of anywhere from 1 to 21 distinct Linnean species, or of Cultivar Groups within the single species Solanum tuberosum. We provide one of the largest molecular marker studies of any crop landraces to date, to include an extensive study of 742 landraces of all cultivated species (or Cultivar Groups) and 8 closely related wild species progenitors, with 50 nuclear simple sequence repeat (SSR) (also known as microsatellite) primer pairs and a plastid DNA deletion marker that distinguishes most lowland Chilean from upland Andean landraces. Neighbor-joining results highlight a tendency to separate three groups: (i) putative diploids, (ii) putative tetraploids, and (iii) the hybrid cultivated species S. ajanhuiri (diploid), S. juzepczukii (triploid), and S. curtilobum (pentaploid). However, there are many exceptions to grouping by ploidy. Strong statistical support occurs only for S. ajanhuiri, S. juzepczukii, and S. curtilobum. In combination with recent morphological analyses and an examination of the identification history of these collections, we support the reclassification of the cultivated potatoes into four species: (i) S. tuberosum, with two Cultivar Groups (Andigenum Group of upland Andean genotypes containing diploids, triploids, and tetraploids, and the Chilotanum Group of lowland tetraploid Chilean landraces); (ii) S. ajanhuiri (diploid); (iii) S. juzepczukii (triploid); and (iv) S. curtilobum (pentaploid). For other classifications, consistent and stable identifications are impossible, and their classification as species is artificial and only maintains the confusion of users of the gene banks and literature.


Subject(s)
Genes, Plant , Microsatellite Repeats/genetics , Solanum tuberosum/classification , Base Sequence , Genetic Markers , Genotype , Phylogeny , Plastids/genetics , Sequence Analysis, DNA , Solanum tuberosum/genetics
12.
J Econ Entomol ; 103(4): 1493-502, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20857765

ABSTRACT

"Sweetpotato weevils" Cylas puncticollis (Boheman) and Cylas brunneus F. (Coleoptera: Brentidae) are the most important biological threat to sweetpotato, Ipomoea batatas L. (Lam), productivity in sub-Saharan Africa. Sweetpotato weevil control is difficult due to their cryptic feeding behavior. Expression of Cylas-active Bacillus thuringiensis (Bt) Cry proteins in sweetpotato could provide an effective control strategy. Unfortunately, Bt Cry proteins with relatively high toxicity against Cylas spp. have not been identified, partly because no published methodology for screening Bt Cry proteins against Cylas spp. in artificial diet exists. Therefore, the initial aim of this study was to develop an artificial diet for conducting bioassays with Cylas spp. and then to determine Bt Cry protein efficacy against C. puncticollis and C. brunneus by using this artificial diet. Five diets varying in their composition were evaluated. The highest survival rates for sweetpotato weevil larvae were observed for diet E that contained the highest amount of sweetpotato powder and supported weevil development from first instar to adulthood, similar to sweetpotato storage roots. Seven coleopteran-active Bt Cry proteins were incorporated into diet E and toxicity data were generated against neonate C. puncticollis and second-instar C. brunneus. All Bt Cry proteins tested had toxicity greater than the untreated control. Cry7Aa1, ET33/34, and Cry3Ca1 had LC50 values below 1 microg/g diet against both species. This study demonstrates the feasibility of using an artificial diet bioassay for screening Bt Cry proteins against sweetpotato weevil larvae and identifies candidate Bt Cry proteins for use in transforming sweetpotato varieties potentially conferring field resistance against these pests.


Subject(s)
Bacterial Proteins/classification , Bacterial Proteins/pharmacology , Coleoptera/drug effects , Endotoxins/classification , Endotoxins/pharmacology , Hemolysin Proteins/classification , Hemolysin Proteins/pharmacology , Insecticides/pharmacology , Animals , Bacillus thuringiensis Toxins , Diet , Insecticides/classification
13.
Theor Appl Genet ; 118(5): 963-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19132333

ABSTRACT

Neo-Tuberosum refers to cultivated potato adapted to long-day tuberization and a syndrome of related morphological and physiological traits, developed by intercrossing and selection of short-day adapted potatoes of the Solanum tuberosum Andigenum Group, native from the Andes of western Venezuela to northern Argentina. This re-creation of the modern potato helped support the theory of an Andigenum Group origin of potato in temperate regions and the possibility to access the largely untapped diversity of the Andigenum Group germplasm by base broadening breeding. This Neo-Tuberosum derived theory, the re-creation of the modern potato from Andigenum germplasm, has been universally accepted for almost 40 years, and has had tremendous impact in planning some breeding programs and supporting phylogenetic conclusions in cultivated potato. We show, with microsatellite (simple sequence repeat, SSR) and plastid DNA marker data, that Neo-Tuberosum germplasm is closely related to Chilotanum Group landraces from lowland south-central Chile rather than to Andigenum Group germplasm. We interpret this quite unexpected result to be caused by strong rapid selection against the original Andigenum clones after unintended hybridization with Chilotanum Group germplasm. In addition, we show that Neo-Tuberosum and Andigenum Group germplasm did not serve to broaden the overall genetic diversity of advanced potato varieties, but rather that Neo-Tuberosum lines and lines not using this germplasm are statistically identical with regard to genetic diversity as assessed by SSRs. These results question the long-standing Neo-Tuberosum derived theory and have implications in breeding programs and phylogenetic reconstructions of potato.


Subject(s)
Genetic Markers , Microsatellite Repeats/genetics , Plastids/genetics , Sequence Analysis, DNA , Solanum tuberosum , Crops, Agricultural/genetics , Evolution, Molecular , Genetic Variation , Genotype , Hybridization, Genetic , Phylogeny , Plant Diseases , Solanum tuberosum/classification , Solanum tuberosum/genetics
14.
Nat Commun ; 9(1): 4580, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389915

ABSTRACT

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


Subject(s)
Diploidy , Genome, Plant , Ipomoea batatas/genetics , Plant Breeding , Base Sequence , Carotenoids/metabolism , Ecotype , Genetic Variation , Genomics , Molecular Sequence Annotation , Multigene Family , Phylogeny , Polyploidy , Repetitive Sequences, Nucleic Acid/genetics
15.
J Agric Food Chem ; 55(2): 366-78, 2007 Jan 24.
Article in English | MEDLINE | ID: mdl-17227067

ABSTRACT

Potato tubers were evaluated as a source of antioxidants and minerals for the human diet. A genetically diverse sample of Solanum tuberosum L. cultivars native to the Andes of South America was obtained from a collection of nearly 1000 genotypes using microsatellite markers. This size-manageable collection of 74 landraces, representing at best the genetic diversity among potato germplasm, was analyzed for iron, zinc, calcium, total phenolic, total carotenoid, and total vitamin C contents. The hydrophilic antioxidant capacity of each genotype was also measured using the oxygen radical absorbance capacity (ORAC) assay. The iron content ranged from 29.87 to 157.96 microg g-1 of dry weight (DW), the zinc content from 12.6 to 28.83 microg g-1 of DW, and the calcium content from 271.09 to 1092.93 microg g-1 of DW. Total phenolic content varied between 1.12 and 12.37 mg of gallic acid equiv g-1 of DW, total carotenoid content between 2.83 and 36.21 microg g-1 of DW, and total vitamin C content between 217.70 and 689.47 microg g-1 of DW. The range of hydrophilic ORAC values was 28.25-250.67 micromol of Trolox equiv g-1 of DW. The hydrophilic antioxidant capacity and the total phenolic content were highly and positively correlated (r = 0.91). A strong relationship between iron and calcium contents was also found (r = 0.67). Principal component analysis on the studied nutritional contents of the core collection revealed that most potato genotypes were balanced in terms of antioxidant and mineral contents, but some of them could be distinguished by their high level in distinct micronutrients. Correlations between the micronutrient contents observed in the sample and the genetic distances assessed by microsatellites were weakly significant. However, this study demonstrated the wide variability of health-promoting micronutrient levels within the native potato germplasm as well as the significant contribution that distinct potato tubers may impart to the intake in dietary antioxidants, zinc, and iron.


Subject(s)
Antioxidants/analysis , Minerals/analysis , Plant Tubers/chemistry , Solanum tuberosum/chemistry , Ascorbic Acid/analysis , Diet , Genotype , Peru , Phenols/analysis , Solanum tuberosum/classification , Solanum tuberosum/genetics
16.
J Plant Physiol ; 164(8): 1071-82, 2007 Aug.
Article in English | MEDLINE | ID: mdl-16919367

ABSTRACT

In this study, we report the isolation of a defensin gene, lm-def, isolated from the Andean crop 'maca' (Lepidium meyenii) with activity against the pathogen Phytophthora infestans responsible of late blight disease of the potato and tomato crops. The lm-def gene has been isolated by polymerase chain reaction (PCR) using degenerate primers corresponding to conserved regions of 13 plant defensin genes of the Brassicaceae family assuming that defensin genes are highly conserved among cruciferous species. The lm-def gene belongs to a small multigene family of at least 10 members possibly including pseudogenes as assessed by genomic hybridization and nucleotide sequence analyses. The deduced mature Lm-Def peptide is 51 amino acids in length and has 74-94% sequence identity with other plant defensins of the Brassicaceae family. The Lm-Def peptide was produced as a fusion protein using the pET-44a expression vector and purified using an immobilized metal ion affinity chromatography. The recombinant protein (NusA:Lm-Def) exhibited in vitro activity against P. infestans. The NusA:Lm-Def protein caused growth inhibition and hyphal damage at concentration not greater than 0.4 microM. In contrast, the NusA protein alone expressed and purified similarly did not show any activity against P. infestans. Therefore, these results indicate that the lm-def gene isolated from maca belong to the plant defensin family with activity against P. infestans. Its expression in potato, as a transgene, might help to control the late blight disease caused by P. infestans with the advantage of being of plant origin.


Subject(s)
Defensins/genetics , Lepidium/genetics , Phytophthora/pathogenicity , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Conserved Sequence , DNA Primers , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Data , Plant Leaves/genetics , Reverse Transcriptase Polymerase Chain Reaction
17.
Pest Manag Sci ; 73(1): 44-52, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27299308

ABSTRACT

BACKGROUND: RNA interference (RNAi) technology can potentially serve as a suitable strategy to control the African sweet potato weevil Cylas puncticollis (SPW), which is a critical pest in sub-Saharan Africa. Important prerequisites are required to use RNAi in pest control, such as the presence of an efficient RNAi response and the identification of suitable target genes. RESULTS: Here we evaluated the toxicity of dsRNAs targeting essential genes by injection and oral feeding in SPW. In injection assays, 12 of 24 dsRNAs were as toxic as the one targeting Snf7, a gene used commercially against Diabrotica virgifera virgifera. Three dsRNAs with high insecticidal activity were then chosen for oral feeding experiments. The data confirmed that oral delivery can elicit a significant toxicity, albeit lower compared with injection. Subsequently, ex vivo assays revealed that dsRNA is affected by degradation in the SPW digestive system, possibly explaining the lower RNAi effect by oral ingestion. CONCLUSION: We conclude that the full potential of RNAi in SPW is affected by the presence of nucleases. Therefore, for future application in crop protection, it is necessary constantly to provide new dsRNA and/or protect it against possible degradation in order to obtain a higher RNAi efficacy. © 2016 Society of Chemical Industry.


Subject(s)
Pest Control, Biological/methods , RNA Interference , Weevils , Animals , Ipomoea batatas , RNA, Double-Stranded
18.
Sci Rep ; 6: 38836, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27941836

ABSTRACT

The African sweetpotato weevil Cylas brunneus is one of the most devastating pests affecting the production of sweetpotatoes, an important staple food in Sub-Saharan Africa. Current available control methods against this coleopteran pest are limited. In this study, we analyzed the potential of RNA interference as a novel crop protection strategy against this insect pest. First, the C. brunneus transcriptome was sequenced and RNAi functionality was confirmed by successfully silencing the laccase2 gene. Next, 24 potential target genes were chosen, based on their critical role in vital biological processes. A first screening via injection of gene-specific dsRNAs showed that the dsRNAs were highly toxic for C. brunneus. Injected doses of 200ng/mg body weight led to mortality rates of 90% or higher for 14 of the 24 tested genes after 14 days. The three best performing dsRNAs, targeting prosα2, rps13 and the homolog of Diabrotica virgifera snf7, were then used in further feeding trials to investigate RNAi by oral delivery. Different concentrations of dsRNAs mixed with artificial diet were tested and concentrations as low as 1 µg dsRNA/ mL diet led to significant mortality rates higher than 50%.These results proved that dsRNAs targeting essential genes show great potential to control C. brunneus.


Subject(s)
Pest Control, Biological/methods , RNA Interference , RNA, Double-Stranded/toxicity , Weevils/drug effects , Administration, Oral , Animals , Biological Control Agents , Insect Control/methods , Insect Proteins/antagonists & inhibitors , Insect Proteins/genetics , Insect Proteins/metabolism , Laccase/antagonists & inhibitors , Laccase/genetics , Larva , Lethal Dose 50 , Microinjections , Phenotype , RNA, Double-Stranded/administration & dosage , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology , RNA, Small Interfering/genetics , Transcriptome , Weevils/enzymology , Weevils/genetics , Weevils/growth & development
19.
J Agric Food Chem ; 63(1): 335-42, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25418792

ABSTRACT

Furanoterpenoid accumulation in response to microbial attack in rotting sweetpotatoes has long been linked to deaths and lung edema of cattle in the world. However, it is not known whether furanoterpenoid ipomeamarone accumulates in the healthy-looking parts of infected sweetpotato storage roots. This is critical for effective utilization as animal feed and assessment of the potential negative impact on human health. Therefore, we first identified the fungus from infected sweetpotatoes as a Rhizopus stolonifer strain and then used it to infect healthy sweetpotato storage roots for characterization of furanoterpenoid content. Ipomeamarone and its precursor, dehydroipomeamarone, were identified through spectroscopic analyses, and detected in all samples and controls at varying concentrations. Ipomeamarone concentration was at toxic levels in healthy-looking parts of some samples. Our study provides fundamental information on furanoterpenoids in relation to high levels reported that could subsequently affect cattle on consumption and high ipomeamarone levels in healthy-looking parts.


Subject(s)
Animal Feed/analysis , Food Contamination/analysis , Ipomoea batatas/chemistry , Ipomoea batatas/microbiology , Plant Diseases/microbiology , Rhizopus/physiology , Sesquiterpenes/analysis , Animal Feed/microbiology , Animals , Cattle , Humans , Ipomoea batatas/metabolism , Plant Tubers/chemistry , Plant Tubers/microbiology , Sesquiterpenes/metabolism , Sesquiterpenes/toxicity
20.
PLoS One ; 10(1): e0115336, 2015.
Article in English | MEDLINE | ID: mdl-25590333

ABSTRACT

The African sweetpotato weevil (SPW) Cylas puncticollis Boheman is one of the most important constraints of sweetpotato production in Sub-Saharan Africa and yet is largely an uncharacterized insect pest. Here, we report on the transcriptome analysis of SPW generated using an Illumina platform. More than 213 million sequencing reads were obtained and assembled into 89,599 contigs. This assembly was followed by a gene ontology annotation. Subsequently, a transcriptome search showed that the necessary RNAi components relevant to the three major RNAi pathways, were found to be expressed in SPW. To address the functionality of the RNAi mechanism in this species, dsRNA was injected into second instar larvae targeting laccase2, a gene which encodes an enzyme involved in the sclerotization of insect exoskeleton. The body of treated insects showed inhibition of sclerotization, leading eventually to death. Quantitative Real Time PCR (qPCR) confirmed this phenotype to be the result of gene silencing. Together, our results provide valuable sequence data on this important insect pest and demonstrate that a functional RNAi pathway with a strong and systemic effect is present in SPW and can further be explored as a new strategy for controlling this important pest.


Subject(s)
Insect Control/methods , Pest Control, Biological/methods , RNA Interference , Weevils/genetics , Animal Shells , Animals , Gene Expression Profiling , Insect Proteins/genetics , Ipomoea batatas
SELECTION OF CITATIONS
SEARCH DETAIL