Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Muscle Nerve ; 69(2): 134-147, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38126120

ABSTRACT

After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.


Subject(s)
Artificial Limbs , Muscle, Skeletal , Electrodes
2.
Epilepsy Behav ; 136: 108918, 2022 11.
Article in English | MEDLINE | ID: mdl-36202052

ABSTRACT

OBJECTIVE: To investigate carotid body (CB) mechanisms related to sudden death during seizure. Ictal activation of oxygen-conserving reflexes (OCRs) can trigger fatal cardiorespiratory collapse in seizing rats, which presents like human sudden unexpected death in epilepsy (SUDEP). The CB is strongly implicated in OCR pathways; we hypothesize that modulating CB activity will provide insight into these mechanisms of death. METHODS: Long-Evans rats were anesthetized with urethane. Recordings included: electrocorticography, electrocardiography, respiration via nasal thermocouple, and blood pressure (BP). The mammalian diving reflex (MDR) was activated by cold water delivered through a nasal cannula. Reflex and stimulation trials were repeated up to 16 times (4 pre-intervention, 12 post-intervention) or until death. In some animals, one or both carotid bodies were denervated. In some animals, the CB was electrically stimulated, both with and without MDR. Seizures were induced with kainic acid (KA). RESULTS: Animals without seizure and with no CB modulation survived all reflexes. Non-seizing animals with CB denervation survived 7.1 ± 5.4 reflexes before death, and only 1 of 7 survived past the 12-trial threshold. Electrical CB stimulation without seizure and without reflex caused significant tachypnea and hypotension. Electrical CB stimulation with seizure and without reflex required higher amplitudes to replicate the physiological responses seen outside seizure. Seizing animals without CB intervention survived 3.2 ± 3.6 trials (per-reflex survival rate 42.0% ± 44.4%), and 0 of 7 survived past the 12-trial threshold. Seizing animals with electrical CB stimulation survived 10.5 ± 4.7 ictal trials (per-reflex survival rate 86.3% ± 35.0%), and 6 of 8 survived past the 12-trial threshold. SIGNIFICANCE: These results suggest that, during seizure, the ability of the CB to stimulate a restart of respiration is impaired. The CB and its afferents may be relevant to fatal ictal apnea and SUDEP in humans, and CB stimulation may be a relevant intervention technique in these deaths.


Subject(s)
Carotid Body , Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Animals , Rats , Rats, Long-Evans , Death, Sudden/etiology , Epilepsy/chemically induced , Epilepsy/complications , Epilepsy/therapy , Seizures , Mammals
3.
Epilepsia ; 62(3): 752-764, 2021 03.
Article in English | MEDLINE | ID: mdl-33570173

ABSTRACT

OBJECTIVE: To test the hypothesis that death with physiological parallels to human cases of sudden unexpected death in epilepsy (SUDEP) can be induced in seizing rats by ictal activation of oxygen-conserving reflexes (OCRs). METHODS: Urethane-anesthetized female Long-Evans rats were implanted with electrodes for electrocardiography (ECG), electrocorticography (ECoG), and respiratory thermocouple; venous and arterial cannulas; and a laryngoscope guide and cannula or nasal cannula for activation of the laryngeal chemoreflex (LCR) or mammalian diving reflex (MDR), respectively. Kainic acid injection, either systemic or into the ventral hippocampus, induced prolonged acute seizures. RESULTS: Reflex challenges during seizures caused sudden death in 18 of 20 rats-all MDR rats (10) and all but two LCR rats (8) failed to recover from ictal activation of OCRs and died within minutes of the reflexes. By comparison, 4 of 4 control (ie, nonseizing) rats recovered from 64 induced diving reflexes (16 per rat), and 4 of 4 controls recovered from 64 induced chemoreflexes (16 per rat). Multiple measures were consistent with reports of human SUDEP. Terminal central apnea preceded terminal asystole in all cases. Heart and respiratory rate fluctuations that paralleled those seen in human SUDEP occurred during OCR-induced sudden death, and mean arterial pressure (MAP) was predictive of death, showing a 17 or 15 mm Hg drop (MDR and LCR, respectively) in the 20 s window centered on the time of brain death. OCR activation was never fatal in nonseizing rats. SIGNIFICANCE: These results present a method of inducing sudden death in two seizure models that show pathophysiology consistent with that observed in human cases of SUDEP. This proposed mechanism directly informs previous findings by our group and others in the field; provides a repeatable, inducible animal model for the study of sudden death; and offers a potential explanation for observations made in cases of human SUDEP.


Subject(s)
Reflex/physiology , Seizures/physiopathology , Sudden Unexpected Death in Epilepsy/etiology , Animals , Diving Reflex/physiology , Electrocardiography , Electrodes, Implanted , Electroencephalography , Electrooculography , Female , Heart Rate , Oxygen/metabolism , Oxygen Consumption/physiology , Rats , Rats, Long-Evans , Respiratory Rate
4.
Proc Natl Acad Sci U S A ; 115(31): E7236-E7244, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30012591

ABSTRACT

Transfer printing of thin-film nanoelectronics from their fabrication wafer commonly requires chemical etching on the sacrifice of wafer but is also limited by defects with a low yield. Here, we introduce a wafer-recyclable, environment-friendly transfer printing process that enables the wafer-scale separation of high-performance thin-film nanoelectronics from their fabrication wafer in a defect-free manner that enables multiple reuses of the wafer. The interfacial delamination is enabled through a controllable cracking phenomenon in a water environment at room temperature. The physically liberated thin-film nanoelectronics can be then pasted onto arbitrary places of interest, thereby endowing the particular surface with desirable add-on electronic features. Systematic experimental, theoretical, and computational studies reveal the underlying mechanics mechanism and guide manufacturability for the transfer printing process in terms of scalability, controllability, and reproducibility.

5.
Epilepsy Behav ; 111: 107188, 2020 10.
Article in English | MEDLINE | ID: mdl-32540771

ABSTRACT

OBJECTIVE: Recent animal work and limited clinical data have suggested that laryngospasm may be involved in the cardiorespiratory collapse seen in sudden unexpected death in epilepsy (SUDEP). In previous work, we demonstrated in an animal model of seizures that laryngospasm and sudden death were always preceded by acid reflux into the esophagus. Here, we expand on that work by testing several techniques to prevent the acid reflux or the subsequent laryngospasm. METHODS: In urethane anesthetized Long Evans rats, we used systemic kainic acid to acutely induce seizure activity. We recorded pH in the esophagus, respiration, electrocorticography activity, and measured the liquid volume in the stomach postmortem. We performed the following three interventions to attempt to prevent acid reflux or laryngospasm and gain insights into mechanisms: fasting animals for 12 h, severing the gastric nerve, and electrical stimulation of either the gastric nerve or the recurrent laryngeal nerve. RESULTS: Seizing animals had significantly more liquid in their stomach. Severing the gastric nerve and fasting animals significantly reduced stomach liquid volume, subsequent acid reflux, and sudden death. Laryngeal nerve stimulation can reverse laryngospasm on demand. Seizing animals are more susceptible to death from stomach acid-induced laryngospasm than nonseizing animals are to artificial acid-induced laryngospasm. SIGNIFICANCE: These results provide insight into the mechanism of acid production and sudden obstructive apnea in this model. These techniques may have clinical relevance if this model is shown to be similar to human SUDEP.


Subject(s)
Electric Stimulation Therapy/methods , Gastroesophageal Reflux/prevention & control , Gastroesophageal Reflux/physiopathology , Laryngismus/physiopathology , Seizures/physiopathology , Animals , Female , Gastroesophageal Reflux/complications , Laryngismus/etiology , Laryngismus/therapy , Rats , Rats, Long-Evans , Seizures/therapy , Sudden Unexpected Death in Epilepsy/prevention & control
6.
Epilepsia ; 60(12): 2346-2358, 2019 12.
Article in English | MEDLINE | ID: mdl-31705531

ABSTRACT

OBJECTIVE: To investigate how prolonged seizure activity affects cardiorespiratory function and activity of pre-Bötzinger complex, leading to sudden death. METHODS: Urethane-anesthetized female Long-Evans rats were implanted with nasal thermocouple; venous and arterial cannulae; and electrodes for electrocardiography (ECG) and hippocampal, cortical, and brainstem recording. Kainic acid injection into the ventral hippocampus induced status epilepticus. RESULTS: Seizures caused hypertension, tachycardia, and tachypnea punctuated by recurrent transient apneas. Salivation increased considerably: in 11 of 12 rats, liquid with alkaline pH consistent with saliva was expelled from the mouth. Most transient apneas were obstructive: nasal airflow ceased, while, in 83%, efforts to breathe persisted as continued rhythmic activity of respiratory pre-Bötzinger neurons, inspiratory electromyography (EMG), and excursions of the chest wall and abdomen. Blood pressure oscillated in time with respiratory efforts. This pattern also occurred in a minority of cases (16%) of incomplete apnea, but not in rare cases (1%) of transient central apneas. During transient obstructive apneas, the frequency of all inspiratory efforts decreased abruptly by ~30%, suggesting a resetting of the central respiratory rhythm generator. Twenty-two of thirty-one rats died, due either to obstructive apnea (12) or central apnea following progressive slowing of respiration (10). Most rats dying of central apnea had experienced several transient obstructive apneas. Negative DC field potential shifts of the brainstem followed the final breath, consistent with previous reports on spreading depolarization in mouse models. Timing suggests that the DC shift is a consequence rather than cause of respiratory collapse. Cardiac activity continued for tens of seconds. SIGNIFICANCE: Seizure activity in forebrain induces pronounced autonomic activation and disrupts activity in medullary respiratory centers, resulting in death from either obstructive or central apnea. These results directly inform mechanisms of death in status epilepticus, and indirectly provide clues to mechanisms of sudden unexpected death in epilepsy (SUDEP).


Subject(s)
Anesthetics, Intravenous/administration & dosage , Brain Stem/physiopathology , Hippocampus/physiopathology , Kainic Acid/toxicity , Seizures/physiopathology , Sleep Apnea, Central/physiopathology , Animals , Brain Stem/drug effects , Death, Sudden , Electroencephalography/drug effects , Electroencephalography/methods , Female , Hippocampus/drug effects , Rats , Rats, Long-Evans , Seizures/chemically induced , Sleep Apnea, Central/chemically induced
7.
Biomed Microdevices ; 17(4): 75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26149695

ABSTRACT

We present a contact lens-like platform that is wirelessly powered by an external coil embedded in eyeglasses via magnetic resonance coupling at 13.56 MHz. The platform is composed of a transparent parylene film as a host substrate, an embedded spiral inductor as a power receiving coil, and metal interconnects for additional electronics. A multilayer thin-film parylene packaging process is used to meet the form factor of a contact lens. A 36 µm-thick metal plating technique is employed on a parylene film to enhance the quality factor (Q) of the receiving coil (Q = 27.3 at 13.56 MHz). The power transfer method and techniques to compensate for coil misalignment are demonstrated on a pig eye, achieving a power transfer efficiency of 17.5 % at a 20-mm powering distance. The effect of tissue on the coil and the power transfer efficiency is examined. The high power transfer efficiency along with the wearable prototype demonstrated herein make promising progress toward smart contact lens in ocular diagnostics.


Subject(s)
Contact Lenses , Electric Power Supplies , Eyeglasses , Animals , Biocompatible Materials , Electromagnetic Fields , Equipment Design , Humans , Polymers/chemistry , Swine , Wireless Technology , Xylenes/chemistry
8.
Biomed Microdevices ; 17(1): 7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25653069

ABSTRACT

We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 µm), and high-density (up to ~500 µF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 µm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.


Subject(s)
Electric Capacitance , Membranes, Artificial , Nanowires/chemistry , Remote Sensing Technology/instrumentation , Remote Sensing Technology/methods , Polymers/chemistry , Xylenes/chemistry
9.
Biomed Microdevices ; 15(6): 973-83, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23832644

ABSTRACT

We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 µm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 µW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.


Subject(s)
Electric Capacitance , Electric Power Supplies , Equipment and Supplies , Miniaturization/instrumentation , Prostheses and Implants , Radio Waves , Wireless Technology
10.
J Neural Eng ; 20(2)2023 04 28.
Article in English | MEDLINE | ID: mdl-36958037

ABSTRACT

Background. Electrical neuromodulation remains an effective therapy for multiple neurological disorders. One strategy to electrically stimulate nerves utilizes the interference of multiple high frequency waveforms. This technique, known as temporal interference stimulation or interferential current stimulation, has recently gained significant attention as a method to improve the state-of-the-art in neurostimulation in both animal studies and human clinical trials.Objective.Here we report our investigation into the fundamental properties of the neuronal response to these types of waveforms-the effects of carrier and envelope frequencies, thresholds, firing behavior, and phase and asymmetric interference patterns.Methods.We utilized a cuff electrode on the rat sciatic nerve to apply a variety of interferential signals. We recorded muscle activity in the plantar muscles and biceps femoris, which are proxies for activity on two of the major branches of the sciatic, which are spatially distinct in the target volume. We tested both fundamental recruitment properties as well as spatial techniques to selectively activate either muscle group.Results.Our data suggest, contrary to the currently accepted explanation, that neurons do not extract envelopes at all, and that the response to these signals is well explained by a resistor-capacitor (i.e. integrator) membrane with a fixed firing threshold. Basic interference techniques do not change recruitment far from electrodes. Techniques can produce regions of both phasic activation and tonic activation/conduction block.Conclusions.An integrator model suggests that interference techniques are less capable of minimally invasive stimulation for a subcortical brain target than previously thought. Human clinical trials using these techniques should reevaluate their methods. Interference stimulation allows significant target selectivity in a peripheral cuff electrode with targets near electrodes. These techniques can allow spatially distinct regions of phasic firing, tonic firing, conduction block, and no effect.


Subject(s)
Peripheral Nerves , Sciatic Nerve , Rats , Humans , Animals , Peripheral Nerves/physiology , Sciatic Nerve/physiology , Electrodes , Brain , Electric Stimulation/methods
11.
IEEE Trans Biomed Eng ; PP2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38096093

ABSTRACT

Effective management of Inflammatory Bowel Disease (IBD) is contingent upon frequent monitoring of inflammation levels at targeted locations within the gastrointestinal (GI) tract. This is crucial for assessing disease progression and detecting potential relapses. To address this need, a novel single-use capsule technology has been devised that enables region-specific inflammation measurement, thereby facilitating repeatable monitoring within the GI tract. The capsule integrates a pH-responsive coating for location-specific activation, a chemiluminescent paper-based myeloperoxidase (MPO) sensor for inflammation detection, and a miniaturized photodetector, complemented by embedded electronics for real-time wireless data transmission. Demonstrating linear sensitivity within the physiological MPO concentration range, the sensor is capable of effectively identifying inflammation risk in the GI fluid. Luminescence emitted by the sensor, proportional to MPO concentration, is converted into an electrical signal by the photodetector, generating a quantifiable energy output with a sensitivity of 6.14 µJ/U.ml-1. The capsule was also tested with GI fluids collected from pig models simulating various inflammation states. Despite the physiological complexities, the capsule consistently activated in the intended region and accurately detected MPO levels with less than a 5% variation between readings in GI fluid and a PBS solution. This study heralds a significant step towards minimally invasive, in situ GI inflammation monitoring, potentially revolutionizing personalized IBD management and patient-specific therapeutic strategies.

12.
Biomed Microdevices ; 14(1): 207-15, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21987004

ABSTRACT

This paper presents an ultra-thin and flexible polymer-based capacitive pressure sensor for intraocular pressure (IOP) monitoring in a mouse eye. Due to the size limitation of the anterior chamber in the mouse eye, a volume of approximately 700 × 700 × 150 µm(3) on a small substrate is available for the MEMS capacitive pressure sensor. Moreover, the sensor would ideally be easily injectable into place. Further complicating the sensing is the need to operate the device on the curved surface of the anterior chamber with minimum damage to the eye tissue. Therefore, a thin and flexible substrate is required. We fabricate sensors by exploiting Parylene as a biocompatible structural material in a suitable form factor and 25 µm thick liquid crystal polymer (LCP) as a soft and flexible host substrate. Using our approach, the flexibility and small form factor necessary for a mouse eye implant is achieved, along with the sensitivity required to monitor IOP fluctuations. This device will allow better study of glaucoma through close monitoring in mice after integration with other components.


Subject(s)
Glaucoma/diagnosis , Intraocular Pressure , Polymers/chemistry , Tonometry, Ocular/instrumentation , Animals , Mice
13.
IEEE Trans Biomed Eng ; 69(10): 3021-3028, 2022 10.
Article in English | MEDLINE | ID: mdl-35294339

ABSTRACT

OBJECTIVE: Heart disease is the leading cause of death worldwide. Hypertension is an important precursor and the most common risk factor to heart failure. While some patients can control their high blood pressure with pharmaceuticals, many suffer from resistant hypertension, where antihypertensive medications do not achieve the desired outcome. Electrical stimulation is an emerging therapy to modulate blood pressure and integrating it with closed-loop feedback can improve blood pressure control. METHODS: We design and fabricate two application-specific integrated circuits (ASICs) for stimulation and pressure sensing using TSMC's 180 nm MS RF G process. We create a closed-loop system by integrating the ASICs with a microscale pressure sensor and a custom-built Python script and test the full system in six Long Evans rats using vagus nerve stimulation. RESULTS: After calibration and benchtop verification, we prove the functionality of the system in lowering, and maintaining a desired blood pressure in vivo. The system effectively monitors pressure and stimulates when that pressure exceeds the user-determined threshold. CONCLUSION: By combining this stimulation therapy with a pressure sensor, we present a novel closed-loop, electroceutical system that has the potential to monitor and modulate blood pressure. SIGNIFICANCE: We present a drug-free, potentially side-effect-free electroceutical therapeutic for managing resistant hypertension.


Subject(s)
Hypertension , Vagus Nerve Stimulation , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure , Hypertension/therapy , Pharmaceutical Preparations , Rats , Rats, Long-Evans , Vagus Nerve/physiology
14.
Epilepsy Behav ; 22 Suppl 1: S61-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22078520

ABSTRACT

Closed-loop neurostimulation devices that stimulate the brain to treat epileptic seizures have shown great promise in treating more than a third of the 2 million people with epilepsy in the United States alone whose seizures are currently nonresponsive to pharmaceutical treatment. Seizure detection algorithms facilitate responsive therapeutic intervention that is believed to increase the efficacy of neurostimulation by improving on its spatial and temporal specificity. Translating these signal processing algorithms into battery-powered, implantable devices poses a number of challenges that severely limit the computational power of the chosen algorithm. We propose a cascaded two-stage seizure detection algorithm that is computationally efficient (resulting in a low-power hardware implementation) without compromising on detection efficacy. Unlike traditional detection algorithms, the proposed technique does not explicitly require a "training" phase from individual to individual and, instead, relies on using features that result in distinct "patterns" at the electrographic seizure onset. We tested the algorithm on spontaneous clinical seizures recorded using depth electrodes from patients with focal intractable epilepsy and annotated by epileptologists at the University of Freiburg Medical Center, via the Freiburg database. The algorithm performs with a specificity and sensitivity of 99.82 and 87.5%, detecting seizures in less than 9.08% of their duration after onset. The proposed technique is also shown to be computationally efficient, facilitating low-power hardware implementation. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.


Subject(s)
Algorithms , Brain Waves/physiology , Computers , Electroencephalography/methods , Seizures/diagnosis , Seizures/physiopathology , Adolescent , Adult , Electroencephalography/instrumentation , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted
15.
Curr Eye Res ; 46(10): 1531-1538, 2021 10.
Article in English | MEDLINE | ID: mdl-33826436

ABSTRACT

Purpose: To investigate the safety and efficacy of the IOPTx™ system - a novel wearable, electroceutical treatment to lower intraocular pressure. Methods: Patients wear the customized contact lens and spectacles of the IOPTx™ system and undergo three 15-minute randomized stimulation trials at different stimulus amplitudes with 15 minutes of rest in between. The parameters for the stimulation trials include a frequency of 50 Hz, a pulse width of 100 µs, and current amplitudes between 90-150 µA. The optometrist measures the intraocular pressure (IOP) before, immediately after, and 15 minutes after the trial, and performs topography, a slit eye examination, and specular microscopy before and after the entire study to check the health of the eye and confirm the safety of the system. Results: The IOPTx™ system successfully modulates a patient's IOP. By testing various currents, we create individual tuning curves examining the effect of the stimulation amplitude on the change in IOP. Each patient may have an optimal dose-response curve and by normalizing to this value, the IOPTx™ system decreased IOP by an average of 17.7% with fifteen minutes of therapy. No Adverse Events or Adverse Device Effects occurred.Conclusions: The results of this clinical case series provide preliminary evidence of efficacy and safety of the IOPTx™ system and its potential usefulness to lower IOP in glaucoma and ocular hypertension.


Subject(s)
Contact Lenses , Electric Stimulation Therapy/instrumentation , Glaucoma, Open-Angle/therapy , Intraocular Pressure/physiology , Wearable Electronic Devices , Aged , Aged, 80 and over , Female , Glaucoma, Open-Angle/physiopathology , Humans , Male , Ocular Hypertension/physiopathology , Ocular Hypertension/therapy , Pilot Projects
16.
Biomed Eng Online ; 9: 67, 2010 Nov 04.
Article in English | MEDLINE | ID: mdl-21050471

ABSTRACT

BACKGROUND: A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process. Sensors on several stent struts could give information about the heterogeneity of healing across the stent. METHODS: A piezoelectric microcantilever was insulated with parylene and demonstrated as an endothelialization detector for incorporation within an active coronary stent. After initial characterization, endothelial cells were plated onto the cantilever surface. After they attached to the surface, they caused an increase in mass, and thus a decrease in the resonant frequencies of the cantilever. This shift was then detected electrically with an LCR meter. The self-sensing, self-actuating cantilever does not require an external, optical detection system, thus allowing for implanted applications. RESULTS: A cell density of 1300 cells/mm2 on the cantilever surface is detected. CONCLUSIONS: We have developed a self-actuating, self-sensing device for detecting the presence of endothelial cells on a surface. The device is biocompatible and functions reliably in ionic liquids, making it appropriate for implantable applications. This sensor can be placed along the struts of a coronary stent to detect when the struts have been covered with a layer of endothelial cells and are no longer available surfaces for clot formation. Anti-platelet therapy can be adjusted in real-time with respect to a patient's level of healing and hemorrhaging risks.


Subject(s)
Coronary Vessels/cytology , Drug-Eluting Stents , Electronics/instrumentation , Endothelial Cells/metabolism , Drug-Eluting Stents/adverse effects , Humans , Thrombosis
17.
J Interv Cardiol ; 22(5): 479-87, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19807844

ABSTRACT

Continuous monitoring of blood pressure from a minimally invasive device in the pulmonary artery can serve as a diagnostic and early warning system for cardiac health. The foremost challenge in such a device is the wireless transfer of data and power from within the blood vessel to an external device while maintaining unrestricted flow through the artery. We present a miniaturized system, which is attached to the outer surface of a regular or drug-eluting FDA-approved stent. When expanded, the stent maintains a patent vessel lumen while allowing contact between the electronic sensors and the blood supply. The stent-based antenna can be used for both wireless telemetry and power transfer for the implanted electronics. Using the stent platform as both a radiating antenna and a structural support allows us to take advantage of an FDA-approved device whose safety and surgical procedure are well established. The electronics package has been reduced to an area of less than 1 mm(2), with a thickness under 300 mum. A minimally invasive implantation procedure allows the delivery of the stent-based implant in nearly any major vessel of the body. This article describes an initial prototype with two stents configured as a single dipole, a 2.4-GHz transmitter microchip, and a battery, and validates transcutaneous transmission through ex vivo and in vivo porcine studies. The results demonstrate the feasibility of a stent-based wireless platform for continuous monitoring of blood pressure.


Subject(s)
Blood Pressure Monitoring, Ambulatory/instrumentation , Blood Pressure Monitoring, Ambulatory/methods , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Stents , Animals , Coronary Vessels/surgery , Models, Animal , Prosthesis Design , Swine , Telemetry/instrumentation , Treatment Outcome
18.
IEEE Trans Neural Syst Rehabil Eng ; 27(9): 1724-1731, 2019 09.
Article in English | MEDLINE | ID: mdl-31380762

ABSTRACT

Reliable chronic neural recording from focal deep brain structures is impeded by insertion injury and foreign body response, the magnitude of which is correlated with the mechanical mismatch between the electrode and tissue. Thin and flexible electrodes cause less glial scarring and record longer than stiff electrodes. However, the insertion of flexible microelectrodes in brain has been a challenge. Here, a novel insertion method is proposed, and demonstrated, for precise targeting deep brain structures using flexible micro-wire electrodes. The microelectrode is spun and slowly inserted in brain through an appropriate electrode guide. The electrode guide does not penetrate into cortex. Based on two new mechanisms, namely spinning and guided insertion, we have demonstrated successful insertion of 25-micron platinum flexible electrodes about 10-mm deep in rat brains without buckling. We present an electrode insertion device based on the proposed method and demonstrate its use to implant flexible microelectrodes in rat brains. The step-by-step insertion process is described. Microelectrodes were inserted in the Bötzinger complex and respiratory neural activity was recorded acutely in nine rats and chronically in two rats for 50 days.


Subject(s)
Brain/physiology , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Electric Stimulation/instrumentation , Electric Stimulation/methods , Electrodes, Implanted , Algorithms , Animals , Cerebral Cortex , Microelectrodes , Rats , Respiration
19.
PLoS One ; 14(3): e0214317, 2019.
Article in English | MEDLINE | ID: mdl-30921373

ABSTRACT

Vagus nerve stimulation (VNS) has been on the forefront of inflammatory disorder research and has yielded many promising results. Questions remain, however, about the biological mechanisms of such treatments and the inconsistencies in the methods used in research efforts. Here, we aimed to clarify the inflammatory response to intraperitoneal (IP) injections of lipopolysaccharide (LPS) in rats, while analyzing corresponding effects of electrical stimulation to subdiaphragmatic branches (anterior gastric, accessory celiac, and hepatic) of the left vagus nerve. We accomplished an in-depth characterization of the time-varying cytokine cascade response in the serum of 58 rats to an acute IP LPS challenge over a 330-minute period by utilizing curve-fitting and starting point-alignment methods. We then explored the post-LPS neuromodulation effects of electrically stimulating individually cuffed subdiaphragmatic branches. Through our analysis, we found there to be a consistent order of IP LPS cytokine response (IL-10, TNF-α, GM-CSF, IL-17F, IL-6, IL-22, INF-γ). Apart from IL-10, the IP cytokine cascade was more variable in starting time and occurred later than in previously recorded intravenous (IV) challenges. We also found distinct regulatory effects on multiple cytokine levels by each of the three subdiaphragmatic stimulation subsets. While the time-variability of IP LPS use in rats complicates its utility, we have shown it to be a practical, arguably more physiologically relevant method than IV in rats when our methods are used. More importantly, we have shown that selective subdiaphragmatic neurostimulation can be utilized to selectively induce specific effects on inflammation in the body.


Subject(s)
Cytokines/blood , Lipopolysaccharides/pharmacology , Vagus Nerve/drug effects , Animals , Injections, Intraperitoneal , Interferon-gamma/blood , Interleukin-10/blood , Male , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/blood , Vagus Nerve/metabolism , Vagus Nerve Stimulation
20.
Ultrasound Med Biol ; 45(2): 481-489, 2019 02.
Article in English | MEDLINE | ID: mdl-30396599

ABSTRACT

Tumor necrosis factor α (TNF-α) is linked to several chronic inflammatory diseases. Electrical vagus nerve stimulation reduces serum TNF-α levels but may cause chronic nerve damage and requires surgery. Alternatively, we proposed focused ultrasound stimulation of the vagus nerve (uVNS), which can be applied non-invasively. In this study, we induced an inflammatory response in rats using lipopolysaccharides (LPS) and collected blood to analyze the effects of uVNS on cytokine concentrations. We applied one or three 5-min pulsed focused ultrasound stimulation treatments to the vagus nerve (250 kHz, ISPPA = 3 W/cm2). Animals receiving a single ultrasound application had an average reduction in TNF-α levels of 19%, similar to the 16% reduction observed in electrically stimulated animals. With multiple applications, uVNS therapy statistically reduced serum TNF-α levels by 73% compared with control animals without any observed damage to the nerve. These findings suggest that uVNS is a suitable way to attenuate TNF-α levels.


Subject(s)
Inflammation/physiopathology , Reflex/physiology , Ultrasonic Waves , Vagus Nerve Stimulation/methods , Vagus Nerve/physiopathology , Animals , Disease Models, Animal , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL