Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bioorg Med Chem Lett ; 27(3): 632-635, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28025004

ABSTRACT

Reactive metabolites have been putatively linked to many adverse drug reactions including idiosyncratic toxicities for a number of drugs with black box warnings or withdrawn from the market. Therefore, it is desirable to minimize the risk of reactive metabolite formation for lead molecules in optimization, in particular for non-life threatening chronic disease, to maximize benefit to risk ratio. This article describes our effort in addressing reactive metabolite issues for a series of 3-amino-2-pyridone inhibitors of BTK, e.g. compound 1 has a value of 459pmol/mg protein in the microsomal covalent binding assay. Parallel approaches were taken to successfully resolve the issues: establishment of a predictive screening assay with correlation association of covalent binding assay, identification of the origin of reactive metabolite formation using MS/MS analysis of HLM as well as isolation and characterization of GSH adducts. This ultimately led to the discovery of compound 7 (RN941) with significantly reduced covalent binding of 26pmol/mg protein.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridones/chemistry , Agammaglobulinaemia Tyrosine Kinase , Glutathione/chemistry , Magnetic Resonance Spectroscopy , Microsomes/metabolism , Protein Kinase Inhibitors/metabolism , Protein-Tyrosine Kinases/metabolism , Pyridones/metabolism , Tandem Mass Spectrometry
2.
Bioorg Med Chem Lett ; 25(2): 367-71, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25466710

ABSTRACT

A rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains.


Subject(s)
Fluorine/chemistry , Fluorine/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Protein Conformation , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 20(3): 1109-13, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20031405

ABSTRACT

Design, synthesis, and SAR are described for a class of DPP-IV inhibitors based on aminobenzo[a]quinolizines with non-aromatic substituents in the S1 specificity pocket. One representative thereof, carmegliptin (8p), was chosen for clinical development. Its X-ray structure in complex with the enzyme and early efficacy data in animal models of type 2 diabetes are also presented.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Drug Design , Hypoglycemic Agents/chemical synthesis , Quinolizines/chemical synthesis , Animals , Clinical Trials, Phase II as Topic , Crystallography, X-Ray , Delayed-Action Preparations , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dogs , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Macaca fascicularis , Mice , Quinolizines/administration & dosage , Quinolizines/therapeutic use , Rats , Rats, Wistar , Rats, Zucker
4.
ACS Chem Biol ; 14(1): 37-49, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30452219

ABSTRACT

The importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2. Structure-guided optimization efforts yielded the potent DDR1 inhibitor 2.45, which possesses excellent kinome selectivity (including 64-fold selectivity over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical properties. As desired, compound 2.45 modulates DDR1 phosphorylation in vitro as well as prevents collagen-induced activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3-/- mice (the preclinical mouse model of Alport syndrome) when employing a therapeutic dosing regime, indicating the real therapeutic value of selectively inhibiting DDR1 phosphorylation in vivo. Our results may have wider significance as Col4a3-/- mice also represent a model for chronic kidney disease, a disease which affects 10% of the global population.


Subject(s)
DNA/genetics , Discoidin Domain Receptor 1/antagonists & inhibitors , Kidney/physiopathology , Nephritis, Hereditary/genetics , Animals , Autoantigens/genetics , Autoantigens/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Discoidin Domain Receptor 1/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Kidney Function Tests , Mice , Mice, Knockout , Nephritis, Hereditary/physiopathology , Phosphorylation , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
5.
J Med Chem ; 60(8): 3352-3371, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28339215

ABSTRACT

Described herein are the discovery and structure-activity relationship (SAR) studies of the third-generation 4-H heteroaryldihydropyrimidines (4-H HAPs) featuring the introduction of a C6 carboxyl group as novel HBV capsid inhibitors. This new series of 4-H HAPs showed improved anti-HBV activity and better drug-like properties compared to the first- and second-generation 4-H HAPs. X-ray crystallographic study of analogue 12 (HAP_R01) with Cp149 Y132A mutant hexamer clearly elucidated the role of C6 carboxyl group played for the increased binding affinity, which formed strong hydrogen bonding interactions with capsid protein and coordinated waters. The representative analogue 10 (HAP_R10) was extensively characterized in vitro (ADMET) and in vivo (mouse PK and PD) and subsequently selected for further development as oral anti-HBV infection agent.


Subject(s)
Capsid/drug effects , Hepatitis B virus/drug effects , Pyrimidines/pharmacology , Animals , Crystallography, X-Ray , Drug Discovery , Hep G2 Cells , Humans , Mass Spectrometry , Mice , Proton Magnetic Resonance Spectroscopy , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Structure-Activity Relationship
6.
J Med Chem ; 58(1): 512-6, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-24712864

ABSTRACT

Structure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J. Pharmacol. Exp. Ther. 2012 , 341 , 90 ), which was selected for advanced preclinical characterization based on its favorable properties.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Isoquinolines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Drug Design , Humans , Isoquinolines/chemistry , Isoquinolines/metabolism , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL