Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Neuropathol ; 140(6): 919-949, 2020 12.
Article in English | MEDLINE | ID: mdl-33009951

ABSTRACT

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Subject(s)
Brain Neoplasms/drug therapy , Glioma/drug therapy , Heterografts/immunology , Organoids/pathology , Temozolomide/therapeutic use , Animals , Brain Neoplasms/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioma/genetics , Heterografts/drug effects , Humans , Mice , Neoplasm Recurrence, Local/genetics , Organoids/immunology , Precision Medicine/methods , Rats
2.
STAR Protoc ; 5(2): 103058, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38748881

ABSTRACT

Three-dimensional (3D) models play an increasingly important role in preclinical drug testing as they faithfully mimic interactions between cancer cells and the tumor microenvironment (TME). Here, we present a protocol for generating scaffold-free 3D multicomponent human melanoma spheroids. We describe steps for characterizing models using live-cell imaging and histology, followed by drug testing and assessment of cell death through various techniques such as imaging, luminescence-based assays, and flow cytometry. Finally, we demonstrate the models' adaptability for co-cultures with immune cells.


Subject(s)
Melanoma , Spheroids, Cellular , Humans , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Melanoma/pathology , Melanoma/metabolism , Drug Evaluation, Preclinical/methods , Tumor Microenvironment , Coculture Techniques/methods , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Cell Culture Techniques/methods
3.
STAR Protoc ; 2(2): 100534, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34027491

ABSTRACT

Tumor organoids and patient-derived orthotopic xenografts (PDOXs) are some of the most valuable pre-clinical tools in cancer research. In this protocol, we describe efficient derivation of organoids and PDOX models from glioma patient tumors. We provide detailed steps for organoid culture, intracranial implantation, and detection of tumors in the brain. We further present technical adjustments for standardized functional assays and drug testing. For complete details on the use and execution of this protocol, please refer to Golebiewska et al. (2020).


Subject(s)
Brain Neoplasms/pathology , Drug Screening Assays, Antitumor/methods , Glioma/pathology , Heterografts , Organoids , Animals , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Female , Heterografts/cytology , Heterografts/drug effects , Humans , Male , Mice , Organoids/cytology , Organoids/drug effects , Tumor Cells, Cultured/cytology
4.
Front Oncol ; 10: 604121, 2020.
Article in English | MEDLINE | ID: mdl-33364198

ABSTRACT

Malignant brain tumors remain uniformly fatal, even with the best-to-date treatment. For Glioblastoma (GBM), the most severe form of brain cancer in adults, the median overall survival is roughly over a year. New therapeutic options are urgently needed, yet recent clinical trials in the field have been largely disappointing. This is partially due to inappropriate preclinical model systems, which do not reflect the complexity of patient tumors. Furthermore, clinically relevant patient-derived models recapitulating the immune compartment are lacking, which represents a bottleneck for adequate immunotherapy testing. Emerging 3D organoid cultures offer innovative possibilities for cancer modeling. Here, we review available GBM organoid models amenable to a large variety of pre-clinical applications including functional bioassays such as proliferation and invasion, drug screening, and the generation of patient-derived orthotopic xenografts (PDOX) for validation of biological responses in vivo. We emphasize advantages and technical challenges in establishing immunocompetent ex vivo models based on co-cultures of GBM organoids and human immune cells. The latter can be isolated either from the tumor or from patient or donor blood as peripheral blood mononuclear cells (PBMCs). We also discuss the challenges to generate GBM PDOXs based on humanized mouse models to validate efficacy of immunotherapies in vivo. A detailed characterization of such models at the cellular and molecular level is needed to understand the potential and limitations for various immune activating strategies. Increasing the availability of immunocompetent GBM models will improve research on emerging immune therapeutic approaches against aggressive brain cancer.

5.
Nat Commun ; 11(1): 6366, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311477

ABSTRACT

The infiltrative nature of Glioblastoma (GBM), the most aggressive primary brain tumor, critically prevents complete surgical resection and masks tumor cells behind the blood brain barrier reducing the efficacy of systemic treatment. Here, we use a genome-wide interference screen to determine invasion-essential genes and identify the AN1/A20 zinc finger domain containing protein 3 (ZFAND3) as a crucial driver of GBM invasion. Using patient-derived cellular models, we show that loss of ZFAND3 hampers the invasive capacity of GBM, whereas ZFAND3 overexpression increases motility in cells that were initially not invasive. At the mechanistic level, we find that ZFAND3 activity requires nuclear localization and integral zinc-finger domains. Our findings indicate that ZFAND3 acts within a nuclear protein complex to activate gene transcription and regulates the promoter of invasion-related genes such as COL6A2, FN1, and NRCAM. Further investigation in ZFAND3 function in GBM and other invasive cancers is warranted.


Subject(s)
Brain Neoplasms/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Glioblastoma/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Brain Neoplasms/pathology , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Cell Movement , Collagen Type VI/genetics , Fibronectins/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Heterografts , Humans , Mice , Neoplasm Invasiveness/genetics , Protein Domains , Transcriptome
6.
Neurooncol Adv ; 1(1): vdz024, 2019.
Article in English | MEDLINE | ID: mdl-32642659

ABSTRACT

BACKGROUND: Targeted approaches for inhibiting epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTKs) in glioblastoma (GBM) have led to therapeutic resistance and little clinical benefit, raising the need for the development of alternative strategies. Endogenous LRIG1 (Leucine-rich Repeats and ImmunoGlobulin-like domains protein 1) is an RTK inhibitory protein required for stem cell maintenance, and we previously demonstrated the soluble ectodomain of LRIG1 (sLRIG1) to potently inhibit GBM growth in vitro and in vivo. METHODS: Here, we generated a recombinant protein of the ectodomain of LRIG1 (sLRIG1) and determined its activity in various cellular GBM models including patient-derived stem-like cells and patient organoids. We used proliferation, adhesion, and invasion assays, and performed gene and protein expression studies. Proximity ligation assay and NanoBiT complementation technology were applied to assess protein-protein interactions. RESULTS: We show that recombinant sLRIG1 downregulates EGFRvIII but not EGFR, and reduces proliferation in GBM cells, irrespective of their EGFR expression status. We find that sLRIG1 targets and downregulates a wide range of RTKs, including AXL, and alters GBM cell adhesion. Mechanistically, we demonstrate that LRIG1 interferes with AXL but not with EGFR dimerization. CONCLUSIONS: These results identify AXL as a novel sLRIG1 target and show that LRIG1-mediated RTK downregulation depends on direct protein interaction. The pan-RTK inhibitory activity of sLRIG1 warrants further investigation for new GBM treatment approaches.

SELECTION OF CITATIONS
SEARCH DETAIL