Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Antimicrob Agents Chemother ; 60(10): 5986-94, 2016 10.
Article in English | MEDLINE | ID: mdl-27458210

ABSTRACT

Fusidic acid (FA), which was approved in the 1960s in many European and Asian countries, has gained renewed interest due to its continued effectiveness against methicillin-resistant Staphylococcus aureus As rhabdomyolysis has been reported upon coadministration of FA with statins, we aimed to elucidate the underlying molecular mechanisms that contribute to FA-statin drug-drug interactions. Because of the association between rhabdomyolysis and increased exposure to statins, we investigated if cytochrome P450 (CYP) enzymes and transporters involved in the disposition of various statins are inhibited by FA. FA was found to inhibit BCRP and OATP1B1 but not P-gp. In overexpressing cell systems, FA inhibited BCRP-mediated efflux (50% inhibitory concentration [IC50], ∼50 to 110 µM) and OATP1B1-mediated uptake (IC50, ∼4 to 35 µM) of statins at clinically relevant concentrations achievable in the intestine and liver (based on a 550-mg oral dose of FA, the expected maximum theoretical gastrointestinal concentration is ∼4 mM, and the maximum total or unbound concentration in the inlet to the liver was reported to be up to 223 µM or 11 µM, respectively, upon multiple dosing). Similarly, FA inhibited metabolism of statins in human liver microsomes (IC50, ∼17 to 195 µM). These data suggest that FA inhibits at least 3 major dispositional pathways (BCRP, OATP1B1, and CYP3A) and thus affects the clearance of several statins. We confirmed that FA is eliminated via phase 1 metabolism (primarily via CYP3A); however, there is also some phase 2 metabolism (mediated primarily by UGT1A1). Taken together, these data provide evidence for molecular mechanisms that may explain the occurrence of rhabdomyolysis when FA is administered with statins.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Fusidic Acid/pharmacology , Hepatocytes/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Microsomes, Liver/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Dogs , Drug Combinations , Drug Interactions , Gene Expression , HEK293 Cells , Hepatocytes/metabolism , Humans , Inactivation, Metabolic/drug effects , Inhibitory Concentration 50 , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Madin Darby Canine Kidney Cells , Microsomes, Liver/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Primary Cell Culture
2.
J Antimicrob Chemother ; 70(9): 2618-26, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26024868

ABSTRACT

OBJECTIVES: The combination of aztreonam/avibactam has promising activity against MDR Gram-negative pathogens producing metallo-ß-lactamases (MBLs), such as New Delhi MBL-1. Pharmacokinetic (PK)/pharmacodynamic (PD) understanding of this combination is critical for optimal clinical dose selection. This study focuses on the determination of an integrated PK/PD approach for aztreonam/avibactam across multiple clinical Enterobacteriaceae strains. METHODS: Six clinical Enterobacteriaceae isolates expressing MBLs and ESBLs were studied in an in vitro hollow-fibre infection model (HFIM) using various dosing regimens simulating human-like PK for aztreonam/avibactam. The neutropenic murine thigh infection model was used for in vivo validation against two bacterial strains. RESULTS: MIC values of aztreonam/avibactam for the isolates ranged from 0.125 to 8 mg/L. Using a constant infusion of avibactam at 4 mg/L, the aztreonam PK/PD index was observed as % fT >MIC. Studies performed in the presence of a fixed dose of aztreonam revealed that the efficacy of avibactam correlates best with percentage of time above a critical threshold concentration of 2-2.5 mg/L. These conclusions translated well to the efficacy observed in the murine thigh model, demonstrating in vivo validation of the in vitro PK/PD target. CONCLUSIONS: PK/PD evaluations for aztreonam/avibactam in HFIM yielded a single target across strains with a wide MIC range. This integrated approach could be easily applied for forecasting clinically efficacious doses for ß-lactam/ß-lactamase inhibitor combinations.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/pharmacokinetics , Aztreonam/administration & dosage , Aztreonam/pharmacokinetics , Enterobacteriaceae Infections/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Aztreonam/pharmacology , Disease Models, Animal , Enterobacteriaceae/drug effects , Female , Mice , Microbial Sensitivity Tests , Models, Biological , Treatment Outcome , beta-Lactamase Inhibitors/administration & dosage , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/administration & dosage , beta-Lactams/pharmacokinetics , beta-Lactams/pharmacology
3.
Drug Metab Dispos ; 42(7): 1163-73, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24737844

ABSTRACT

Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Designation of metabolism by CYP3A commonly refers to the potential contribution by one or both of two enzymes, CYP3A4 and CYP3A5. The metabolic turnover of 32 drugs known to be largely metabolized by CYP3A was examined in human liver microsomes (HLMs) from CYP3A5 expressers (*1/*1 genotype) and nonexpressers (*3/*3 genotype) in the presence and absence of ketoconazole and CYP3cide (a selective CYP3A4 inactivator) to calculate the contribution of CYP3A5 to metabolism. Drugs with the highest contribution of CYP3A5 included atazanavir, vincristine, midazolam, vardenafil, otenabant, verapamil, and tacrolimus, whereas 17 of the 32 tested showed negligible CYP3A5 contribution. For specific reactions in HLMs from *1/*1 donors, CYP3A5 contributes 55% and 44% to midazolam 1'- and 4-hydroxylation, 16% to testosterone 6ß-hydroxylation, 56% and 19% to alprazolam 1'- and 4-hydroxylation, 10% to tamoxifen N-demethylation, and 58% to atazanavir p-hydroxylation. Comparison of the in vitro observations to clinical pharmacokinetic data showed only a weak relationship between estimated contribution by CYP3A5 and impact of CYP3A5 genotype on oral clearance, in large part because of the scatter in clinical data and the low numbers of study subjects used in CYP3A5 pharmacogenetics studies. These data should be useful in guiding which drugs should be evaluated for differences in pharmacokinetics and metabolism between subjects expressing CYP3A5 and those who do not express this enzyme.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Microsomes, Liver/enzymology , Catalysis , Cytochrome P-450 CYP3A/drug effects , Humans , In Vitro Techniques
4.
Drug Metab Dispos ; 42(10): 1656-62, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25063672

ABSTRACT

The clinical development of fedratinib, a Janus kinase (JAK2) inhibitor, was terminated after reports of Wernicke's encephalopathy in myelofibrosis patients. Since Wernicke's encephalopathy is induced by thiamine deficiency, investigations were conducted to probe possible mechanisms through which fedratinib may lead to a thiamine-deficient state. In vitro studies indicate that fedratinib potently inhibits the carrier-mediated uptake and transcellular flux of thiamine in Caco-2 cells, suggesting that oral absorption of dietary thiamine is significantly compromised by fedratinib dosing. Transport studies with recombinant human thiamine transporters identified the individual human thiamine transporter (hTHTR2) that is inhibited by fedratinib. Inhibition of thiamine uptake appears unique to fedratinib and is not shared by marketed JAK inhibitors, and this observation is consistent with the known structure-activity relationship for the binding of thiamine to its transporters. The results from these studies provide a molecular basis for the development of Wernicke's encephalopathy upon fedratinib treatment and highlight the need to evaluate interactions of investigational drugs with nutrient transporters in addition to classic xenobiotic transporters.


Subject(s)
Membrane Transport Proteins/drug effects , Pyrrolidines/adverse effects , Sulfonamides/adverse effects , Thiamine Deficiency/chemically induced , Thiamine/metabolism , Wernicke Encephalopathy/etiology , Wernicke Encephalopathy/metabolism , Animals , Biological Transport, Active/drug effects , Brain/metabolism , Humans , Janus Kinase 2/antagonists & inhibitors , Male , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Pyrrolidines/blood , Pyrrolidines/pharmacokinetics , Rats , Sulfonamides/blood , Sulfonamides/pharmacokinetics
5.
ACS Med Chem Lett ; 14(3): 312-318, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36923909

ABSTRACT

Fibroblast growth factor receptors (FGFRs) are transmembrane receptor tyrosine kinases that regulate multiple physiological processes. Aberrant activation of FGFR2 and FGFR3 has been linked to the pathogenesis of many tumor types, including cholangiocarcinoma and bladder cancer. Current therapies targeting the FGFR2/3 pathway exploiting small-molecule kinase inhibitors are associated with adverse events due to undesirable inhibition of FGFR1 and FGFR4. Isoform-specific FGFR2 and FGFR3 inhibitors that spare FGFR1 and FGFR4 could offer a favorable toxicity profile and improved therapeutic window to current treatments. Herein we disclose the discovery of dual FGFR2/FGFR3 inhibitors exploiting scaffold repurposing of a previously reported ALK2 tool compound. Structure-based drug design and structure-activity relationship studies were employed to identify selective and orally bioavailable inhibitors with equipotent activity toward wild-type kinases and a clinically observed gatekeeper mutant.

6.
J Med Chem ; 65(22): 15433-15442, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36356320

ABSTRACT

Upregulation of the fibroblast growth factor receptor (FGFR) signaling pathway has been implicated in multiple cancer types, including cholangiocarcinoma and bladder cancer. Consequently, small molecule inhibition of FGFR has emerged as a promising therapy for patients suffering from these diseases. First-generation pan-FGFR inhibitors, while highly effective, suffer from several drawbacks. These include treatment-related hyperphosphatemia and significant loss of potency for the mutant kinases. Herein, we present the discovery and optimization of novel FGFR2/3 inhibitors that largely maintain potency for the common gatekeeper mutants and have excellent selectivity over FGFR1. A combination of meticulous structure-activity relationship (SAR) analysis, structure-based drug design, and medicinal chemistry rationale ultimately led to compound 29, a potent and selective FGFR2/3 inhibitor with excellent in vitro absorption, distribution, metabolism, excretion (ADME), and pharmacokinetics in rat. A pharmacodynamic study of a closely related compound established that maximum inhibition of downstream ERK phosphorylation could be achieved with no significant effect on serum phosphate levels relative to vehicle.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Receptors, Fibroblast Growth Factor , Animals , Rats , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Signal Transduction , Structure-Activity Relationship , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/drug effects
7.
Drug Metab Dispos ; 38(7): 1015-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20382755

ABSTRACT

Dog CYP2A13 and CYP2A25 were coexpressed with dog NADPH-cytochrome P450 reductase (OR) in baculovirus-infected Sf9 insect cells. CYP2A13 effectively catalyzed 7-ethoxycoumarin (7EC) deethylation and coumarin hydroxylation with apparent K(m) values of 4.8 and 2.1 microM, respectively, similar to those observed using dog liver microsomes (7.5 and 0.75 microM, respectively). CYP2A25 exhibited much lower affinity toward 7EC, with an apparent K(m) value of 150 microM, which indicates that CYP2A13 plays a more significant role in the metabolism of these CYP2A substrates. Similar to the dog CYP1A2 enzyme, CYP2A13 efficiently catalyzed phenacetin deethylation with a K(m) value of 3.9 microM, which suggests that phenacetin is not a selective probe for dog CYP1A2 activity. Both dog CYP2A13 and CYP2A25 exhibited little or no catalytic activity toward other common cytochrome P450 probe substrates, including bupropion, amodiaquine, diclofenac, S-mephenytoin, bufuralol, dextromethorphan, midazolam, and testosterone. These results provided additional information about the selectivity of these commonly used probe substrates.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Enzymologic , Animals , Baculoviridae/metabolism , Cells, Cultured , Coumarins/metabolism , Dogs , Microsomes, Liver/enzymology , NADPH-Ferrihemoprotein Reductase/biosynthesis , Phenacetin/metabolism , Spodoptera/genetics , Spodoptera/virology , Substrate Specificity
8.
Chem Res Toxicol ; 23(5): 861-3, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20369854

ABSTRACT

Here, we report on the mechanism by which flavin-containing monooxygenase 1 (FMO1) mediates the formation of a reactive intermediate of 4-fluoro-N-methylaniline. FMO1 catalyzed a carbon oxidation reaction coupled with defluorination that led to the formation of 4-N-methylaminophenol, which was a reaction first reported by Boersma et al. (Boersma et al. (1993) Drug Metab. Dispos. 21 , 218 - 230). We propose that a labile 1-fluoro-4-(methylimino)cyclohexa-2,5-dienol intermediate was formed leading to an electrophilic quinoneimine intermediate. The identification of N-acetylcysteine adducts by LC-MS/MS and NMR further supports the formation of a quinoneimine intermediate. Incubations containing stable labeled oxygen (H(2)(18)O or (18)O(2)) and ab initio calculations were performed to support the proposed reaction mechanism.


Subject(s)
Aniline Compounds/metabolism , Carbon/chemistry , Oxygenases/metabolism , Phenols/metabolism , Acetylcysteine/chemistry , Aminophenols , Aniline Compounds/chemistry , Biocatalysis , Chromatography, High Pressure Liquid , Isotope Labeling , Oxidation-Reduction , Oxygen Isotopes , Oxygenases/chemistry , Oxygenases/genetics , Phenols/chemistry , Phenols/toxicity , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization
9.
Front Oncol ; 10: 598477, 2020.
Article in English | MEDLINE | ID: mdl-33425754

ABSTRACT

TYRO3, AXL, and MERTK constitute the TAM family of receptor tyrosine kinases, which play important roles in tumor growth, survival, cell adhesion, as well as innate immunity, phagocytosis, and immune-suppressive activity. Therefore, targeting both AXL and MERTK kinases may directly impact tumor growth and relieve immunosuppression. We describe here the discovery of INCB081776, a potent and selective dual inhibitor of AXL and MERTK that is currently in phase 1 clinical trials. In cellular assays, INCB081776 effectively blocked autophosphorylation of AXL or MERTK with low nanomolar half maximal inhibitory concentration values in tumor cells and Ba/F3 cells transfected with constitutively active AXL or MERTK. INCB081776 inhibited activation of MERTK in primary human macrophages and partially reversed M2 macrophage-mediated suppression of T-cell proliferation, which was associated with increased interferon-γ production. In vivo, the antitumor activity of INCB081776 was enhanced in combination with checkpoint blockade in syngeneic models, and resulted in increased proliferation of intratumoral CD4+ and CD8+ T cells. Finally, antitumor activity of INCB081776 was observed in a subset of sarcoma patient-derived xenograft models, which was linked with inhibition of phospho-AKT. These data support the potential therapeutic utility of INCB081776 as an immunotherapeutic agent capable of both enhancing tumor immune surveillance and blocking tumor cell survival mechanisms.

10.
J Med Chem ; 58(5): 2195-205, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25658376

ABSTRACT

To identify new agents for the treatment of multi-drug-resistant Pseudomonas aeruginosa, we focused on siderophore-conjugated monocarbams. This class of monocyclic ß-lactams are stable to metallo-ß-lactamases and have excellent P. aeruginosa activities due to their ability to exploit the iron uptake machinery of Gram-negative bacteria. Our medicinal chemistry plan focused on identifying a molecule with optimal potency and physical properties and activity for in vivo efficacy. Modifications to the monocarbam linker, siderophore, and oxime portion of the molecules were examined. Through these efforts, a series of pyrrolidinone-based monocarbams with good P. aeruginosa cellular activity (P. aeruginosa MIC90 = 2 µg/mL), free fraction levels (>20% free), and hydrolytic stability (t1/2 ≥ 100 h) were identified. To differentiate the lead compounds and enable prioritization for in vivo studies, we applied a semi-mechanistic pharmacokinetic/pharmacodynamic model to enable prediction of in vivo efficacy from in vitro data.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Drug Discovery , Monobactams/pharmacology , Monobactams/pharmacokinetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Siderophores/metabolism , Animals , Humans , Male , Monobactams/chemistry , Pseudomonas Infections/microbiology , Rats , Rats, Wistar , Structure-Activity Relationship , beta-Lactamases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL