ABSTRACT
Monitoring the variations of lipid droplet (LD) polarity is of great significance for the investigation of LD-related cellular metabolism and function. We hereby report a lipophilic fluorescent probe (BTHO) with the feature of intramolecular charge transfer (ICT) for imaging the LD polarity in living cells. BTHO exhibits an obvious attenuation of fluorescence emission in response to the increase of environmental polarity. The linear response range of BTHO to polarity (ε, the dielectric constant of solvents) is derived to be 2.21-24.40, and the fluorescence of BTHO in glyceryl trioleate falls in this range. Furthermore, BTHO has high molecular brightness, which may effectively improve the signal to noise ratio, along with the decrease of phototoxicity. BTHO exhibits excellent photostability and targeting capability to LDs with low cytotoxicity, which is satisfactory in long-term imaging in live cells. The probe was successfully applied for imaging LD polarity variation in live cells caused by oleic acid (OA), methyl-ß-cyclodextrin (MßCD), H2O2, starvation, lipopolysaccharide (LPS), nystatin, and erastin. The low crosstalk caused by viscosity to BTHO measuring the LD polarity was confirmed from a calculation result.
Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/toxicity , Fluorescent Dyes/metabolism , Lipid Droplets/metabolism , Viscosity , Hydrogen Peroxide/metabolism , FluorescenceABSTRACT
Di-(2-Ethylhexyl) phthalate (DEHP) is widely used as an additive in many plastic products. Studies have revealed that DEHP persistent exposure can affect embryonic development and lead to adverse female reproductive disorders. The establishment of pregnancy involves extensive changes in the endometrial tissue, including massive extracellular matrix (ECM) remodeling. Decidualization of the endometrium provides a suitable environment for subsequent growth by causing changes in the morphology of the uterine stromal cells, is a key process in human pregnancy. Resveratrol (RSV) is a natural polyphenolic plant antitoxin with a wide range of pharmacological effects. Growing evidence indicates that RSV has therapeutic effects on certain female reproductive disorders. In this study, the effect of DEHP on cell viability was investigated by cell proliferation assay. Cell decidualization was induced in vitro, and the downregulation of molecules associated with decidualization was confirmed through quantitative real-time PCR and western blot analysis. Immunofluorescence analysis revealed alteration in cell morphology, and found that administration of DEHP sufficiently induced ERα entry into the nucleus. The effect of DEHP on cells was fully verified by RNA-seq analysis. Interestingly, an upregulation of decidual molecules was observed after rescue with RSV, which was confirmed by RNA-seq transcriptome analysis and quantitative real-time PCR assay. Additionally, the expression of ECM remodeling-related genes was significantly restored by RSV administration. The study revealed the potential mechanisms of DEHP-induced decidualization defects and the functional relieving roles of RSV while providing a perspective therapeutic candidate for alleviating the DEHP-induced deficiencies in decidualization.
Subject(s)
Decidua , Diethylhexyl Phthalate , Pregnancy , Female , Humans , Resveratrol/pharmacology , Diethylhexyl Phthalate/metabolism , EndometriumABSTRACT
BACKGROUND: Whey protein-epigallocatechin gallate (WP-EGCG) covalent conjugates and non-covalent nanocomplexes were prepared and compared using Fourier-transform infrared spectra. The effect of pH (at 2.6, 6.2, 7.1, and 8.2) on the non-covalent nanocomplexes' functional properties and the WP-EGCG interactions were investigated by studying antioxidant activity, emulsification, fluorescence quenching, and molecular docking, respectively. RESULTS: With the formation of non-covalent and covalent complexes, the amide band decreased; the -OH peak disappeared; the antioxidant activity of WP-EGCG non-covalent complexes was 2.59- and 2.61-times stronger than WP-EGCG covalent conjugates for 1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing ability of plasma (FRAP), respectively (particle size: 137 versus 370 nm). The antioxidant activity (DPPH 27.48-44.32%, FRAP 0.47-0.63) was stronger at pH 6.2-7.1 than at pH 2.6 and pH 8.2 (DPPH 19.50% and 26.36%, FRAP 0.39 and 0.41). Emulsification was highest (emulsifying activity index 181 m2 g-1 , emulsifying stability index 107%) at pH 7.1. The interaction between whey protein (WP) and EGCG was stronger under neutral and weakly acidic conditions: KSV (5.11-8.95 × 102 L mol-1 ) and Kq (5.11-8.95 × 1010 L mol s-1 ) at pH 6.2-7.1. Binding constants (pH 6.2 and pH 7.1) increased with increasing temperature. Molecular docking suggested that hydrophobic interactions played key roles at pH 6.2 and pH 7.1 (∆H > 0, ∆S > 0). Hydrogen bonding was the dominant force at pH 2.6 and pH 8.2 (∆H < 0, ∆S < 0). CONCLUSION: Environmental pH impacted the binding forces of WP-EGCG nanocomplexes. The interaction between WP and EGCG was stronger under neutral and weakly acidic conditions. Neutral and weakly acidic conditions are preferable for WP-EGCG non-covalent nanocomplex formation. © 2023 Society of Chemical Industry.
Subject(s)
Antioxidants , Catechin , Whey Proteins/chemistry , Antioxidants/chemistry , Molecular Docking Simulation , Catechin/chemistry , Hydrogen-Ion ConcentrationABSTRACT
An optical microfiber interferometric biosensor for the low concentration detection of sequence-specific deoxyribonucleic acid (DNA) based on signal amplification technology via oligonucleotides linked to gold nanoparticles (Au-NPs) is proposed and experimentally analyzed. The sensor uses a "sandwich" detection strategy, in which capture probe DNA (DNA-c) is immobilized on the surface of the optical microfiber interferometer, the reporter probe DNA (DNA-r) is immobilized on the surface of Au-NPs, and the DNA-c and DNA-r are hybridized to the target probe DNA (DNA-t) in a sandwich arrangement. The dynamic detection of the DNA-t was found to range from 1.0×10-15 M to 1.0×10-8 M, and the limit of detection (LOD) concentration was 1.32 fM. This sensor exhibited not only a low LOD but also excellent selectivity against mismatched DNA-t, and it can be further developed for application in various sensing platforms.
Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , Gold/chemistry , Interferometry/instrumentation , Metal Nanoparticles/chemistry , Optical Devices , Equipment Design , Limit of DetectionABSTRACT
Fiber-optic biosensors are of great interest to many bio/chemical sensing applications. In this study, we demonstrate a high-order-diffraction long period grating (HOD-LPG) for the detection of prostate specific antigen (PSA). A HOD-LPG with a period number of less than ten and an elongated grating pitch could realize a temperature-insensitive and bending-independent biosensor. The bio-functionalized HOD-LPG was capable of detecting PSA in phosphate buffered saline with concentrations ranging from 5 to 500 ng/ml and exhibited excellent specificity. A limit of detection of 9.9 ng/ml was achieved, which is promising for analysis of the prostate specific antigen.
Subject(s)
Biosensing Techniques/methods , Fiber Optic Technology/methods , Optical Fibers , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/immunology , HumansABSTRACT
BACKGROUND: Lipid droplets (LDs) are an important organelle as the main energy storage site in cells. LDs viscosity controls the material and energy exchange between it and other organelles. Furthermore, the LDs metabolic abnormalities, cell dysfunction, some diseases may be attributed to the singular LDs viscosity. Currently, the fluorescent probes for sensing the variations of LDs viscosity are still scarce and expose some drawbacks of low fluorescence quantum yield, low sensitivity and LDs polarity interference. Thus, the development of high performance probes is significant to detect LDs viscosity. RESULTS: We hereby provide a lipophilic fluorescent probe (TPE-BET) with high fluorescence quantum yield (Φf, 0.91 in glycerol) for imaging LDs viscosity in living cells. With the increase of viscosity from 0.54 cp to 934 cp, the fluorescence at λex/λem = 405/520 nm and the fluorescence quantum yield of TPE-BET linearly increased by 64.9 and 128.5 folds, respectively. Meanwhile, the outstanding LDs staining capability of TPE-BET may provide a high spatial resolution for LDs imaging. The cell imaging of TPE-BET not only successfully observed the viscosity variations of LDs in cell stress models, e.g., ferroptosis, inflammation and mitophagy, but also revealed the increased viscosity and extracellular delivery of LDs in heavy metal cell injury models (Hg/As) for the first time, which may supply concrete evidence for understanding the structure and function of LDs. SIGNIFICANCE: This represents a new fluorescent probe TPE-BET with high fluorescence quantum yield for imaging LDs viscosity, which may decrease the dose of probe and excitation light intensity along with the improvement on signal noise ratio (S/N). The imaging results of TPE-BET clarified that LDs viscosity may be an appraisal index on cell differentiation, state evaluation and drug screening.
Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescence , Lipid Droplets/chemistry , Fluorescent Dyes/chemistry , Viscosity , LightABSTRACT
Humidity plays an important role in many fields, and the realization of high sensitivity and fast response simultaneously for humidity detection is a great challenge in practical application. In this work, we demonstrated a high-performance relative humidity (RH) sensor made by supporting zeolitic imidazolate framework-90 (ZIF-90)-derived porous zinc oxide (ZnO) onto an optical microfiber Sagnac interferometer (OMSI). The ZIF-90-modified OMSI (ZIF-90-OMSI) sensor was in situ heated at different temperatures to obtain porous ZnO, and their humidity-sensing properties were investigated ranging from 25 to 80% RH. The experimental results showed that the porous ZnO fiber sensor prepared at 500 °C (Z500-OMSI) exhibited best humidity-sensing performance with a high sensitivity of 96.2 pm/% RH (25-45% RH) and 521 pm/% RH (50-80% RH) and ultrafast response/recovery time (62.37/206.67 ms) at 22.3% RH. These performances were attributed to the complete transformation of ZIF-90 to ZnO at 500 °C. The obtained Z500 not only retained the high porosity and specific surface area of ZIF-90 but also exhibited the exceptional hydrophilicity of ZnO. In addition, the signals of the proposed Z500-OMSI sensor changed with different breathing patterns, indicating the possibility for human respiration monitoring. This work provided a reliable candidate for an effective RH monitoring system with potential application in medical diagnoses, industrial production, environmental detection, and human health monitoring.