Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Inorg Chem ; 62(17): 6617-6628, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37057906

ABSTRACT

A family of bacterial copper storage proteins (the Csps) possess thiolate-lined four-helix bundles whose cores can be filled with Cu(I) ions. The majority of Csps are cytosolic (Csp3s), and in vitro studies carried out to date indicate that the Csp3s from Methylosinus trichosporium OB3b (MtCsp3), Bacillus subtilis (BsCsp3), and Streptomyces lividans (SlCsp3) are alike. Bioinformatics have highlighted homologues with potentially different Cu(I)-binding properties from these characterized "classical" Csp3s. Determination herein of the crystal structure of the protein (RkCsp3) from the methanotroph Methylocystis sp. strain Rockwell with Cu(I) bound identifies this as the first studied example of a new subgroup of Csp3s. The most significant structural difference from classical Csp3s is the presence of only two Cu(I) sites at the mouth of the bundle via which Cu(I) ions enter and leave. This is due to the absence of three Cys residues and a His-containing motif, which allow classical Csp3s to bind five to six Cu(I) ions in this region. Regardless, RkCsp3 exhibits rapid Cu(I) binding and the fastest measured Cu(I) removal rate for a Csp3 when using high-affinity ligands as surrogate partners. New experiments on classical Csp3s demonstrate that their His-containing motif is not essential for fast Cu(I) uptake and removal. Other structural features that could be important for these functionally relevant in vitro properties are discussed.


Subject(s)
Bacterial Proteins , Methylosinus trichosporium , Bacterial Proteins/chemistry , Copper/chemistry , Methylosinus trichosporium/chemistry , Methylosinus trichosporium/metabolism
2.
Environ Res ; 221: 115305, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36642120

ABSTRACT

Phenols are significant environmental endocrine disruptors that can have adverse health effects on exposed individuals. Correlating phenol exposure to potential health implications requires the development of a comprehensive and sensitive analytical method capable of analyzing multiple phenols in a single sample preparation and analytical run. Currently, no such method is available for multiple classes of phenols due to electrospray ionization (ESI) limitations in concurrent ionization and lack of sensitivity to certain phenols, particularly alkylphenols. In this study, we investigated the influence of mobile phase compositions in ESI on concurrent ionization and analytical sensitivity of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) during the analysis of multiple classes of phenols, and we propose a comprehensive and sensitive analytical method for various classes of phenols (i.e., bisphenols, parabens, benzophenones, chlorophenols, and alkylphenols). The proposed method was affected by 0.5 mM ammonium fluoride under methanol conditions. It enabled the concurrent ionization of all the phenols and significantly improved the analytical sensitivity for bisphenols and alkylphenols, which typically have poor ionization efficiency. This method, combined with a "dilute and shoot" approach, allowed us to simultaneously quantify 38 phenols with good chromatographic behavior and sensitivity. Furthermore, the method was successfully applied to the analysis of 61 urine samples collected from aquatic (swimming) and land (indoor volleyball and outdoor football) athletes.


Subject(s)
Chlorophenols , Humans , Tandem Mass Spectrometry/methods , Parabens/analysis , Benzophenones/analysis , Chromatography, Liquid/methods , Phenols/urine , Spectrometry, Mass, Electrospray Ionization/methods
3.
Environ Res ; 211: 113053, 2022 08.
Article in English | MEDLINE | ID: mdl-35240112

ABSTRACT

Environmental pollutants (EPOLs), such as phthalates, volatile organic compounds, phenols, parabens, polycyclic aromatic hydrocarbons, pyrethroids, and environmental tobacco smoke, are highly heterogeneous compounds. Recently, attention has been drawn to the assessment of the combinatory effects of multiple EPs. To correlate multiple exposures with potential health implications, advanced comprehensive analytical methods covering multiclass EPOLs are essential. However, because of several technical problems associated with enzyme hydrolysis, simultaneous extraction, and multiresidue liquid chromatography-tandem mass spectrometry analysis, it is difficult to establish a comprehensive method covering a number of EPOLs in a single sample preparation and analytical run. We developed tandem hybrid hydrolysis, modified direct injection, and a comprehensive mobile phase to overcome these technical problems and established a comprehensive analytical method for simultaneous biomonitoring of multiclass EPOLs. Tandem hybrid hydrolysis using ß-glucuronidase and consecutive acid hydrolysis allowed selective hydrolysis of glucuronide- and sulfate-conjugated metabolites without phthalate degradation. The comprehensive mobile phase composed of 0.01% acetic acid and acetonitrile enabled us to simultaneously analyze 86 EPOLs, with good chromatographic behavior and ionization efficiency. Modified direct injection allowed a small amount of sample and simultaneous urinary extraction. The method was validated and applied to 39 urine samples from 19 mother-newborn pairs for multiple exposure assessment. Results showed that BP-3, a general component in sunblock products, and monoethyl phthalate, a metabolite of diethyl phthalate, exhibit a clear positive correlation between mothers and newborns. Therefore, the developed method has potential as a novel analytical tool for long-term, large-scale, and data-rich human biomonitoring of EPOLs.


Subject(s)
Environmental Pollutants , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Humans , Hydrolysis , Infant, Newborn , Phenols/urine , Solid Phase Extraction , Tandem Mass Spectrometry/methods
4.
Bioorg Chem ; 107: 104581, 2021 02.
Article in English | MEDLINE | ID: mdl-33383321

ABSTRACT

Retaining glycosidase mutants lacking its general acid/base catalytic residue are originally termed thioglycoligases which synthesize thio-linked disaccharides using sugar acceptor bearing a nucleophilic thiol group. A few thioglycoligases derived from retaining α-glycosidases have been classified into a new class of catalysts, O-glycoligases which transfer sugar moiety to a hydroxy group of sugar acceptors, resulting in the formation of O-linked glycosides or oligosaccharides. In this study, an efficient O-α-glucosylation of flavonoids was developed using an O-α-glycoligase derived from a thermostable α-glucosidase from Sulfolobus solfataricus (MalA-D416A). The O-glycoligase exhibited efficient transglycosylation activity with a broad substrate spectrum for all kinds of tested flavonoids including flavone, flavonol, flavanone, flavanonol, flavanol and isoflavone classes in yields of higher than 90%. The glucosylation by MalA-D416A preferred alkaline conditions, suggesting that pH-promoted deprotonation of hydroxyl groups of the flavonoids would accelerate turnover of covalent enzyme intermediate via transglucosylation. More importantly, the glucosylation of flavonoids by MalA-D416A was exclusively regioselective, resulting in the synthesis of flavonoid 7-O-α-glucosides as the sole product. Kinetic analysis and molecular dynamics simulations provided insights into the acceptor specificity and the regiospecificity of O-α-glucosylation by MalA-D416A. This pH promoted transglycosylation using O-α-glycoligases may prove to be a general synthesis route to flavonoid O-α-glycosides.


Subject(s)
Flavonoids/biosynthesis , Protein Engineering , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Flavonoids/chemistry , Glycosylation , Hydrogen-Ion Concentration , Molecular Structure , Mutation , Structure-Activity Relationship , Substrate Specificity , Sulfolobus solfataricus/enzymology , alpha-Glucosidases/genetics
5.
Xenobiotica ; 50(12): 1423-1433, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32654586

ABSTRACT

Hydrocoptisonine is a new compound that has been isolated from the rhizomes of Coptis chinensis, which belongs to the Ranunculaceae family of Chinese medicines. Although studies on C. chinensis have been reported, the metabolic pathway of hydrocoptisonine in human liver microsomes (HLMs) remains unelucidated. We identified 13 metabolites in HLMs, including six Phase I metabolites and seven glucuronide conjugates, using a high-resolution quadrupole-orbitrap mass spectrometer. The major metabolic pathway was the O-demethylation and mono-hydroxylation of hydrocoptisonine in HLMs. Notably, M3 metabolite was O-demethylated in dioxolane structures (cyclohexa-3,5-diene-1,2-dione), which was mediated by cytochrome P450 1A2. The locations of hydroxylation and hydroxyl-glucuronidation were identified by analyzing the signature fragments generated as a result of tandem mass spectrometry, indicating hydroxylation at an aliphatic chain or aromatic ring. We determined whether the hydroxylation and glucuronidation occurred in an aromatic moiety (M5 and M12) or an aliphatic moiety (M6 and M13), respectively, based on signature fragments of the metabolites.


Subject(s)
Drugs, Chinese Herbal/metabolism , Microsomes, Liver/metabolism , Cytochrome P-450 CYP1A2 , Glucuronides/metabolism , Humans , Hydroxylation , Metabolic Networks and Pathways , Tandem Mass Spectrometry
6.
Xenobiotica ; 50(4): 380-388, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31233374

ABSTRACT

1. Glycyrol is a coumestan derivative that is isolated from roots of Glycyrrhiza uralensis. Glycyrol exhibits several biological effects, including anti-oxidative and anti-inflammatory effects.2. Herein, we characterized glycyrol metabolism by cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) using human liver microsomes (HLM), human liver cytosol, human intestinal microsomes, or human recombinant cDNA-expressed CYPs and UGTs. The analysis was conducted using high resolution mass spectroscopy (HR-MS) on a Q ExactiveTM HF Hybride Quadrupole-Orbitrap mass spectrometer.3. NADPH-supplemented HLM generated six glycyrol metabolites (M1-M6) via hydroxylation, oxidation, and hydration; both NADPH- and UDPGA-supplemented liver microsomes generated three glucuronides (M7-M9). Reaction phenotyping revealed that CYP1A2 is the primary enzyme responsible for phase I metabolism, with minor involvement of the CYP3A4/5, CYP2D6, and CYP2E1 enzymes. Glucuronidation of glycyrol was primarily mediated by UGT1A1, UGT1A3, UGT1A9, and UGT2B7.4. In conclusion, glycyrol undergoes the efficient metabolic hydroxylation and glucuronidation reactions in human liver microsomes, which are predominantly catalyzed by CYP1A2, UGT1A1/3/9, and UGT2B7.


Subject(s)
Flavonoids/metabolism , Cytochrome P-450 CYP1A2/metabolism , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Humans , Microsomes/metabolism , Microsomes, Liver/metabolism , Tandem Mass Spectrometry , UDP-Glucuronosyltransferase 1A9
7.
J Appl Toxicol ; 40(7): 1004-1013, 2020 07.
Article in English | MEDLINE | ID: mdl-32084307

ABSTRACT

Amiodarone is known to induce hepatic injury in some recipients. We applied an untargeted metabolomics approach to identify endogenous metabolites with potential as biomarkers for amiodarone-induced liver injury. Oral amiodarone administration for 1 week in rats resulted in significant elevation of acylcarnitines and phospholipids in the liver. Hepatic short- and medium-chain acylcarnitines were dramatically increased in a dose-dependent manner, while the serum levels of these acylcarnitines did not change substantially. In addition, glucose levels were significantly increased in both the serum and liver. Gene expression profiling showed that the hepatic mRNA levels of Cpt1, Cpt2, and Acat1 were significantly suppressed, whereas those of Acot1, Acly, Acss2, and Acsl3 were increased. These results suggest that hepatic acylcarnitines and glucose levels might be increased due to disruption of mitochondrial function and suppression of glucose metabolism. Perturbation of energy metabolism might be associated with amiodarone-induced hepatotoxicity.


Subject(s)
Amiodarone/toxicity , Biomarkers/metabolism , Carnitine/blood , Carnitine/genetics , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Liver/metabolism , RNA, Messenger , Administration, Oral , Amiodarone/administration & dosage , Animals , Genetic Variation , Male , Metabolomics , Rats , Rats, Sprague-Dawley
8.
J Biol Chem ; 293(13): 4616-4627, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29414794

ABSTRACT

Copper is essential for most organisms as a cofactor for key enzymes involved in fundamental processes such as respiration and photosynthesis. However, copper also has toxic effects in cells, which is why eukaryotes and prokaryotes have evolved mechanisms for safe copper handling. A new family of bacterial proteins uses a Cys-rich four-helix bundle to safely store large quantities of Cu(I). The work leading to the discovery of these proteins, their properties and physiological functions, and how their presence potentially impacts the current views of bacterial copper handling and use are discussed in this review.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Copper/metabolism , Metalloproteins/metabolism
9.
Int J Mol Sci ; 20(17)2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31450649

ABSTRACT

Escherichia coli has a well-characterized copper (Cu) transporting ATPase (CopA) that removes this potentially toxic metal ion from the cytosol. Growth of the strain lacking CopA (ΔcopA) is inhibited above 0.5 mM Cu, whilst a similar effect does not occur in wild type (WT) E. coli until over 2.5 mM Cu. Limited expression of CopA can restore growth to WT levels in ΔcopA E. coli in the presence of Cu. To study the influence of a bacterial cytosolic Cu storage protein (Csp3) on how E. coli handles Cu, the protein from Bacillus subtilis (BsCsp3) has been expressed in the WT and ΔcopA strains. BsCsp3 can protect both strains from Cu toxicity, promoting growth at up to ~1.5 and ~3.5 mM Cu, respectively. Higher levels of Csp3 expression are needed to provide resistance to Cu toxicity in ΔcopA E. coli. At 1.5 mM Cu, BsCsp3 purified from ΔcopA E. coli binds up to approximately four equivalents of Cu(I) per monomer. A similar number of Cu(I) equivalents can be bound by BsCsp3 purified from WT E. coli also grown at 1.5 mM Cu, a concentration that does not cause toxicity in this strain. Much lower amounts of BsCsp3 are produced in WT E. coli grown in the presence of 3.4 mM Cu, but the protein still counteracts toxicity and is almost half loaded with Cu(I). Csp3s can protect E. coli from Cu toxicity by sequestering cuprous ions in the cytosol. This appears to include an ability to acquire and withhold Cu(I) from the main efflux system in a heterologous host.


Subject(s)
Bacterial Proteins/metabolism , Copper/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Copper/chemistry , Copper/toxicity , Drug Resistance, Bacterial , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Mutation , Protein Binding
10.
Anal Chem ; 90(6): 4203-4211, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29461802

ABSTRACT

Herein, gas-phase polycyclic aromatic hydrocarbons (PAHs) as nonpolar compounds were ionized to protonated molecular ions [M + H]+ without radical cations and simultaneously analyzed using gas chromatography (GC)/electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). The ionization profile, dissociation, and sensitivity were first investigated to understand the significant behavior of gas-phase PAHs under ESI. The formation of protonated molecular ions of PAHs was distinguished according to the analyte phase and ESI spray solvents. The protonated PAHs exhibited characteristic dissociations, such as H-loss, H2-loss, and acetylene-loss, via competition of internal energy. In addition, GC/ESI-MS/MS resulted in relatively lower concentration levels (better sensitivity) for the limits-of-detection (LODs) of PAHs than liquid chromatography (LC)/ESI-MS/MS, and it seems to result from the characteristic ionization mechanism of the gas-phase analyte under ESI. Furthermore, the LODs of gas-phase PAHs depended on molecular weight and proton affinity (PA). Consequently, we demonstrated the relationship among the analyte phases, sensitivities, and structural characteristics (molecular weight and PA) under ESI. The gas-phase PAHs provided enhanced protonation efficiency and sensitivity using GC/ESI-MS/MS, as their molecular weight and PA increased. Based on these results, we offered important information regarding the behavior of gas-phase analytes under ESI. Therefore, the present GC/ESI-MS/MS method has potential as an alternative method for simultaneous analysis of PAHs.

11.
Chemistry ; 24(18): 4515-4518, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29365216

ABSTRACT

Methanobactins (Mbns) are modified peptides that sequester copper (Cu) methanotrophs use to oxidize methane. Limited structural information is available for this class of natural products, as is an understanding of how cells are able to utilize Mbn-bound Cu. The crystal structure of Methylosinus sporium NR3K CuI -Mbn provides further information about the structural diversity of Mbns and the first insight into their Cu-release mechanism. Nitrogen ligands from oxazolone and pyrazinediol rings chelate CuI along with adjacent coordinating sulfurs from thioamides. In vitro solution data are consistent with a CuI -Mbn monomer as found for previously characterized Mbns. In the crystal structure, the N-terminal region has undergone a conformational change allowing the formation of a CuI2 -Mbn2 dimer with CuI sites bound by chelating units from adjacent chains. Such a structural alteration will facilitate CuI release from Mbns.


Subject(s)
Methane/chemistry , Peptides/chemistry , Copper/chemistry , Molecular Structure , Oxidation-Reduction , Peptides/metabolism
12.
Rapid Commun Mass Spectrom ; 32(11): 897-905, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29572989

ABSTRACT

RATIONALE: In addition to the development of adequate screening methods for multiple compounds, the World Anti-Doping Agency (WADA) requires anti-doping laboratories to analyze prohibited substances and their metabolites from various classes. This task presents a difficult challenge for all agencies and interests involved in the field of doping control. METHODS: A screening method is reported in which hybrid sample preparation was performed using a combination of weak cation-exchange solid-phase extraction (WCX-SPE) and the 'Dilute and Shoot' strategy in order to take advantage of both the methodologies. Target substances were extracted using a WCX cartridge and reconstituted with a diluted sample aliquot that included 20% of an untreated urine sample. The target substances were further analyzed by high-performance liquid chromatography/triple quadrupole mass spectrometry (LC/MS). RESULTS: The SPE procedure was optimized using a cartridge-washing step, elution conditions, and elution volume. The cartridge-washing step, which was performed using 10% methanol, improved the overall recovery of target substances. Since the recovery was observed to vary according to the pH of the eluting solution, we applied an elution step using both an acid and a basic organic solvent to achieve complementary recovery. Reconstitution of the diluted aliquot sample was performed to recover the polar substances. CONCLUSIONS: The method was validated and applied to real samples in accordance with the external quality assessment scheme of WADA and to the previously reported samples that had provided positive test results. This novel method using hybrid sample preparation and LC/MS could be useful to screen multiple classes of the 264 targeted substances in anti-doping analysis.


Subject(s)
Doping in Sports , Performance-Enhancing Substances/analysis , Solid Phase Extraction/methods , Betamethasone/urine , Chromatography, High Pressure Liquid , Humans , Hydrogen-Ion Concentration , Limit of Detection , Performance-Enhancing Substances/urine , Reproducibility of Results , Sensitivity and Specificity , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Trimetazidine/urine
13.
Anal Chem ; 89(22): 12284-12292, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29058415

ABSTRACT

In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 µL min-1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.

14.
Neurochem Res ; 41(4): 666-76, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26464215

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35-55; occasionally, EAE is not well induced despite MOG35-55 immunization. To confirm that EAE induction varies with difference in MOG35-55 properties, we compared three MOG35-55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35-55 properties modulate EAE induction, and MOG35-55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-6/metabolism , Matrix Metalloproteinase 9/metabolism , Myelin-Oligodendrocyte Glycoprotein/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology
15.
Biomed Chromatogr ; 30(4): 555-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26268571

ABSTRACT

The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I-IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H](+) or [M + H-nH2 O](+) in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05-20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05-1, 2-5 and 10-20 ng/mL, respectively. Steroids including the conjugated keto-functional group at C3 showed good proton affinity and stability, and generated the [M + H](+) ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H](+) ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H - H2 O](+) or [M + H - 2H2 O](+) ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC-MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I-V) in human urine.


Subject(s)
Anabolic Agents/urine , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Steroids/urine , Anabolic Agents/chemistry , Humans , Ions/chemistry , Limit of Detection , Steroids/chemistry , Tandem Mass Spectrometry/methods
16.
Rapid Commun Mass Spectrom ; 29(4): 367-84, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-26406349

ABSTRACT

RATIONALE: Doping analysis is a two-step process consisting of a screening step for prohibited substances and a confirmation step to verify the presence of specific substances found during the screening. The entire process must be performed within a limited time period, but traditional screening procedures commonly employ separate analytical methods for each class of prohibited substances being screened and thus require a great deal of human resources and instrumentation. A single simple and rapid multiresidue analytical method that could accommodate multiple classes of prohibited substances would be extraordinarily useful in doping analyses. METHODS: Urine samples were extracted via two consecutive liquid-liquid extractions at different pH values following enzymatic hydrolysis. Analyses were performed by ultrafast liquid chromatography/triple-quadrupole mass spectrometry with polarity switching and time-dependent selected reaction monitoring. RESULTS: We developed a rapid multiresidue screening and confirmation method for efficient high-throughput doping analyses. The present method was validated with regard to the limits of detection (0.01-100.0 ng/mL for screening analyses and 0.2-500.0 ng/mL for confirmation assays), matrix effects (48.9-118.9%), recovery (20.6-119.7%) and intra- (0.6-17.6%) and inter-day (4.0-20.0%) precision. CONCLUSIONS: A multiresidue analytical method was developed and validated for screening and confirming the presence of performance-enhancing drugs. A total of 210 substances from diverse classes of prohibited substances were successfully identified with an analytical run time of 10 min.


Subject(s)
Chromatography, High Pressure Liquid/methods , Performance-Enhancing Substances/urine , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/economics , Humans , Limit of Detection , Liquid-Liquid Extraction , Reproducibility of Results , Tandem Mass Spectrometry/economics
17.
Drug Metab Dispos ; 42(8): 1252-60, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24829290

ABSTRACT

KRO-105714 [N-(5-benzoyl-2-(4-(2-methoxyphenyl)piperazin-1-yl)thiazol-4-yl)pivalamide] is a 2,4,5-trisubstituted 1,3-thiazole derivative that exerts anti-atopic dermatitis activity via robust suppression of the sphingosylphosphorylcholine receptor. This study used high-resolution/high-accuracy tandem mass spectroscopy (HRMS) and recombinant cDNA-expressed cytochrome P450 (P450) isoforms to identify the metabolic pathway and metabolites of KRO-105714 in human liver microsomes (HLMs) as therapeutic agents for inflammation. The incubation of KRO-105714 with pooled HLMs in the presence of NADPH generated four metabolites (M1-M4). The metabolites were identified using HRMS and confirmed using synthetic standards for M2 and M4. M1 and M2 were identified as monohydroxylated metabolites, and M3 and M4 were identified as O-demethyl KRO-105714 and C-demethyl KRO-105714, respectively. In the inhibition study with selective CYP3A4 inhibitors and incubation in recombinant cDNA-expressed P450 enzymes, all the metabolites of KRO-105714 were formed by CYP3A4 in HLMs. The CYP3A4-mediated formation of M4 from M2 was confirmed via incubation of M2 in HLMs. These results showed that the unusual C-demethylated metabolite M4 was generated from monohydroxyl metabolite M2 via a CYP3A4-mediated enzymatic reaction in HLMs.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Microsomes, Liver/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Chromatography, High Pressure Liquid/methods , Humans , Protein Isoforms/metabolism , Tandem Mass Spectrometry/methods
18.
Xenobiotica ; 44(7): 627-34, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24738939

ABSTRACT

1. The absorption, distribution, metabolism and excretion of a novel dipeptidyl peptidase IV inhibitor, gemigliptin, were examined following single oral administration of (14)C-labeled gemigliptin to rats. 2. The (14)C-labeled gemigliptin was rapidly absorbed after oral administration, and its bioavailability was 95.2% (by total radioactivity). Distribution to specific tissues other than the digestive organs was not observed. Within 7 days after oral administration, 43.6% of the administered dose was excreted via urine and 41.2% was excreted via feces. Biliary excretion of the radioactivity was about 17.7% for the first 24 h. After oral administration of gemigliptin to rats, the in vivo metabolism of gemigliptin was investigated with bile, urine, feces, plasma and liver samples. 3. The major metabolic pathway was hydroxylation, and the major circulating metabolites were a dehydrated metabolite (LC15-0516) and hydroxylated metabolites (LC15-0635 and LC15-0636).


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Piperidones/pharmacokinetics , Pyrimidines/pharmacokinetics , Administration, Oral , Animals , Bile/metabolism , Carbon Radioisotopes/pharmacokinetics , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/urine , Feces , Hydroxylation , Inactivation, Metabolic , Intestinal Absorption , Male , Piperidones/administration & dosage , Piperidones/urine , Pyrimidines/administration & dosage , Pyrimidines/urine , Rats, Sprague-Dawley , Tissue Distribution
19.
Bioorg Med Chem ; 21(17): 5480-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23810676

ABSTRACT

In Parkinson's disease, the motor impairments are mainly caused by the death of dopaminergic neurons. Among the enzymes which are involved in the biosynthesis and catabolism of dopamine, monoamine oxidase B (MAO-B) has been a therapeutic target of Parkinson's disease. However, due to the undesirable adverse effects, development of alternative MAO-B inhibitors with greater optimal therapeutic potential towards Parkinson's disease is urgently required. In this study, we designed and synthesized the oxazolopyridine and thiazolopyridine derivatives, and biologically evaluated their inhibitory activities against MAO-B. Structure-activity relationship study revealed that the piperidino group was the best choice for the R(1) amino substituent to the oxazolopyridine core structure and the activities of the oxazolopyridines with various phenyl rings were between 267.1 and 889.5nM in IC50 values. Interestingly, by replacement of the core structure from oxazolopyrine to thiazolopyridine, the activities were significantly improved and the compound 1n with the thiazolopyridine core structure showed the most potent activity with the IC50 value of 26.5nM. Molecular docking study showed that van der Waals interaction in the human MAO-B active site could explain the enhanced inhibitory activities of thiazolopyridine derivatives.


Subject(s)
Monoamine Oxidase Inhibitors/therapeutic use , Monoamine Oxidase/chemistry , Oxazoles/chemistry , Parkinson Disease/drug therapy , Pyridines/chemistry , Thiazoles/chemistry , Binding Sites , Catalytic Domain , Dopamine/metabolism , Humans , Molecular Docking Simulation , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Parkinson Disease/enzymology , Parkinson Disease/pathology , Pyridines/chemical synthesis , Pyridines/therapeutic use , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship
20.
Xenobiotica ; 43(6): 527-33, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23256623

ABSTRACT

1. The pharmacological activity of luotonin A varies, depending on the type of functional group and the site of derivatization. To understand the in vivo efficacy of luotonin A, the in vitro metabolism of luotonin A was investigated in human liver microsomes and recombinant cDNA-expressed cytochromeP450 (CYP). 2. Incubation of luotonin A with pooled human liver microsomes in the presence of NADPH-generating system resulted in the formation of four metabolites and the structures of each metabolite were tentatively characterized on the basis of electrospray tandem mass spectra. 3. The main metabolic pathway of luotonin A in human liver microsomes was hydroxylation, resulting in the generation of two mono-hydroxyl metabolites (M1 and M2) and two di-hydroxyl metabolites (M3 and M4). CYP1A2 was primarily involved in hydroxylation of the quinolone moiety (M1 and M3), while CYP3A4 was mainly responsible for hydroxylation of the quinazoline moiety of luotonin A (M2 and M4) in human liver microsomes.


Subject(s)
Microsomes, Liver/metabolism , Pyrroles/metabolism , Quinones/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Biotransformation/drug effects , Camptothecin/chemistry , Camptothecin/metabolism , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , DNA, Complementary/genetics , Enzyme Inhibitors/pharmacology , Humans , Hydroxylation/drug effects , Isoenzymes/metabolism , Metabolic Networks and Pathways/drug effects , Microsomes, Liver/drug effects , Molecular Weight , Protons , Pyrroles/chemistry , Quinones/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL