Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Proc Natl Acad Sci U S A ; 116(35): 17419-17428, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31341090

ABSTRACT

Viperin is an interferon (IFN)-inducible multifunctional protein. Recent evidence from high-throughput analyses indicates that most IFN-inducible proteins, including viperin, are intrinsically expressed in specific tissues; however, the respective intrinsic functions are unknown. Here we show that the intrinsic expression of viperin regulates adipose tissue thermogenesis, which is known to counter metabolic disease and contribute to the febrile response to pathogen invasion. Viperin knockout mice exhibit increased heat production, resulting in a reduction of fat mass, improvement of high-fat diet (HFD)-induced glucose tolerance, and enhancement of cold tolerance. These thermogenic phenotypes are attributed to an adipocyte-autonomous mechanism that regulates fatty acid ß-oxidation. Under an HFD, viperin expression is increased, and its function is enhanced. Our findings reveal the intrinsic function of viperin as a novel mechanism regulating thermogenesis in adipose tissues, suggesting that viperin represents a molecular target for thermoregulation in clinical contexts.


Subject(s)
Adipose Tissue/metabolism , Gene Expression Regulation , Proteins/genetics , Thermogenesis/genetics , Adipocytes/metabolism , Animals , Energy Metabolism/genetics , Male , Mice , Mice, Knockout
2.
Amino Acids ; 51(2): 245-254, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30255260

ABSTRACT

This study was conducted to evaluate the anti-obesity effects of long-term taurine supplementation in a mild obese ICR mouse model and to study the mechanism by which taurine induces weight loss. Three groups of male ICR mice were fed a normal chow diet, a high-fat diet (HFD), or an HFD supplemented with 2% taurine in drinking water for 28 weeks. Body weight was measured every week. Metabolic, behavioral, and physiological monitoring were carried out using PhenoMaster at 28 weeks. Interscapular brown fat (BAT), inguinal white fat tissue (WAT), and quadriceps muscle were analyzed and compared to assess the change of gene expression related to adipogenesis. Taurine supplementation showed the trend of anti-obesity effect in ICR mice fed an HFD for 28 weeks. HFD-fed mice did not show significant difference of oxygen consumption (VO2), energy expenditure (EE), respiratory exchange rate (RER), and locomotive activity compared with those of normal chow diet fed mice. The expression of adipogenesis-related genes such as PPAR-α, PPAR-γ, C/EBP-α, C/EBP-ß, and AP2 increased in BAT and WAT, but not in muscle tissue. Taurine supplementation showed the downregulation of these genes in WAT but not in BAT or muscle. Consistently, the expression of taurine transporter (TauT) and adipocyte-specific genes such as adiponectin, leptin, and IL-6 was regulated in a similar pattern by taurine supplementation. Long-term taurine supplementation causes weight loss, most likely by inhibiting adipogenesis in WAT. TauT expression may be involved in the expression of various genes regulated by taurine supplementation.


Subject(s)
Adipogenesis/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Anti-Obesity Agents/therapeutic use , Dietary Supplements , Obesity/diet therapy , Taurine/therapeutic use , Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Energy Metabolism/drug effects , Gene Expression Regulation , Male , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Mice , Mice, Inbred ICR , Mice, Obese , Obesity/metabolism , Taurine/pharmacology , Transcription Factors/genetics , Weight Loss/drug effects
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 980-990, 2018 09.
Article in English | MEDLINE | ID: mdl-29787912

ABSTRACT

Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus, and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry in the current study. For 8 weeks, two groups of 5-week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups, respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphatidylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were substantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further, weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid levels upon HF diet analyzed either by lipid class and molecular levels.


Subject(s)
Cerebral Cortex/drug effects , Diet, High-Fat , Dietary Fats/administration & dosage , Hippocampus/drug effects , Hypothalamus/drug effects , Metabolome , Olfactory Bulb/drug effects , Animals , Brain Chemistry , Cerebral Cortex/metabolism , Chromatography, High Pressure Liquid , Diglycerides/agonists , Diglycerides/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Lysophospholipids/agonists , Lysophospholipids/metabolism , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/metabolism , Oxidative Stress , Phosphatidylserines/antagonists & inhibitors , Phosphatidylserines/metabolism , Spectrometry, Mass, Electrospray Ionization
4.
Dig Dis Sci ; 63(3): 619-627, 2018 03.
Article in English | MEDLINE | ID: mdl-29372479

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder involving changes in normal bowel movements. The pathophysiology of IBS is not clearly understood owing to the lack of identifiable pathological abnormalities and reliable biomarkers. AIM: The aim of this study was to discover the novel and reliable biomarker for IBS. METHOD: In this study, neonatal maternal separation (NMS) stress model was used for the IBS mouse model. Further assessment was conducted with whole gastrointestinal transit test, quantitative RT-PCR, histological examination, and western blot. RESULTS: Male pups developed symptoms similar to those of human IBS with diarrhea (IBS-D), such as low-grade inflammation, stool irregularity, and increased bowel motility. NMS stress influenced to the interstitial cells of Cajal (ICC) and induced altered bowel motility, resulting in IBS-D-like symptoms. In addition, we found neuronal nitric oxide synthase (nNOS) to be a novel biomarker for ICC under NMS stress. nNOS expression was only observed in the ICC of the submucosal plexus of IBS-D mice, and the inhibition of nNOS changed the phenotype from IBS-D to IBS with constipation. CONCLUSION: Our study demonstrates that early-life stress can influence to ICC and modulate bowel activity and that nNOS might be used as a biomarker for ICC stimulation in IBS.


Subject(s)
Interstitial Cells of Cajal/pathology , Irritable Bowel Syndrome/enzymology , Irritable Bowel Syndrome/etiology , Nitric Oxide Synthase/metabolism , Stress, Psychological/complications , Animals , Animals, Newborn , Biomarkers/metabolism , Diarrhea/enzymology , Diarrhea/etiology , Diarrhea/pathology , Disease Models, Animal , Female , Gastrointestinal Motility , Irritable Bowel Syndrome/pathology , Male , Maternal Deprivation , Mice , Mice, Inbred C57BL
5.
Neural Plast ; 2017: 5863258, 2017.
Article in English | MEDLINE | ID: mdl-29391953

ABSTRACT

The genetic background of mice has various influences on the efficacy of physical exercise, as well as adult neurogenesis in the hippocampus. In this study, we investigated the basal level of hippocampal neurogenesis, as well as the effects of treadmill exercise on adult hippocampal neurogenesis in 9 mouse strains: 8 very commonly used laboratory inbred mouse strains (C57BL/6, BALB/c, A/J, C3H/HeJ, DBA/1, DBA/2, 129/SvJ, and FVB) and 1 outbred mouse strain (ICR). All 9 strains showed diverse basal levels of cell proliferation, neuroblast differentiation, and integration into granule cells in the sedentary group. C57BL/6 mice showed the highest levels of cell proliferation, neuroblast differentiation, and integration into granule cells at basal levels, and the DBA/2 mice showed the lowest levels. The efficacy of integration into granule cells was maximal in ICR mice. Treadmill exercise increased adult hippocampal neurogenesis in all 9 mouse strains. These results suggest that the genetic background of mice affects hippocampal neurogenesis and C57BL/6 mice are the most useful strain to assess basal levels of cell proliferation and neuroblast differentiation, but not maturation into granule cells. In addition, the DBA/2 strain is not suitable for studying hippocampal neurogenesis.


Subject(s)
Hippocampus/physiology , Neurogenesis , Physical Conditioning, Animal , Animals , Animals, Outbred Strains , Body Weight , Cell Differentiation , Cell Proliferation , Eating , Male , Mice/genetics , Mice/physiology , Mice, Inbred Strains , Neurons/physiology
6.
Neurochem Res ; 40(7): 1457-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26007245

ABSTRACT

Expression of the giant protein Ahnak has been reported in endothelial cells of the blood brain barrier and in non-neuronal cells including myelinating Schwann cells. However, the function of Ahnak in neurogenesis has not been determined. In the present study, we report for the first time the effects of Ahnak on adult hippocampal neurogenesis using Ahnak(-/-) mice. Proliferating cells were labeled with BrdU for a 30-day period before sacrifice. In Ahnak(-/-) mice, the incorporation of BrdU with NeuN (Neuronal Nuclei) increased significantly in both the subgranular zone and the granular cell layer of the dentate gyrus. In addition, Ahnak(-/-) mice displayed increased Doublecortin-immunoreactive neuroblasts compared with wild-type controls. Taken together, Ahnak deficiency plays a positive role for hippocampal neurogenesis in adult mice because proliferating cells were increased in Ahnak(-/-) mice and advanced to mature neurons. These findings suggest that Ahnak might be involved in modulating the differentiation of newly generated cells into neuronal or non-neuronal cells.


Subject(s)
Cell Proliferation , Dentate Gyrus/cytology , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Neurogenesis , Animals , Membrane Proteins/genetics , Mice , Mice, Knockout , Neoplasm Proteins/genetics
7.
Biomed Pharmacother ; 176: 116799, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805969

ABSTRACT

BACKGROUND: The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS: CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS: CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION: This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Anti-Obesity Agents , Celosia , Diet, High-Fat , Flowers , Mice, Inbred C57BL , Obesity , Plant Extracts , Animals , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Male , Mice , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/isolation & purification , Flowers/chemistry , Adipogenesis/drug effects , Obesity/drug therapy , Obesity/metabolism , Diet, High-Fat/adverse effects , Adipocytes/drug effects , Adipocytes/metabolism , Celosia/chemistry , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Lipid Metabolism/drug effects , Lipolysis/drug effects , Cell Differentiation/drug effects
8.
Exp Mol Med ; 55(8): 1820-1830, 2023 08.
Article in English | MEDLINE | ID: mdl-37542180

ABSTRACT

The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance.


Subject(s)
Exercise Tolerance , Microbiota , Mice , Animals , Obesity/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Mice, Inbred C57BL
9.
BMB Rep ; 55(8): 401-406, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35880432

ABSTRACT

Ahnak, a large protein first identified as an inhibitor of TGF-ß signaling in human neuroblastoma, was recently shown to promote TGF-ß in some cancers. The TGF-ß signaling pathway regulates cell growth, various biological functions, and cancer growth and metastasis. In this study, we used Ahnak knockout (KO) mice that underwent a 70% partial hepatectomy (PH) to investigate the function of Ahnak in TGF-ß signaling during liver regeneration. At the indicated time points after PH, we analyzed the mRNA and protein expression of the TGF -ß/Smad signaling pathway and cell cycle-related factors, evaluated the cell cycle through proliferating cell nuclear antigen (PCNA) immunostaining, analyzed the mitotic index by hematoxylin and eosin staining. We also measured the ratio of liver tissue weight to body weight. Activation of TGF-ß signaling was confirmed by analyzing the levels of phospho-Smad 2 and 3 in the liver at the indicated time points after PH and was lower in Ahnak KO mice than in WT mice. The expression levels of cyclin B1, D1, and E1; proteins in the Rb/E2F transcriptional pathway, which regulates the cell cycle; and the numbers of PCNA-positive cells were increased in Ahnak KO mice and showed tendencies opposite that of TGF-ß expression. During postoperative regeneration, the liver weight to body weight ratio tended to increase faster in Ahnak KO mice. However, 7 days after PH, both groups of mice showed similar rates of regeneration, following which their active regeneration stopped. Analysis of hepatocytes undergoing mitosis showed that there were more mitotic cells in Ahnak KO mice, consistent with the weight ratio. Our findings suggest that Ahnak enhances TGF-ß signaling during postoperative liver regeneration, resulting in cell cycle disruption; this highlights a novel role of Ahnak in liver regeneration. These results provide new insight into liver regeneration and potential treatment targets for liver diseases that require surgical treatment. [BMB Reports 2022; 55(8): 401-406].


Subject(s)
Liver Regeneration , Membrane Proteins , Neoplasm Proteins , Transforming Growth Factor beta , Animals , Body Weight , Liver/metabolism , Liver Regeneration/physiology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitosis , Neoplasm Proteins/genetics , Proliferating Cell Nuclear Antigen/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism
10.
Lab Anim Res ; 38(1): 36, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36461131

ABSTRACT

BACKGROUND: Resistance exercise training is known to improve metabolic disorders, such as obesity and type2 diabetes. In this study, we investigated whether the beneficial effects of resistance exercise training persisted even after the discontinuation of training with high-fat diet (HFD)-induced metabolic stress. We further evaluated whether the improvement in skeletal muscle strength and endurance by training were correlated with improved metabolism. Eight-week-old male C57BL/6N mice were divided into groups that remained sedentary or had access to daily resistance exercise via ladder climbing for 8 weeks. Trained and untrained mice were fed an HFD for 1 week after the exercise training intervention (n = 5-8 per group). RESULTS: Resistance exercise-trained mice had a lean phenotype and counteracted diet-induced obesity and glucose tolerance, even after exercise cessation. Grip strength was significantly inversely correlated with the body weight, fat mass, and glucose tolerance. However, hanging time was significantly inversely correlated with body weight only. CONCLUSIONS: These results have strong implications for the preventive effect of resistance exercise-induced metabolic improvement by enhancing skeletal muscle strength rather than endurance.

11.
BMB Rep ; 55(12): 633-638, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36284441

ABSTRACT

Liver regeneration is a well-known systemic homeostatic phenomenon. The N6-methyladenosine (m6A) modification pathway has been associated with liver regeneration and hepatocellular carcinoma. m6A methyltransferases, such as methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14), are involved in the hepatocyte-specific-regenerative pathway. To illustrate the role of METTL14, secreted from non-parenchymal liver cells, in the initiation phase of liver regeneration, we performed 70% partial hepatectomy (PH) in Mettl14 heterozygous (HET) and wild-type (WT) mice. Next, we analyzed the ratio of liver weight to body weight and the expression of mitogenic stimulators derived from non-parenchymal liver cells. Furthermore, we evaluated the expression of cell cycle-related genes and the hepatocyte proliferation rate via MKI67-immunostaining. During regeneration after PH, the weight ratio was lower in Mettl14 HET mice compared to WT mice. The expressions of hepatocyte growth factor (HGF) and tumor necrosis factor (TNF)-α, mitogens derived from non-parenchymal liver cells that stimulate the cell cycle, as well as the expressions of cyclin B1 and D1, which regulate the cell cycle, and the number of MKI67-positive cells, which indicate proliferative hepatocyte in the late G1-M phase, were significantly reduced in Mettl14 HET mice 72 h after PH. Our findings demonstrate that global Mettl14 mutation may interrupt the homeostasis of liver regeneration after an acute injury like PH by restraining certain mitogens, such as HGF and TNF-α, derived from sinusoidal endothelial cells, stellate cells, and Kupffer cells. These results provide new insights into the role of METTL14 in the clinical treatment strategies of liver disease. [BMB Reports 2022; 55(12): 633-638].


Subject(s)
Liver Regeneration , Methyltransferases , Mitogens , Animals , Mice , Endothelial Cells , Hepatectomy , Liver/metabolism , Liver Regeneration/physiology , Mitogens/metabolism , Tumor Necrosis Factor-alpha/metabolism , Methyltransferases/genetics
12.
BMB Rep ; 55(7): 360, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35892132

ABSTRACT

[Erratum to: BMB Reports 2022; 55(4): 187-191, PMID: 35000670, PMCID: PMC9058471] The BMB Reports would like to correct in BMB Rep. 55(4):187-191, titled "Exercise-induced beige adipogenesis of iWAT in Cidea reporter mice". This research was supported by the Research Institute for Veterinary Science, Seoul National University. Since grant name and number are incorrect, this information has now been corrected as follows: This research was supported by Korea Mouse Phenotyping Project (2013M3A9D5072550) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT and partially supported by the Brain Korea 21 Plus Program and the Research Institute for Veterinary Science of Seoul National University. The authors apologize for any inconvenience or confusion that may be caused by this error. The ACKNOWLEDGEMENTS of Original PDF version have been corrected.

13.
BMB Rep ; 55(4): 187-191, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35000670

ABSTRACT

Obesity is caused by an imbalance between energy intake and energy expenditure. Exercise is attracting attention as one of the ways to treat obesity. Exercise induces 'beige adipogenesis' in white adipose tissue, increasing total energy expenditure via energy dissipation in the form of heat. Also, beige adipogenesis can be induced by treatment with a beta-adrenergic receptor agonist. We developed a Cidea-dual reporter mouse (Cidea-P2ALuc2-T2A-tdTomato, Luciferase/tdTomato) model to trace and measure beige adipogenesis in vivo. As a result, both exercise and injection of beta-adrenergic receptor agonist induced beige adipogenesis and was detected through fluorescence and luminescence. We confirmed that exercise and beta-adrenergic receptor agonist induce beige adipogenesis in Cidea-dual reporter mouse, which will be widely used for detecting beige adipogenesis in vivo. [BMB Reports 2022; 55(4): 187-191].


Subject(s)
Adipogenesis , Adipose Tissue, White , Animals , Apoptosis Regulatory Proteins , Mice , Obesity , Signal Transduction
14.
Exp Mol Med ; 54(11): 2036-2046, 2022 11.
Article in English | MEDLINE | ID: mdl-36434042

ABSTRACT

The vitamin-C-synthesizing enzyme senescent marker protein 30 (SMP30) is a cold resistance gene in Drosophila, and vitamin C concentration increases in brown adipose tissue post-cold exposure. However, the roles of SMP30 in thermogenesis are unknown. Here, we tested the molecular mechanism of thermogenesis using wild-type (WT) and vitamin C-deficient SMP30-knockout (KO) mice. SMP30-KO mice gained more weight than WT mice without a change in food intake in response to short-term high-fat diet feeding. Indirect calorimetry and cold-challenge experiments indicated that energy expenditure is lower in SMP30-KO mice, which is associated with decreased thermogenesis in adipose tissues. Therefore, SMP30-KO mice do not lose weight during cold exposure, whereas WT mice lose weight markedly. Mechanistically, the levels of serum FGF21 were notably lower in SMP30-KO mice, and vitamin C supplementation in SMP30-KO mice recovered FGF21 expression and thermogenesis, with a marked reduction in body weight during cold exposure. Further experiments revealed that vitamin C activates PPARα to upregulate FGF21. Our findings demonstrate that SMP30-mediated synthesis of vitamin C activates the PPARα/FGF21 axis, contributing to the maintenance of thermogenesis in mice.


Subject(s)
Ascorbic Acid , PPAR alpha , Animals , Mice , Adipose Tissue, Brown/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Calcium-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/genetics , PPAR alpha/metabolism , Thermogenesis/genetics , Vitamins/metabolism
15.
Microbiome ; 10(1): 188, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333752

ABSTRACT

BACKGROUND: Comparisons of the gut microbiome of lean and obese humans have revealed that obesity is associated with the gut microbiome plus changes in numerous environmental factors, including high-fat diet (HFD). Here, we report that two species of Bifidobacterium are crucial to controlling metabolic parameters in the Korean population. RESULTS: Based on gut microbial analysis from 99 Korean individuals, we observed the abundance of Bifidobacterium longum and Bifidobacterium bifidum was markedly reduced in individuals with increased visceral adipose tissue (VAT), body mass index (BMI), blood triglyceride (TG), and fatty liver. Bacterial transcriptomic analysis revealed that carbohydrate/nucleoside metabolic processes of Bifidobacterium longum and Bifidobacterium bifidum were associated with protecting against diet-induced obesity. Oral treatment of specific commercial Bifidobacterium longum and Bifidobacterium bifidum enhanced bile acid signaling contributing to potentiate oxidative phosphorylation (OXPHOS) in adipose tissues, leading to reduction of body weight gain and improvement in hepatic steatosis and glucose homeostasis. Bifidobacterium longum or Bifidobacterium bifidum manipulated intestinal sterol biosynthetic processes to protect against diet-induced obesity in germ-free mice. CONCLUSIONS: Our findings support the notion that treatment of carbohydrate/nucleoside metabolic processes-enriched Bifidobacterium longum and Bifidobacterium bifidum would be a novel therapeutic strategy for reprograming the host metabolic homeostasis to protect against metabolic syndromes, including diet-induced obesity. Video Abstract.


Subject(s)
Bifidobacterium longum , Bifidobacterium , Humans , Mice , Animals , Bifidobacterium/metabolism , Nucleosides/metabolism , Nucleosides/therapeutic use , Oxidative Phosphorylation , Obesity/microbiology , Diet, High-Fat/adverse effects , Adipose Tissue, White/metabolism
16.
Exp Mol Med ; 53(3): 468-482, 2021 03.
Article in English | MEDLINE | ID: mdl-33785868

ABSTRACT

The AHNAK nucleoprotein has been determined to exert an anti-obesity effect in adipose tissue and further inhibit adipogenic differentiation. In this study, we examined the role of AHNAK in regulating hepatic lipid metabolism to prevent diet-induced fatty liver. Ahnak KO mice have reportedly exhibited reduced fat accumulation in the liver and decreased serum triglyceride (TG) levels when provided with either a normal chow diet or a high-fat diet (HFD). Gene expression profiling was used to identify novel factors that could be modulated by genetic manipulation of the Ahnak gene. The results revealed that fibroblast growth factor 21 (FGF21) was markedly increased in the livers of Ahnak KO mice compared with WT mice fed a HFD. Ahnak knockdown in hepatocytes reportedly prevented excessive lipid accumulation induced by palmitate treatment and was associated with increased secretion of FGF21 and the expression of genes involved in fatty acid oxidation, which are primarily downstream of PPARα. These results indicate that pronounced obesity and hepatic steatosis are attenuated in HFD-fed Ahnak KO mice. This may be attributed, in part, to the induction of FGF21 and regulation of lipid metabolism, which are considered to be involved in increased fatty acid oxidation and reduced lipogenesis in the liver. These findings suggest that targeting AHNAK may have beneficial implications in preventing or treating hepatic steatosis.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Liver/prevention & control , Fibroblast Growth Factors/agonists , Lipid Metabolism , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Animals , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Biochem Biophys Res Commun ; 403(3-4): 428-34, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-21094140

ABSTRACT

AHNAK is a giant protein of approximately 700 kDa identified in human neuroblastomas and skin epithelial cells. Recently, we found that AHNAK knock-out (AHNAK(-/-)) mice have a strong resistance to high-fat diet-induced obesity. In this study, we applied (1)H NMR-based metabolomics with multivariate statistical analysis to compare the altered metabolic patterns detected in urine from high-fat diet (HFD) fed wild-type and AHNAK(-/-) mice and investigate the mechanisms underlying the resistance to high-fat diet-induced obesity in AHNAK(-/-) mice. In global profiling, principal components analysis showed a clear separation between the chow diet and HFD groups; wild-type and AHNAK(-/-) mice were more distinctly separated in the HFD group compared to the chow diet group. Based on target profiling, the urinary metabolites of HFD-fed AHNAK(-/-) mice gave higher levels of methionine, putrescine, tartrate, urocanate, sucrose, glucose, threonine, and 3-hydroxyisovalerate. Furthermore, two-way ANOVAs indicated that diet type, genetic type, and their interaction (gene × diet) affect the metabolite changes differently. Most metabolites were affected by diet type, and putrescine, threonine, urocanate, and tartrate were also affected by genetic type. In addition, cis-aconitate, succinate, glycine, histidine, methylamine (MA), phenylacetylglycine (PAG), methionine, putrescine, uroconate, and tartrate showed interaction effects. Through the pattern changes in urinary metabolites of HFD-fed AHNAK(-/-) mice, our data suggest that the strong resistance to HFD-induced obesity in AHNAK(-/-) mice comes from perturbations of amino acids, such as methionine, putrescine, threonine, and histidine, which are related to fat metabolism. The changes in metabolites affected by microflora such as PAG and MA were also observed. In addition, resistance to obesity in HFD-fed AHNAK(-/-) mice was not related to an activated tricarboxylic acid cycle. These findings demonstrate that (1)H NMR-based metabolic profiling of urine is suitable for elucidating possible biological pathways perturbed by functional loss of AHNAK on HFD feeding and could elucidate the mechanism underlying the resistance to high-fat diet-induced obesity in AHNAK(-/-) mice.


Subject(s)
Diet/adverse effects , Dietary Fats/adverse effects , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Obesity/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Body Weight , Dietary Fats/administration & dosage , Magnetic Resonance Spectroscopy , Metabolomics , Mice , Mice, Knockout , Obesity/genetics
18.
Neurochem Res ; 35(4): 645-50, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20069360

ABSTRACT

In this study, we observed the effects of metformin, one of the most widely prescribed drugs for the treatment of type 2 diabetes, on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus (SZDG) in Zucker diabetic fatty (ZDF) rats, which are a model for type 2 diabetes. For this, metformin was administered orally once a day to 14-week-old ZDF rats for 2 weeks and the animals were sacrificed at 16 weeks of age. During this period, blood glucose levels were higher in the vehicle-treated ZDF rats than in the Zucker lean control (ZLC) rats. Metformin treatment significantly decreased the blood glucose levels from 15.5 weeks of age. In the SZDG, Ki67 (a marker for cell proliferation)- and doublecortin (DCX, a marker for differentiated neuroblasts)-immunoreactive cells were much lower in the vehicle-treated ZDF rats than in the ZLC rats. In the metformin-treated ZDF group, Ki67- and DCX-immunoreactive cells were significantly increased in the SZDG compared to those in the vehicle-treated ZDF group. These results suggest that diabetes significantly reduces cell proliferation and neuroblast differentiation in the SZDG and that metformin treatment normalizes the reduction of cell proliferation and neuroblast differentiation in the SZDG in diabetic rats.


Subject(s)
Cell Proliferation/drug effects , Dentate Gyrus/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Metformin/pharmacology , Neurons/drug effects , Animals , Blood Glucose/analysis , Body Weight/drug effects , Dentate Gyrus/cytology , Doublecortin Protein , Female , Immunohistochemistry , Ki-67 Antigen/metabolism , Male , Rats , Rats, Zucker
19.
J Chromatogr A ; 1618: 460849, 2020 May 10.
Article in English | MEDLINE | ID: mdl-31928769

ABSTRACT

Aging refers to the intracellular accumulation of reactive oxygen species that damages proteins, DNA, and lipids. As alterations in lipid metabolism may trigger metabolic disorders and the onset of metabolic diseases, changes in lipid profiles can be closely related to aging. In this study, a comprehensive lipidomic comparison between 4- and 25-month-old mice was performed to investigate age-induced changes in the lipid profiles of mouse serum, kidney, and heart using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Quantitative analysis of 279 of the 542 identified lipids revealed significant changes upon aging, mainly showing decreased levels in the three types of samples. Exceptionally, most triacylglycerols showed significant increases in heart tissue. The kidney was influenced more by aging than the serum and heart. The highly abundant lipids in each lipid class with significant decreases (> 2-fold, p < 0.01) were lysophosphatidic acid 18:1, lysophosphatidylinositol 20:4, and ceramide d:18:1/24:0 in serum; lysophosphatidylglycerol 16:0 in heart tissue; and eight phosphatidylethanolamines (20:4, 22:6, 36:2, 36:3, 38:4, 38:5, 38:6, 40:6, and 40:7), two cardiolipins (72:7 and 72:8), and lysophosphatidylcholine 18:0 in kidney tissue. The findings indicate the potential of lipidomic analysis to study characteristic age-related lipid changes.


Subject(s)
Aging/metabolism , Kidney/metabolism , Lipidomics , Lipids/blood , Myocardium/metabolism , Nanotechnology , Rheology , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid , Female , Lipid Metabolism , Lipids/analysis , Mice, Inbred C57BL , Principal Component Analysis , Reference Standards , Spectrometry, Mass, Electrospray Ionization/methods
20.
Article in English | MEDLINE | ID: mdl-32062368

ABSTRACT

This study investigated lipid alterations in muscle tissues [gastrocnemius (Gas) and soleus (Sol)] of mice under different diet programs (weight gain, weight maintenance, weight regain, and controls) by nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry. Since overloaded lipids in the skeletal muscle tissues by excessive fat accumulation are related to insulin resistance leading to type II diabetes mellitus, analysis of lipid alteration in muscle tissues with respect to high-fat diet (HFD) is important to understand obesity related diseases. A total of 345 individual lipid species were identified with their molecular structures, and 184 lipids were quantified by selected reaction monitoring method. Most triacylglycerol (TG) and phosphatidylethanolamine (PE) species displayed a significant (>2-fold, p < 0.01) increase in both the Gas and Sol and to a larger degree in the Gas. However, lipid classes involved in insulin resistance and anti-inflammatory response, including lysophosphatidylcholine (18:0), diacylglycerol (16:0_18:1, 16:0_18:2, and 18:1_18:1), ceramide (d18:1/24:0 and d18:1/24:1), and phosphatidylinositol (18:0/20:4), showed a significant accumulation in the Sol exclusively after HFD treatment. In addition, the lipid profiles were not significantly altered in mice that were fed HFD only for the last 4 weeks (weight gain group), suggesting that consuming HFD in the younger age period can be more effective in the Gas. This study reveals that lipid classes related to insulin resistance accumulated more in the Sol than in the Gas following HFD treatment and the weight regain program perturbed lipid profiles of the Sol to a greater extent than that by the other diet programs, confirming that the Sol tissue is more influenced by HFD than Gas.


Subject(s)
Chromatography, High Pressure Liquid/methods , Diet, High-Fat , Lipids/analysis , Muscle, Skeletal/chemistry , Tandem Mass Spectrometry/methods , Animals , Limit of Detection , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL