Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Int J Sport Nutr Exerc Metab ; 32(1): 16-21, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34611052

ABSTRACT

The purpose was to investigate the effects of CYP1A2 -163C > A polymorphism on the effects of acute caffeine (CAF) supplementation on anaerobic power in trained males. Sixteen trained males (age: 21.6 ± 7.1 years; height: 179.7 ± 5.6 cm; body mass: 72.15 ± 6.8 kg) participated in a randomized, double-blind, placebo (PLA) controlled crossover design. Participants supplemented with CAF (6 mg/kg of body mass) and an isovolumetric PLA (maltodextrin) in random order and separated by 7 days, before an all-out 30-s anaerobic cycling test to determine peak, average, and minimum power output, and fatigue index. Genomic deoxyribonucleic acid was extracted to identify each participants CYP1A2 genotype. Six participants expressed AA homozygote and 10 expressed C alleles. There was a treatment by genotype interaction for peak power output (p = .041, η2 = .265, observed power = 0.552) with only those expressing AA genotype showing improvement following CAF supplementation compared with PLA (CAF: 693 ± 108 watts vs. PLA: 655 ± 97 watts; p = .039), while no difference between treatments was noted in those expressing C alleles (CAF: 614 ± 92 watts vs. PLA: 659 ± 144 watts; p = .135). There were no other interaction or main effects for average or minimum power output, or fatigue index (p > .05). In conclusion, the ingestion of 6 mg/kg of CAF improved peak power output only in participants with the AA genotype compared with PLA; however, expression of the CYP1A2 did not influence average or minimum power output or fatigue index.


Subject(s)
Athletic Performance , Caffeine , Adolescent , Adult , Anaerobiosis , Bicycling , Caffeine/pharmacology , Cross-Over Studies , Cytochrome P-450 CYP1A2/genetics , Double-Blind Method , Genotype , Humans , Male , Young Adult
2.
Eur J Appl Physiol ; 121(8): 2349-2359, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34003364

ABSTRACT

PURPOSE: The aim of this study was to evaluate the effect of a ketogenic diet on blood pressure, visceral adipose tissue (VAT), bone mineral content (BMC), and bone mineral density (BMD) in trained women. METHODS: Twenty-one resistance-trained women performed an 8-week resistance training program after a 3-week familiarization phase. Participants were randomly assigned to a non-ketogenic diet (n = 11, NKD) or ketogenic diet (n = 10, KD) group. Health parameters were measured before and after the nutritional intervention. Blood pressure was measured using a digital automatic monitor, while VAT, BMC, and BMD changes were measured by dual-energy X-ray absorptiometry. RESULTS: There was a significant reduction in systolic blood pressure in KD (mean ± SD [IC 95%], P value, Hedges' g; - 6.3 ± 6.0 [- 10.5, - 2.0] mmHg, P = 0.009, g = - 0.81) but not in NKD (- 0.4 ± 8.9 [- 6.8, 6.0] mmHg, P = 0.890, g = - 0.04). The results on VAT showed no changes in both groups. The KD showed a small favorable effect on BMD (0.02 ± 0.02 [0.01, 0.03] g·cm-2, P = 0.014, g = 0.19) while NKD did not show significant changes (0.00 ± 0.02 [- 0.02, 0.02] g·cm-2, P = 0.886, g = 0.01). No differences in group or in the time × group interaction were found in any of the variables. CONCLUSIONS: Consuming a low-carbohydrate high-fat KD in conjunction with a resistance training program might help to promote the improvement of health-related markers in resistance-trained women. Long-term studies are required to evaluate the superiority of a KD in comparison to a traditional diet.


Subject(s)
Diet, Carbohydrate-Restricted , Diet, Ketogenic , Resistance Training , Adult , Blood Pressure/physiology , Bone Density/physiology , Energy Intake , Female , Humans , Intra-Abdominal Fat/physiology
3.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575884

ABSTRACT

Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.


Subject(s)
Sarcopenia/etiology , Sarcopenia/therapy , Aging/physiology , Biomarkers , Dietary Supplements , Disease Management , Disease Susceptibility , Exercise , Humans , MicroRNAs/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Oxidative Stress , Sarcopenia/diagnosis
4.
J Strength Cond Res ; 35(2): 411-419, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33306586

ABSTRACT

ABSTRACT: Bagheri, R, Moghadam, BH, Ashtary-Larky, D, Forbes, SC, Candow, DG, Galpin, AJ, Eskandari, M, Kreider, RB, and Wong, A. Whole egg vs. egg white ingestion during 12 weeks of resistance training in trained young males: a randomized controlled trial. J Strength Cond Res 35(2): 411-419, 2021-The primary purpose was to compare the effects of whole egg ingestion and egg white ingestion during 12 weeks of resistance training (RT) on muscle cross-sectional area, body composition, muscular strength, and anaerobic power in resistance-trained young males. A secondary purpose was to examine systemic hormonal responses. Thirty resistance-trained young males were randomly assigned to one of 2 groups: Whole eggs + RT (WER; n = 15) or egg whites + RT (ERT; n = 15). Whole eggs + RT ingested 3 whole eggs immediately following RT, whereas ERT ingested an isonitrogenous quantity consisting of 6 egg whites immediately following RT. Before and after 12 weeks of whole-body undulating periodized RT (3 sessions per week), knee extensor muscle mass and cross-sectional area (computed tomography), lean body mass and body fat percentage (bioelectrical impedance), muscular strength (knee extension, handgrip strength), Wingate (cycle ergometer), and serum concentrations of hormones were assessed. There was a significant group × time interaction for body fat percentage, serum testosterone, knee extension, and handgrip strength with greater improvements observed in WER. There was a significant main effect of time (p < 0.05) for knee extensor muscle mass, cross-sectional area, lean body mass, anaerobic power, and all other blood hormones. There was a trend (p = 0.06) in the WER group for having a greater change in lean body mass compared with that of ERT. Postexercise whole egg ingestion increases knee extension and handgrip strength, testosterone, and reduces body fat percentage compared with postexercise egg white ingestion, despite no group differences in muscle mass, in resistance-trained young males. Whole eggs consumption may be preferable during RT programs geared toward the improvement of muscular strength and body fat percentage.


Subject(s)
Egg White , Resistance Training , Body Composition , Eating , Hand Strength , Humans , Male , Muscle Strength , Muscle, Skeletal/metabolism
5.
Eur J Appl Physiol ; 119(4): 933-940, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30680448

ABSTRACT

PURPOSE: The aim of this study was to compare the effects of resistance training (RT) with an emphasis on either muscular strength-type RT or muscular endurance-type RT on measures of body composition. METHODS: Twenty-five resistance-trained men (age 28.4 ± 6.4 years; body mass 75.9 ± 8.4 kg; height 176.9 ± 7.5 cm) were randomly assigned to either a strength-type RT group that performed three sets of 6-8 repetition maximum (RM) with 3-min rest (n = 10), an endurance-type RT group that performed three sets of 20-25 RM with a 60-s rest interval (n = 10), or a control group (n = 5, CG). All groups completed each set until muscular failure and were supervised to follow a hyperenergetic diet (39 kcal·kg-1·day-1). Body composition changes were measured by dual-energy X-ray absorptiometry. RESULTS: After 8 weeks, we found significant increases in total body mass (0.9 [0.3-1.5] kg; p < 0.05; ES = < 0.2) and lean body mass (LBM) (1.3 [0.5-2.2] kg; p < 0.05; ES = 0.31) only in the strength-type RT group; however, no significant interactions were noted between groups. CONCLUSIONS: Although only strength-type RT showed statistically significant increases in LBM from baseline, no between-group differences were noted for any body composition outcome. These findings suggest that LBM gains in resistance trained are not significantly influenced by the type of training stimulus over an 8-week training period.


Subject(s)
Body Composition/physiology , Muscle Strength/physiology , Physical Endurance/physiology , Resistance Training , Absorptiometry, Photon/methods , Adaptation, Physiological/physiology , Adult , Body Mass Index , Humans , Male , Muscle, Skeletal/physiology
6.
Int J Sports Med ; 40(13): 842-849, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31491790

ABSTRACT

The purpose was to analyze the influence of oral contraceptive use on body composition and strength levels in trained women. Twenty-three resistance-trained women participated in this study (age=27.4±3.4 years; fat mass=28.0±5.0%; BMI=22.9±2.7 kg∙m-2). Subjects performed an 8-week non-linear resistance-training program. Participants were assigned to either a group that consumed oral contraceptives (n=12, OC) or to a group that did not consume (n=11, NOC). Changes in body composition were measured by dual energy X-ray absorptiometry. Strength performance was assessed via the one maximum repetition (1RM) test in the squat and bench press, and muscular power was evaluated using the countermovement jump (CMJ) test. Fat free mass increased significantly in OC but no changes were seen in NOC. There were no changes in fat mass for either OC or NOC. Significant changes were found in bench press 1RM for both OC and NOC; similarly, increases in squat 1RM were reported in OC and NOC. Alternatively, no significant changes were found in CMJ in both OC and NOC. No significant between-group differences were detected in any of the studied variables. The use of oral contraceptives during resistance training did not negatively affect body composition or strength levels in trained women.


Subject(s)
Body Composition/drug effects , Contraceptives, Oral/pharmacology , Muscle Strength/drug effects , Resistance Training , Adaptation, Physiological , Adult , Body Mass Index , Diet , Exercise Test/methods , Female , Humans , Plyometric Exercise , Young Adult
7.
Amino Acids ; 47(6): 1203-13, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25740607

ABSTRACT

The purpose of this study was to determine if the co-ingestion of carbohydrate (CHO) with branched-chain amino acids (BCAA) or L-leucine (LEU) preferentially affected serum IGF-1 and the expression of myogenic-related genes in response to resistance exercise (RE). Forty-one college-age males were randomly assigned to 1 of 4 groups: CHO, CHO-BCAA, CHO-LEU, or placebo (PLC). Resistance exercise consisted of 4 sets of 10 repetitions of leg press and leg extension at 80 % 1RM. Supplements were ingested peri-exercise, and venous blood and muscle biopsies were obtained pre-exercise (PRE), and at 30, 120, and 360 min post-exercise. Serum IGF-1 was determined with ELISA, and skeletal muscle mRNA expression of myostatin, ACTRIIB, p21kip, p27kip, CDK2, cyclin B1, cyclin D1, Myo-D, myogenin, MRF-4, and myf5 was determined using real-time PCR. Results were analyzed by two-way ANOVA for serum IGF-1 and two-way MANOVA for mRNA expression. Serum IGF-1 in CHO + BCAA was greater than PLC (p < 0.05) but was not affected by RE (p > 0.05). A significant group × time interaction was located for cylin D1 (p < 0.05), but not for any other genes. However, significant time effects were noted for cyclin B1 and p21cip (p < 0.05). At 30, 120 and 360 min post-exercise, p21cip was significantly less than PRE. Cyclin D1 was greater than PRE and 30 min post-exercise at 120 and 360 min post-exercise, whereas cyclin B1 was significantly greater than PRE at 120 min post-exercise (p < 0.05). Unlike the co-ingestion of CHO with either BCAA or L-leucine in conjunction with RE, the expression of various myogenically related genes were up-regulated with RE.


Subject(s)
Dietary Carbohydrates/administration & dosage , Gene Expression Regulation/drug effects , Insulin-Like Growth Factor I/biosynthesis , Leucine/administration & dosage , Muscle Proteins/biosynthesis , Physical Endurance/drug effects , Adolescent , Adult , Gene Expression Regulation/physiology , Humans , Male , Physical Endurance/physiology
8.
J Strength Cond Res ; 34(2): 295-297, 2020 02.
Article in English | MEDLINE | ID: mdl-31977587
9.
Lipids Health Dis ; 13: 95, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24912476

ABSTRACT

BACKGROUND: Major cardiovascular disorders are being recognized earlier in life. In this study we examined the effects of swimming and soccer training on male adolescent lipid-lipoprotein profiles relative to a maturity matched control group to determine the effects of these exercises on specific cardiovascular risk and anti-risk factors. METHODS: Forty five adolescent males (11.81 ± 1.38 yr) including swimmers (SW), soccer players (SO), and non-athlete, physically active individuals as controls (C), participated in this study. Training groups completed 12-wk exercise programs on three non-consecutive days per week. Plasma low-density lipoprotein (LDL), very low density lipoprotein (VLDL), high density lipoprotein (HDL), apolipoprotein A-I (apoA-I), apolipoprotein B (apoB), total cholesterol (TC), and triglyceride (TG) levels were measured in control, pre-training, during-training, and post-training. RESULTS: In response to the 12-wk training period, the SO group demonstrated a decrease in the mean LDL level compared to the SW and C (SW: 0.15%; SO: -9.51%; C: 19.59%; p < 0.001) groups. There was an increase in both the SW and SO groups vs. the control in mean HDL (SW: 5.66%; SO: 3.07%; C: -7.21%; p < 0.05) and apoA-I (SW: 3.86%; SO: 5.48%; C: -1.01%; p < 0.05). ApoB was considerably lower in the training groups vs. control (SW: -9.52%; SO: -13.87%; C: 21.09%; p < 0.05). ApoA-I/apoB ratio was significantly higher in training groups vs. control (SW: 16.74%; SO: 23.71%; C: -17.35%; p < 0.001). There were no significant differences between groups for other factors. CONCLUSIONS: The favorable alterations in LDL, HDL, apoA-I, and apoB observed in the training groups suggest that both regular swimming or soccer exercise can potentially mitigate cardiovascular risk in adolescent males.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Exercise/physiology , Adolescent , Apolipoprotein A-I/blood , Apolipoproteins B/blood , Child , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Humans , Lipoproteins, LDL/blood , Male , Risk Factors
10.
J Strength Cond Res ; 28(5): 1246-54, 2014 May.
Article in English | MEDLINE | ID: mdl-24476779

ABSTRACT

The factors that best account for differences in strength across all types of exercise, body types, and training histories are not well understood. The purpose of this study was to assess the effects of strength level and body composition on upper- and lower-body work capacity in adult men. From a cohort of 295 adult men (25.6 ± 7.5 years, 178 ± 8 cm, 85.2 ± 15 kg), low-strength (LS, n = 72) and high-strength (HS, n = 66) samples were selected based on 1 repetition maximum (1RM) bench press (BP) and leg strength (LP) values. Work capacity for each exercise was determined from the product of repetition weight (80% 1RM) and maximum repetitions-to-fatigue (RTF). Body composition was measured using dual-energy x-ray absorptiometry. The HS group was significantly greater than the LS group in total body mass and fat-free mass but not in age, height, fat mass, or %fat. Low-strength and HS groups were not significantly different (p > 0.05) in RTF for either BP (8.7 ± 3.1 vs. 8.3 ± 1.9 reps, respectively) or LP (15.6 ± 7.6 vs. 17.0 ± 6.3 reps, respectively), making the ratio of RTF for BP vs. LP nonsignificant (LS = 2.0 ± 1.0; HS = 2.2 ± 0.9). The HS group produced significantly greater (p < 0.001) absolute and relative work capacities for both BP and LP compared with the LS group. Repetitions-to-fatigue had a greater influence on BP (r2 = 0.74) and LP (r2 = 0.85) work capacities in the LS group than did RepWt (r2 = 0.07 and 0.28, respectively). In the HS group, RTF (r2 = 0.79) had a greater influence than RepWt (r2 = 0.10) on BP work capacity, whereas the 2 components were more similar for LP work capacity (r2 = 0.64 and 0.47, respectively). When evaluated at the same %1RM, muscular endurance is similar across divergent strength levels meaning that work capacity (load × reps) will be greater for HS individuals. Controlling for the influence of body composition variables (e.g., fat or fat-free mass) does not eliminate the difference in work capacity between strength groups suggesting that other factors are accounting for strength expression. Prescribing repetitions against a fixed relative load is largely dependent on exercise type and must be considered by strength and conditioning professionals.


Subject(s)
Adiposity/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Adolescent , Adult , Humans , Lower Extremity/physiology , Male , Middle Aged , Muscle Fatigue/physiology , Physical Fitness/physiology , Young Adult
11.
Bioengineering (Basel) ; 11(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790368

ABSTRACT

The emergence of remote health monitoring and increased at-home care emphasizes the importance of patient adherence outside the clinical setting. This is particularly pertinent in the treatment of Attention Deficit Hyperactivity Disorder (ADHD) in pediatric patients, as the population inherently has difficulty remembering and initiating treatment tasks. Neurostimulation is an emerging treatment modality for pediatric ADHD and requires strict adherence to a treatment regimen to be followed in an at-home setting. Thus, to achieve the desired therapeutic effect, careful attention must be paid to design features that can passively promote and effectively monitor therapeutic adherence. This work describes instrumentation designed to support a clinical trial protocol that tests whether choice of color, or color itself, can statistically significantly increase adherence rates in pediatric ADHD patients in an extraclinical environment. This is made possible through the development and application of an internet-of-things approach in a remote adherence monitoring technology that can be implemented in forthcoming neurostimulation devices for pediatric patient use. This instrumentation requires minimal input from the user, is durable and resistant to physical damage, and provides accurate adherence data to parents and physicians, increasing assurance that neurostimulation devices are effective for at-home care.

12.
Sports Health ; : 19417381241260412, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910451

ABSTRACT

CONTEXT: Movement velocity (MV) may be a valid tool to evaluate and control the load in resistance training (RT). The rating of perceived exertion (RPE) also enables practical load management. The relationship between RPE and MV may be used to monitor RT intensity. OBJECTIVE: To evaluate the validity and practicality of RPE scales related to MV and training intensity in resistance exercise. We hypothesize a positive correlation among RPE, MV, and load intensity in RT. Therefore, RPE may serve as a supplementary indicator in monitoring RT load. DATA SOURCES: Boolean algorithms were used to search several databases (SPORTDiscus, EBSCO, PubMed, Scopus, and Google Scholar). STUDY SELECTION: Studies published from 2009 to 2023 included clinical trials (randomized or not) in healthy female and male subjects that analyzed the relationship between different RPE scales and MV in basic RT exercises. STUDY DESIGN: Systematic review. LEVEL OF EVIDENCE: Level 3. RESULTS: A total of 18 studies were selected using different RPE scales with reported MV training loads. Participants included RT and untrained male and female subjects (15-31 years old). Two RPE scales (OMNI-RES and repetitions in reserve) were used. The selected studies showed moderate positive correlations among these RPE scales, MV, and training load (eg, percentage of 1-repetition maximum [%1-RM]). In addition, equations have been developed to estimate %1-RM and MV loss based on the OMNI-RES scale. CONCLUSION: Studies show that RPE scales and MV constitute a valid, economic, and practical tool for assessing RT load progression and complementing other training monitoring variables. Exercise professionals should consider familiarizing participants with RPE scales and factors that might influence the perception of exertion (eg, level of training, motivation, and environmental conditions).

13.
Nutrients ; 16(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931168

ABSTRACT

BACKGROUND: Ashwagandha has been reported to reduce stress and attenuate cognitive decline associated with inflammation and neurodegeneration in clinical populations. However, the effects as a potential nootropic nutrient in younger populations are unclear. This study examined the effects of liposomal ashwagandha supplementation on cognitive function, mood, and markers of health and safety in healthy young men and women. METHODS: 59 men and women (22.7 ± 7 yrs., 74.9 ± 16 kg, 26.2 ± 5 BMI) fasted for 12 h, donated a fasting blood sample, and were administered the COMPASS cognitive function test battery (Word Recall, Word recognition, Choice Reaction Time Task, Picture Recognition, Digit Vigilance Task, Corsi Block test, Stroop test) and profile of mood states (POMS). In a randomized and double-blind manner, participants were administered 225 mg of a placebo (Gum Arabic) or ashwagandha (Withania somnifera) root and leaf extract coated with a liposomal covering. After 60-min, participants repeated cognitive assessments. Participants continued supplementation (225 mg/d) for 30 days and then returned to the lab to repeat the experiment. Data were analyzed using a general linear model (GLM) univariate analysis with repeated measures and pairwise comparisons of mean changes from baseline with 95% confidence intervals (CI). RESULTS: Ashwagandha supplementation improved acute and/or 30-day measures of Word Recall (correct and recalled attempts), Choice Reaction Time (targets identified), Picture Recognition ("yes" correct responses, correct and overall reaction time), Digit Vigilance (correct reaction time), Stroop Color-Word (congruent words identified, reaction time), and POMS (tension and fatigue) from baseline more consistently with several differences observed between groups. CONCLUSION: Results support contentions that ashwagandha supplementation (225 mg) may improve some measures of memory, attention, vigilance, attention, and executive function while decreasing perceptions of tension and fatigue in younger healthy individuals. Retrospectively registered clinical trial ISRCTN58680760.


Subject(s)
Affect , Cognition , Dietary Supplements , Plant Extracts , Humans , Male , Female , Cognition/drug effects , Double-Blind Method , Young Adult , Adult , Affect/drug effects , Plant Extracts/pharmacology , Adolescent , Reaction Time/drug effects , Biomarkers/blood , Liposomes , Plant Leaves/chemistry , Plant Roots/chemistry
14.
J Int Soc Sports Nutr ; 21(1): 2341903, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38626029

ABSTRACT

Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.


Subject(s)
Dietary Proteins , Physical Endurance , Humans , Physical Endurance/physiology , Exercise/physiology , Dietary Supplements , Muscle, Skeletal/physiology
15.
Nutrients ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38613023

ABSTRACT

BACKGROUND: Microalgae like Phaeodactylum tricornutum (PT) contain the carotenoid, fucoxanthin, which has been purported to promote fat loss, lower blood lipids, and improve glucose management. This study examined whether dietary supplementation with microalgae extracts from PT containing 4.4 mg/d of fucoxanthin affects changes in body composition or health markers in overweight women during an exercise and diet intervention. MATERIALS AND METHODS: A total of 37 females (28.6 ± 7.9 years, 80.2 ± 14.9 kg, 29.6 ± 3.8 kg/m², 41.4 ± 4.2% fat) fasted for 12 h, donated a fasting blood sample, completed health and mood state inventories, and undertook body composition, health, and exercise assessments. In a counterbalanced, randomized, and double-blind manner, participants ingested a placebo (PL), or microalgae extract of Phaeodactylum tricornutum standardized to 4.4 mg of fucoxanthin (FX) for 12 weeks while participating in a supervised exercise program that included resistance-training and walking (3 days/week) with encouragement to accumulate 10,000 steps/day on remaining days of the week. The diet intervention involved reducing energy intake by about -300 kcal/d (i.e., ≈1400-1600 kcals/d, 55% carbohydrate, 30% fat, 15% protein) to promote a -500 kcal/d energy deficit with exercise. Follow-up testing was performed at 6 and 12 weeks. A general linear model (GLM) with repeated measures statistical analysis was used to analyze group responses and changes from baseline with 95% confidence intervals. RESULTS: Dietary supplementation with microalgae extract from PT containing fucoxanthin for 12 weeks did not promote additional weight loss or fat loss in overweight but otherwise healthy females initiating an exercise and diet intervention designed to promote modest weight loss. However, fucoxanthin supplementation preserved bone mass, increased bone density, and saw greater improvements in walking steps/day, resting heart rate, aerobic capacity, blood lipid profiles, adherence to diet goals, functional activity tolerance, and measures of quality of life. Consequently, there appears to be some benefit to supplementing microalgae extract from PT containing fucoxanthin during a diet and exercise program. Registered clinical trial #NCT04761406.


Subject(s)
Microalgae , Xanthophylls , Female , Humans , Dietary Supplements , Overweight/therapy , Quality of Life , Weight Loss , Young Adult , Adult
16.
J Int Soc Sports Nutr ; 21(1): 2352779, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38725238

ABSTRACT

RATIONALE: Intense exercise promotes fatigue and can impair cognitive function, particularly toward the end of competition when decision-making is often critical for success. For this reason, athletes often ingest caffeinated energy drinks prior to or during exercise to help them maintain focus, reaction time, and cognitive function during competition. However, caffeine habituation and genetic sensitivity to caffeine (CA) limit efficacy. Paraxanthine (PX) is a metabolite of caffeine reported to possess nootropic properties. This study examined whether ingestion of PX with and without CA affects pre- or post-exercise cognitive function. METHODS: 12 trained runners were randomly assigned to consume in a double-blind, randomized, and crossover manner 400 mg of a placebo (PL); 200 mg of PL + 200 mg of CA; 200 mg of PL + 200 mg of PX (ENFINITY®, Ingenious Ingredients); or 200 mg PX + 200 mg of CA (PX+CA) with a 7-14-day washout between treatments. Participants donated fasting blood samples and completed pre-supplementation (PRE) side effects questionnaires, the Berg-Wisconsin Card Sorting Test (BCST), and the Psychomotor Vigilance Task Test (PVTT). Participants then ingested the assigned treatment and rested for 60 minutes, repeated tests (PRE-EX), performed a 10-km run on a treadmill at a competition pace, and then repeated tests (POST-EX). Data were analyzed using General Linear Model (GLM) univariate analyses with repeated measures and percent changes from baseline with 95% confidence intervals. RESULTS: BCST correct responses in the PX treatment increased from PRE-EX to POST-EX (6.8% [1.5, 12.1], p = 0.012). The error rate in the PL (23.5 [-2.8, 49.8] %, p = 0.078) and CA treatment (31.5 [5.2, 57.8] %, p = 0.02) increased from PRE-EX values with POST-EX errors tending to be lower with PX treatment compared to CA (-35.7 [-72.9, 1.4] %, p = 0.059). POST-EX perseverative errors with PAR rules were significantly lower with PX treatment than with CA (-26.9 [-50.5, -3.4] %, p = 0.026). Vigilance analysis revealed a significant interaction effect in Trial #2 mean reaction time values (p = 0.049, ηp2 = 0.134, moderate to large effect) with POST-EX reaction times tending to be faster with PX and CA treatment. POST-EX mean reaction time of all trials with PX treatment was significantly faster than PL (-23.2 [-43.4, -2.4] %, p = 0.029) and PX+CA (-29.6 [-50.3, -8.80] %, p = 0.006) treatments. There was no evidence that PX ingestion adversely affected ratings of side effects associated with stimulant intake or clinical blood markers. CONCLUSIONS: Results provide some evidence that pre-exercise PX ingestion improves prefrontal cortex function, attenuates attentional decline, mitigates cognitive fatigue, and improves reaction time and vigilance. Adding CA to PX did not provide additional benefits. Therefore, PX ingestion may serve as a nootropic alternative to CA.


Subject(s)
Caffeine , Cognition , Cross-Over Studies , Running , Humans , Caffeine/administration & dosage , Caffeine/pharmacology , Double-Blind Method , Cognition/drug effects , Running/physiology , Male , Adult , Theophylline/pharmacology , Theophylline/administration & dosage , Female , Reaction Time/drug effects , Young Adult , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/pharmacology
17.
J Int Soc Sports Nutr ; 21(1): 2368167, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38934469

ABSTRACT

POSITION STATEMENT: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the use of a ketogenic diet in healthy exercising adults, with a focus on exercise performance and body composition. However, this review does not address the use of exogenous ketone supplements. The following points summarize the position of the ISSN.1. A ketogenic diet induces a state of nutritional ketosis, which is generally defined as serum ketone levels above 0.5 mM. While many factors can impact what amount of daily carbohydrate intake will result in these levels, a broad guideline is a daily dietary carbohydrate intake of less than 50 grams per day.2. Nutritional ketosis achieved through carbohydrate restriction and a high dietary fat intake is not intrinsically harmful and should not be confused with ketoacidosis, a life-threatening condition most commonly seen in clinical populations and metabolic dysregulation.3. A ketogenic diet has largely neutral or detrimental effects on athletic performance compared to a diet higher in carbohydrates and lower in fat, despite achieving significantly elevated levels of fat oxidation during exercise (~1.5 g/min).4. The endurance effects of a ketogenic diet may be influenced by both training status and duration of the dietary intervention, but further research is necessary to elucidate these possibilities. All studies involving elite athletes showed a performance decrement from a ketogenic diet, all lasting six weeks or less. Of the two studies lasting more than six weeks, only one reported a statistically significant benefit of a ketogenic diet.5. A ketogenic diet tends to have similar effects on maximal strength or strength gains from a resistance training program compared to a diet higher in carbohydrates. However, a minority of studies show superior effects of non-ketogenic comparators.6. When compared to a diet higher in carbohydrates and lower in fat, a ketogenic diet may cause greater losses in body weight, fat mass, and fat-free mass, but may also heighten losses of lean tissue. However, this is likely due to differences in calorie and protein intake, as well as shifts in fluid balance.7. There is insufficient evidence to determine if a ketogenic diet affects males and females differently. However, there is a strong mechanistic basis for sex differences to exist in response to a ketogenic diet.


Subject(s)
Athletic Performance , Diet, Ketogenic , Sports Nutritional Physiological Phenomena , Humans , Athletic Performance/physiology , Body Composition , Ketosis , Sports Nutritional Sciences , Dietary Carbohydrates/administration & dosage , Exercise/physiology , Physical Endurance/physiology
18.
J Strength Cond Res ; 27(11): 3116-31, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23736782

ABSTRACT

We sought to determine if hypertrophic training with intraset rest intervals (ISRs) produced greater gains in power compared with traditional rest (TRD) hypertrophic training. Twenty-two men (age 25 ± 5 years, height 179.71 ± 5.04 cm, weight 82.1 ± 10.6 kg, 6.5 ± 4.5 years of training) matched according to baseline characteristics were assigned to 12 weeks of training using TRD or ISR. Body composition, strength (1-repetition maximum [1RM] bench and squat), and power output (60% 1RM bench and squat, and vertical jump) were assessed at baseline, 4, 8, and 12 weeks. Determination of myosin heavy chain (MHC) percentage from the vastus lateralis was performed pretraining and posttraining. Body composition was analyzed by analysis of variance, whereas performance measures and MHC were analyzed by analysis of covariance with baseline values as the covariate. Data are presented as mean ± SD changes pre to post. The ISR produced greater power output in bench (TRD 32.8 ± 53.4 W; ISR 83.0 ± 49.9 W, p = 0.020) and vertical jump (TRD 91.6 ± 59.8 W; ISR 147.7 ± 52.0 W; p = 0.036) with squat power approaching significance (TRD 204.9 ± 70.2 W; ISR 282.1 ± 104.2 W; p = 0.053) after post hoc analysis (p < 0.10). The ISR produced greater gains in bench (TRD 9.1 ± 3.7 kg; ISR 15.1 ± 8.3 kg; p = 0.010) and squat (TRD 48.5 ± 17.4 kg; ISR 63.8 ± 12.0 kg; p = 0.002) strength. Both protocols produced significant gains in lean mass with no significant differences between groups (1.6 ± 2.1 kg; p = 0.869). The MHCIIx percentage decreased (-31.0 ± 24.5%; p = 0.001), whereas the MHCIIA percentage increased (28.9 ± 28.5%; p = 0.001) with no significant differences between groups. Results indicate that hypertrophy training with ISR produces greater gains in strength and power, with similar gains in lean mass and MHC alterations as TRD. The ISR may be best used in hypertrophic training for strength and power sports.


Subject(s)
Exercise/physiology , Muscle Strength , Muscle, Skeletal/physiology , Resistance Training/methods , Rest/physiology , Adult , Athletic Performance/physiology , Body Composition , Exercise Test , Humans , Longitudinal Studies , Male , Myosin Heavy Chains/metabolism , Quadriceps Muscle/metabolism , Young Adult
19.
Exp Biol Med (Maywood) ; 248(5): 380-393, 2023 05.
Article in English | MEDLINE | ID: mdl-36775855

ABSTRACT

Spaceflight exerts an extreme and unique influence on human physiology as astronauts are subjected to long-term or short-term exposure to microgravity. During spaceflight, a multitude of physiological changes, including the loss of skeletal muscle mass, bone resorption, oxidative stress, and impaired blood flow, occur, which can affect astronaut health and the likelihood of mission success. In vivo and in vitro metabolite studies suggest that amino acids are among the most affected nutrients and metabolites by microgravity (a weightless condition due to very weak gravitational forces). Moreover, exposure to microgravity alters gut microbial composition, immune function, musculoskeletal health, and consequently amino acid metabolism. Appropriate knowledge of daily protein consumption, with a focus on specific functional amino acids, may offer insight into potential combative and/or therapeutic effects of amino acid consumption in astronauts and space travelers. This will further aid in the successful development of long-term manned space mission and permanent space habitats.


Subject(s)
Bone Resorption , Space Flight , Weightlessness , Humans , Astronauts , Oxidative Stress
20.
Biomolecules ; 13(7)2023 07 19.
Article in English | MEDLINE | ID: mdl-37509183

ABSTRACT

Uveal melanoma (UVM) is a highly aggressive ocular cancer with limited therapeutic options and poor prognosis particularly for patients with liver metastasis. As such, the identification of new prognostic biomarkers is critical for developing effective treatment strategies. In this study, we aimed to investigate the potential of an ultraviolet light response gene signature to predict the prognosis of UVM patients. Our approach involved the development of a prognostic model based on genes associated with the cellular response to UV light. By employing this model, we generated risk scores to stratify patients into high- and low-risk groups. Furthermore, we conducted differential expression analysis between these two groups and explored the estimation of immune infiltration. To validate our findings, we applied our methodology to an independent UVM cohort. Through our study, we introduced a novel survival prediction tool and shed light on the underlying cellular processes within UVM tumors, emphasizing the involvement of immune subsets in tumor progression.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Ultraviolet Rays , Melanoma/pathology , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Eye/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL