Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894714

ABSTRACT

C. berlandieri ssp. berlandieri (C. berlandieri) is one of the most common members of the group of plants known as quelites, which are dark leafy greens widely consumed in Mexico. This study aimed to evaluate the impact of two drying procedures (oven drying and freeze-drying/lyophilization) on the polyphenolic composition, antioxidant capacity, and proximal chemical analysis of C. berlandieri leaves and inflorescences (raw or boiled). The results indicated that the raw freeze-dried samples had higher amounts (p < 0.05) of total phenolic compounds, total flavonoids, and antioxidant capacity, mainly in the inflorescence. The oven-dried samples showed an increased concentration of polyphenols after boiling, while the lyophilized samples showed a slightly decreased concentration. The drying process was observed to have little impact on the proximal chemical composition. Quantification by UPLC-DAD-ESI-QToF/MS identified up to 23 individual phenolic compounds, with freeze-dried samples showing higher amounts of individual compounds compared with oven-dried. Procyanidin B2 was found exclusively in the inflorescences. The inflorescences have a higher content of phenolic compounds and greater antioxidant capacity than the leaves. Regardless of the drying process, the leaves and inflorescences of C. berlandieri contain an interesting variety of phenolic compounds that may have beneficial effects on health.


Subject(s)
Antioxidants , Inflorescence , Antioxidants/chemistry , Inflorescence/chemistry , Desiccation/methods , Phenols/chemistry , Freeze Drying
2.
Int J Food Sci Nutr ; 72(4): 485-498, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33302731

ABSTRACT

Colorectal cancer is an important concern in modern society. Risk factors such as the diet indicate the need to find healthy food products displaying additional health benefits. This study aimed to characterise and evaluate the impact of the colonic metabolites from the fermented non-digestible fraction of Moringa oleifera (MO) leaves (FNFM) on cell death mechanisms from HT-29 cells. MO leaves were digested in vitro, and the 12 h-colonic extract was obtained. FNFM mainly contained morin and chlorogenic acids (41.97 and 25.33 µg/g sample). Butyric acid was ranked as the most important metabolite of FNFM. The FNFM exerted antiproliferative effect against HT-29 colorectal cancer cells (half lethal concentration, LC50: 5.9 mL/100 mL). Compared to untreated control, LC50 increased H2O2 production (149.43%); induced apoptosis (119.02%), autophagy (75.60%), and necrosis (87.72%). These results suggested that digested MO colonic metabolites exert antiproliferative effect against HT-29 cells, providing additional health benefits associated with MO consumption.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Colon/metabolism , Moringa oleifera/chemistry , Necrosis/drug therapy , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Fatty Acids, Volatile/metabolism , Fermentation , HT29 Cells , Humans , Hydrogen Peroxide/metabolism , Male , Rats , Rats, Wistar
3.
Int J Mol Sci ; 22(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494324

ABSTRACT

Tepary bean (Phaseolus acutifolius) lectins exhibit differential in vitro and in vivo biological effects, but their gastrointestinal interactions and digestion have not yet been assessed. This work aimed to evaluate the changes of a recombinant Tepary bean lectin (rTBL-1) through an in vitro and ex vivo gastrointestinal process. A polyclonal antibody was developed to selectively detect rTBL-1 by Western blot (WB) and immunohistochemical analysis. Everted gut sac viability was confirmed until 60 min, where protein bioaccessibility, apparent permeability coefficient, and efflux ratio showed rTBL-1 partial digestion and absorption. Immunoblot assays suggested rTBL-1 internalization, since the lectin was detected in the digestible fraction. The immunohistochemical assay detected rTBL-1 presence at the apical side of the small intestine, potentially due to the interaction with the intestinal cell membrane. The in silico interactions between rTBL-1 and some saccharides or derivatives showed high binding affinity to sialic acid (-6.70 kcal/mol) and N-acetylglucosamine (-6.10 kcal/mol). The ultra-high-performance liquid chromatography-electron spray ionization-quantitative time-of-flight coupled to mass spectrometry (UHPLC-ESI-QTOF/MS) analysis showed rTBL-1 presence in the gastric content and the non-digestible fraction after intestinal simulation conditions. The results indicated that rTBL-1 partially resisted the digestive conditions and interacted with the intestinal membrane, whereas its digestion allowed the absorption or internalization of the protein or the derivative peptides. Further purification of digestion samples should be conducted to identify intact rTBL-1 protein and digested peptides to assess their physiological effects.


Subject(s)
Cell Membrane Permeability , Intestinal Absorption , Intestinal Mucosa/metabolism , Lectins/metabolism , Phaseolus/genetics , Recombinant Proteins/metabolism , Carbohydrate Metabolism , Carbohydrates/chemistry , Cell Membrane Permeability/drug effects , Cell Survival , Chromatography, High Pressure Liquid , Immunohistochemistry , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Lectins/chemistry , Lectins/genetics , Ligands , Models, Molecular , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship
4.
Food Chem ; 453: 139602, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38795433

ABSTRACT

Milk-type beverages are popular vegan products requiring iron and calcium fortification to improve their nutritional value, as iron deficiency is the world's most prevalent nutritional problem. This research aimed to develop and characterize an extruded common bean (Phaseolus vulgaris L.)-based milk-type beverage added with bean protein isolate and iron. The formulations included flavors (non-flavored, vanilla, and nut) and two iron concentrations (2 and 3 mg FeSO4/100 mL). Extrusion increased the beverages' protein (+17.38 %) and starch digestibility, and reduced their antinutritional compounds (trypsin inhibitors, condensed tannins, and carbonates). Developed beverages' formulations differed from a commercial soybean beverage in their physicochemical properties but were more nutritious (protein: 3.33-3.44 %; fiber: 3.43-4.08 %). Iron-added beverages displayed a medium sensory acceptance (best overall likeness: 5.3-6.2). The developed beverage is a suitable, sensory-accepted, and nutritious bean-based beverage, suggesting novel research lines improving vegan beverage formulations to increase average daily iron intake.


Subject(s)
Beverages , Iron , Nutritive Value , Phaseolus , Taste , Phaseolus/chemistry , Iron/analysis , Iron/chemistry , Humans , Beverages/analysis , Dietary Supplements/analysis , Animals , Female , Adult , Male , Milk/chemistry , Young Adult
5.
J Vis Exp ; (192)2023 02 17.
Article in English | MEDLINE | ID: mdl-36876927

ABSTRACT

Insulin resistance is a reduced effect of insulin on its target cells, usually derived from decreased insulin receptor signaling. Insulin resistance contributes to the development of type 2 diabetes (T2D) and other obesity-derived diseases of high prevalence worldwide. Therefore, understanding the mechanisms underlying insulin resistance is of great relevance. Several models have been used to study insulin resistance both in vivo and in vitro; primary adipocytes represent an attractive option to study the mechanisms of insulin resistance and identify molecules that counteract this condition and the molecular targets of insulin-sensitizing drugs. Here, we have established an insulin resistance model using primary adipocytes in culture treated with tumor necrosis factor-α (TNF-α). Adipocyte precursor cells (APCs), isolated from collagenase-digested mouse subcutaneous adipose tissue by magnetic cell separation technology, are differentiated into primary adipocytes. Insulin resistance is then induced by treatment with TNF-α, a proinflammatory cytokine that reduces the tyrosine phosphorylation/activation of members of the insulin signaling cascade. Decreased phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS-1), and protein kinase B (AKT) are quantified by western blot. This method provides an excellent tool to study the mechanisms mediating insulin resistance in adipose tissue.


Subject(s)
Adipocytes , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Insulin , Receptor, Insulin , Tumor Necrosis Factor-alpha , Cell Differentiation , Primary Cell Culture
6.
Nutrients ; 15(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37571383

ABSTRACT

Maternal milk supports offspring development by providing microbiota, macronutrients, micronutrients, immune factors, and hormones. The hormone prolactin (PRL) is an important milk component with protective effects against metabolic diseases. Because maternal milk regulates microbiota composition and adequate microbiota protect against the development of metabolic diseases, we aimed to investigate whether PRL/PRL receptor signaling regulates gut microbiota composition in newborn mice at weaning. 16SrRNA sequencing of feces and bioinformatics analysis was performed to evaluate gut microbiota in PRL receptor-null mice (Prlr-KO) at weaning (postnatal day 21). The normalized colon and cecal weights were higher and lower, respectively, in the Prlr-KO mice relative to the wild-type mice (Prlr-WT). Relative abundances (Simpson Evenness Index), phylogenetic diversity, and bacterial concentrations were lower in the Prlr-KO mice. Eleven bacteria species out of 470 differed between the Prlr-KO and Prlr-WT mice, with two genera (Anaerotruncus and Lachnospiraceae) related to metabolic disease development being the most common in the Prlr-KO mice. A higher metabolism of terpenoids and polyketides was predicted in the Prlr-KO mice compared to the Prlr-WT mice, and these metabolites had antimicrobial properties and were present in microbe-associated pathogenicity. We concluded that the absence of the PRL receptor altered gut microbiota, resulting in lower abundance and richness, which could contribute to metabolic disease development.


Subject(s)
Gastrointestinal Microbiome , Receptors, Prolactin , Mice , Animals , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Weaning , Phylogeny , Prolactin , Mice, Knockout
7.
Mol Cell Endocrinol ; 559: 111810, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36374835

ABSTRACT

Obesity is a modern pandemic with negative consequences in women's reproductive health. Women with overweight and obesity can develop mammary gland alterations that unable exclusive breastfeeding. Obesity associates with a disturbed lactating mammary gland endocrine environment including a decreased action of the hormone prolactin (PRL), the master regulator of lactation. The PRL receptor and the action of PRL are reduced in the mammary gland of lactating rodents fed an obesogenic diet and are contributing factors to impaired lactation in obesity. Also, treatment with PRL improves milk yield in women with lactation insufficiency. This review focuses on the impact of diet-induced obesity in the lactating mammary gland and how obesity impairs the lactogenic action of PRL. Although obesity alters lactation performance in humans and rodents, the responsible mechanisms have been mainly addressed in rodents.


Subject(s)
Mammary Glands, Human , Female , Humans , Animals , Prolactin , Lactation , Breast , Obesity , Mammary Glands, Animal
8.
Plants (Basel) ; 12(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37653904

ABSTRACT

Cnidoscolus aconitifolius (CA) and Porophyllum ruderale (PR) are representative edible plants that are a traditional food source in Mexico. This research aimed to analyze the phytochemical composition and untargeted metabolomics analysis of CA and PR and evaluate their antiproliferative effect in vitro. The phytochemical composition (UPLC-DAD-QToF/MS-ESI) identified up to 38 polyphenols and selected organic acids that were clustered by the untargeted metabolomics in functional activities linked to indolizidines, pyridines, and organic acids. Compared with PR, CA displayed a higher reduction in the metabolic activity of human SW480 colon adenocarcinoma cells (LC50: 10.65 mg/mL), and both extracts increased the total apoptotic cells and arrested cell cycle at G0/G1 phase. PR increased mRNA Apc gene expression, whereas both extracts reduced mRNA Kras expression. Rutin/epigallocatechin gallate displayed the highest affinity to APC and K-RAS proteins in silico. Further research is needed to experiment on other cell lines. Results suggested that CA and PR are polyphenol-rich plant sources exhibiting antiproliferative effects in vitro.

9.
Plants (Basel) ; 12(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37896032

ABSTRACT

Porophyllum ruderale (P. ruderale) is a well-known Mexican plant from the group of "Quelites", widely consumed plant species used for several food and medicinal purposes. As the production is very heterogeneous and the diverse agroclimatic conditions significantly impact the plant's phytochemical composition, this research aimed to compare the phenolic compound composition and the antioxidant capacity of the P. ruderale plant from three different collection sites (Queretaro, Landa de Matamoros, and Arroyo Seco) in the State of Queretaro (Mexico). Plants collected from Queretaro displayed the lowest total phenolic compounds, flavonoids, and condensed tannins, reflected in a lower antioxidant capacity (DPPH, FRAP, ABTS), compared to the other collection places. Flavones (epicatechin and epigallocatechin gallate) were the most abundant (36.1-195.2 µg equivalents/g) phenolics quantified by HPLC-DAD, while 31 compounds were identified by UHPLC-DAD-QToF/MS-ESI. Most compounds were linked to biological mechanisms related to the antioxidant properties of the leaves. A PCA analysis clustered Landa de Matamoros and Arroyo Seco into two groups based on flavones, hydroxybenzoic acids, the antioxidant capacity (ABTS and DPPH), and total phenolic compounds, the main contributors to its variation. The results indicated contrasting differences in the polyphenolic composition of collected P. ruderale in Queretaro, suggesting the need to standardize and select plants with favorable agroclimatic conditions to obtain desirable polyphenolic compositions while displaying potential health benefits.

10.
Food Chem Toxicol ; 177: 113829, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37225033

ABSTRACT

This research aimed to chemically synthesize and evaluate the antiproliferative and anti-inflammatory potential of ozopromide (OPC), a novel compound recently isolated from O. vulgaris ink. After chemical synthesis, OPC structural characterization was confirmed by COSY2D, FTIR, and C-/H-NMR. OPC inhibited the growth of human breast (MDA-MB-231), prostate (22Rv1), cervix (HeLa), and lung (A549) cancerous cells, being the highest effect on the latter (IC50: 53.70 µM). As confirmed by flow cytometry, OPC induced typical apoptosis-derived morphological features on A549 cells, mostly at early and late apoptosis stages. OPC generated a dose-dependent effect inhibiting IL-6 and IL-8 on LPS-stimulated peripheral mononuclear cells (PBMCs). A major affinity of OPC to Akt-1 and Bcl-2 proteins in silico agreed with the observed pro-apoptotic mechanisms. Results suggested that OPC has the potential to alleviate inflammation and be further studied for anticancer activity. Marine-derived food products such as ink contains bioactive metabolites exhibiting potential health benefits.


Subject(s)
Antineoplastic Agents , Neoplasms , Octopodiformes , Male , Female , Animals , Humans , Antineoplastic Agents/chemistry , Cell Line, Tumor , A549 Cells , Ink , Apoptosis , Cell Proliferation
11.
Food Res Int ; 157: 111244, 2022 07.
Article in English | MEDLINE | ID: mdl-35761556

ABSTRACT

Colorectal cancer (CRC) can be either prevented or alleviated using conventional drugs combined with natural treatments. Andean berry (AB, Vaccinium meridionale Sw.) is an underutilized berry with promising anti-inflammatory and antiproliferative effects that could be used to alleviate CRC markers in combination with Aspirin, a well-known CRC preventive drug. This research aimed to evaluate the impact of Aspirin, AB juice (ABJ), and their mixture on colorectal cancer in vitro and in vivo. The treatments (ABJ: 0, 10, 20, and 30 % v/v; Aspirin: 0, 10, 15, and 20 mM; and their combination) were assessed on SW480 cells to test their antiproliferative and pro-apoptotic effect. To evaluate their chemopreventive and chemoprotective effect in vivo, azoxymethane (AOM, 15 mg/kg BW) was used as a chemical inductor of early-stage colon cancer. Balb/c mice (8 weeks' age) were randomly assigned to five groups (n = 6 mice/group): control (no treatment), positive control (AOM-treated mice), AOM + Aspirin (20 mM: 25 mg/kg BW), AOM + ABJ (30 % v/v), and AOM + Aspirin + ABJ (Aspirin: 25 mg/kg BW; ABJ: 30 % v/v). ABJ contained phenolic compounds such as 3,4-dihydroxybenzoic and gallic acids, morin, and rutin. The mixture showed a strongest antiproliferative effect than their counterparts (+10.39-46.23 %). Except for Aspirin (20 mM), the cells were not able to proliferate based on the cloning efficiency test. The mixture was the most effective treatment arresting the cell cycle and increasing G2/M cell population (p < 0.01). Aspirin and ABJ showed mainly intrinsic and extrinsic-mediated apoptotic processes, while the mixture decreased most pro-apoptotic (cytochrome C, DR4, DR5, TNFRSF1A, Bax, and Bad) and anti-apoptotic proteins (Hsp70, Hsp32, and XIAP) compared to the untreated cells. In silico simulations highlighted the interaction between rutin and catalase as the strongest affinity (-10.30 Kcal/mol). ABJ and the mixture decreased aberrant crypt foci in vivo compared to AOM-only treated mice and protected the colonic and liver architecture, this was latter used as a secondary indicator of AOM-metabolic activity. The chemopreventive approach was more effective, related to a prior regulation of cancer-protective mechanisms in vivo, alleviating the AOM-induced damage. The results indicated that Aspirin and ABJ mixtures exhibit antiproliferative and pro-apoptotic effects in SW480 cells inducing mechanisms linked to extrinsic (TNF and TRAIL-mediated apoptosis) and intrinsic (Bax and cytochrome C modulation) pathways. At in vivo levels, the treatments displayed defensive effects against the AOM-induced damage as observed by macroscopic measurements. However, more in vitro, and in vivo approaches are required to completely fulfill the pro-apoptotic, anti-proliferative, and chemopreventive/chemoprotective effects of ABJ.


Subject(s)
Anticarcinogenic Agents , Antineoplastic Agents , Colonic Neoplasms , Vaccinium , Animals , Anticarcinogenic Agents/pharmacology , Antineoplastic Agents/adverse effects , Aspirin/pharmacology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/prevention & control , Cytochromes c , Fruit/metabolism , Mice , Rutin/pharmacology , bcl-2-Associated X Protein
12.
Front Nutr ; 9: 890136, 2022.
Article in English | MEDLINE | ID: mdl-35719139

ABSTRACT

Current efforts to prevent dyslipidemia are focused on the development of functional products as an alternative for hypertriglyceridemia management. This study assessed the metabolic effect of the daily consumption of a bean and oats snack bar (BOSB) on hypertriglyceridemia biomarkers among Mexican women. An 8-weeks randomized parallel clinical trial (ID: NCT0496694, https://clinicaltrials.gov/ct2/show/NCT04966494) was conducted with 26 hypertriglyceridemic women allocated to BOSB group (TG = 208.18 ± 56.97 mg/dL) and control group (TG = 182.28 ± 51.39 mg/dL). Only the BOSB group consumed 50 g of the product per day. Fasting blood samples were taken from women with an adherence ≥ 90%. A targeted proteomic analysis with plasma samples of control and BOSB groups were conducted using a human obesity antibody array kit and bioinformatic tools provided by the Ingenuity Pathways Analysis (IPA) software. Serum TG levels in the BOSB group decreased by 37.80% (132.04 ± 27.83 mg/dL) compared with the control group (178.87 ± 32.01 mg/dL); glucose levels decreased by 5.69% in the BOSB group (87.55 ± 3.36 mg/dL). A modest body weight (5%) reduction was also found. Forty proteins were differentially modulated by the BOSB consumption (fold change > 1.2). The proteomic analysis revealed the involvement of BOSB bioactives in prevention of monocytes recruitment and localized inflammatory response, inhibition of pre-adipocyte maturation and adipogenesis, inhibition of hepatic b-oxidation, and potential satiety regulation. These results are promising since the mere intervention with the BOSB reduced serum TG without diet restriction, giving insights for further research in prevention of hypertriglyceridemia.

13.
Food Funct ; 13(8): 4699-4713, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35380561

ABSTRACT

Garambullo (Myrtillocactus geometrizans), endemic fruit from Mexico, contains several bioactive compounds (phenolic compounds, betalains, antioxidant fiber), highlighting it as a good functional food. In this research, the impact of the in vitro gastrointestinal digestion on phytochemical bioaccessibility from garambullo and its antioxidant capacity are studied. The fruit contained previously unidentified phytochemicals in the polar and non-polar extracts (acetone and hexane). The bioaccessibility decreased in the mouth and stomach for flavanones (up to 11.9 and 8.9%, respectively), isoflavones (up to 20.0 and 9.2%, respectively), flavonols (up to 15.2 and 15.7%, respectively), hydroxycinnamic acids (up to 21.7 and 13.1%, respectively), and betalains (up to 10.5 and 4.2%, respectively); hydroxybenzoic acids were increased (up to 752.8 and 552.6%, respectively), while tocopherols increased in the mouth (127.7%) and decreased in the stomach (up to 90.3%). In the intestinal phase, the digestible fraction showed low phytochemicals bioaccessibility, and some compounds were recovered in the non-digestible fraction. The antioxidant capacity decreased in different compartments of the gastrointestinal tract, being higher in the mouth (872.9, 883.6, 385.2, and 631.2 µmol TE per g dw by ABTS, DPPH, ORAC, and FRAP, respectively) and stomach (836.2, 942.1, 289.0, and 494.9 µmol TE per g dw ABTS, DPPH, ORAC, and FRAP, respectively). The results indicate that digestion positively or negatively affects compounds' bioaccessibility depending on their structural family, and the antioxidant capacity decreases but remains higher than other functional foods.


Subject(s)
Antioxidants , Cactaceae , Antioxidants/pharmacology , Betalains/pharmacology , Digestion , Phytochemicals/pharmacology
14.
Pharmaceutics ; 14(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36297503

ABSTRACT

Gold nanoparticles (AuNPs) are promising nanomaterials exhibiting anti-cancer effects. Green AuNPs synthesis using plant extracts can be used to achieve stable and beneficial nanoparticles due to their content of bioactive compounds. This research aimed to synthesize and evaluate the antiproliferative and caspase-3 activity induction of green AuNPs synthesized with common mullein (V. thapsus) flowers (AuNPsME) and castor bean (R. communis) leaves (AuNPsCE) ethanolic extracts in human HT29 and SW480 colorectal cancer cells. Their effect was compared with chemically synthesized AuNPs (AuNPsCS). The extracts mainly contained p-coumaric acid (71.88-79.93 µg/g), ferulic acid (19.07-310.71 µg/g), and rutin (8.14-13.31 µg/g). The obtained nanoparticles presented typical FT-IR bands confirming the inclusion of polyphenols from V. thapsus and R. communis and spherical/quasi-spherical morphologies with diameters in the 20.06-37.14 nm range. The nanoparticles (20-200 µg/mL) showed antiproliferative effects in both cell lines, with AuNPsCE being the most potent (IC50 HT29: 110.10 and IC50SW480: 64.57 µg/mL). The AuNPsCS showed the lowest intracellular reactive oxygen species (ROS) generation in SW480 cells. All treatments induced caspase 3/7 activity to a similar or greater extent than 30 mM H2O2-treated cells. Results indicated the suitability of V. thapsus and R. communis extracts to synthesize AuNPs, displaying a stronger antiproliferative effect than AuNPsCS.

15.
Article in English | MEDLINE | ID: mdl-36429638

ABSTRACT

Cruciferous vegetables such as cauliflower and radish contain isothiocyanates exhibiting chemoprotective effects in vitro and in vivo. This research aimed to assess the impact of cauliflower (CIE) and radish (RIE) isothiocyanate extracts on the metabolic activity, intracellular reactive oxygen species (ROS), and LDH production of selected human colorectal adenocarcinoma cells (HCT116 and HT-29 for early and late colon cancer development, respectively). Non-cancerous colon cells (CCD-33Co) were used as a cytotoxicity control. The CIE samples displayed the highest allyl isothiocyanate (AITC: 12.55 µg/g) contents, whereas RIE was the most abundant in benzyl isothiocyanate (BITC: 15.35 µg/g). Both extracts effectively inhibited HCT116 and HT-29 metabolic activity, but the CIE impact was higher than that of RIE on HCT116 (IC50: 0.56 mg/mL). Assays using the half-inhibitory concentrations (IC50) of all treatments, including AITC and BITC, displayed increased (p < 0.05) LDH (absorbance: 0.25-0.40 nm) and ROS release (1190-1697 relative fluorescence units) in both cell lines. BITC showed the highest in silico binding affinity with all the tested colorectal cancer molecular markers (NF-kB, ß-catenin, and NRF2-NFE2). The theoretical evaluation of AITC and BITC bioavailability showed high values for both compounds. The results indicate that CIE and RIE extracts display chemopreventive effects in vitro, but additional experiments are needed to validate their effects.


Subject(s)
Brassica , Colorectal Neoplasms , Raphanus , Humans , Reactive Oxygen Species , Botrytis , Isothiocyanates/pharmacology , Colorectal Neoplasms/drug therapy
16.
Foods ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802794

ABSTRACT

Natural colorants have emerged as an alternative to their synthetic counterparts due to an existing health concern of these later. Moreover, natural-food colorants are a renewable option providing health benefits and interesting technological and sensory attributes to the food systems containing them. Several sources of natural colorants have been explored aiming to deliver the required wide color range demanded by consumers. This review aimed to compare and discuss the technological applications of the main natural-food colorants into food system in the last six years, giving additional information about their extraction process. Although natural colorants are promising choices to replace synthetic ones, optimization of processing conditions, research on new sources, and new formulations to ensure stability are required to equate their properties to their synthetic counterparts.

17.
Food Res Int ; 148: 110591, 2021 10.
Article in English | MEDLINE | ID: mdl-34507736

ABSTRACT

Extruded polyphenol-rich by-products like mango bagasse (MB) could be used to manufacture functional confections. However, few reports have assessed the extrusion impact on MB polyphenols within a food matrix. This research aimed to evaluate the impact of extrusion on the bioaccessibility, intestinal permeability, and antioxidant capacity of phenolic compounds (PC) from non-extruded and extruded MB-added confections (EMBC and MBC, respectively). The inhibition of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl radicals and in silico approaches were used to evaluate the antioxidant capacity. MBC displayed the highest gastric bioaccessibility (%) of xanthones and flavonoids, whereas selective release of gallic acid, mangiferin, and quercetin glucoside was shown for EMBC. Lower PC' apparent permeability coefficients were found in EMBC compared to MB (0.11 to 0.44-fold change, p < 0.05). EMBC displayed the highest antioxidant capacity by the DPPH method for the non-digestible fraction, being mangiferin the highest in silico contributor (-4 kcal/mol). Our results showed that the extrusion process helps release selective phenolics from MBC, which increases their bioaccessibility and intestinal permeability.


Subject(s)
Mangifera , Antioxidants , Candy , Cellulose , Permeability
18.
J Food Biochem ; 45(6): e13760, 2021 06.
Article in English | MEDLINE | ID: mdl-33974285

ABSTRACT

Andean Berry (Vaccinium meridionale Sw.) is a South American fruit rich in phytochemicals with promising anti-cancer properties as co-adjuvants to nonsteroidal anti-inflammatory drugs such as Aspirin. This study aimed to evaluate the antiproliferative potential of Andean Berry Juice (ABJ) in combination with Aspirin in human SW480 colon adenocarcinoma cells. ABJ primarily contained 3,4-dihydroxybenzoic and chlorogenic acids. The combined treatment of ABJ (IC50 : 30.0 ± 0.11%) and Aspirin (IC50 : 20.0 ± 0.57) exhibited a higher (p < .01) antiproliferative effect than each counterpart. Moreover the same mixture displayed a lower reduced glutathione/oxidized glutathione ratio (GSH/GSSG) than the untreated cells. ABJ-Aspirin combination induced late apoptosis stage without stimulating mitochondrial depolarization and prompted phosphatidylserine relocalization. These results emphasize the antiproliferative potential of bioactive compounds from ABJ and Aspirin combinations. PRACTICAL APPLICATIONS: Natural products such as Andean Berry (V. meridionale Sw.) juice (ABJ) contains antioxidant polyphenols that could reduce the need to use non-steroidal anti-inflammatory drugs, currently employed in cancer treatment, to prevent its side effects. The high abundance of polyphenols from this underutilized berry could stimulate the standardization of its production and industrial exploitation to be transformed into suitable food products delivering natural bioactive compounds with potential anti-cancer effects in vitro.


Subject(s)
Adenocarcinoma , Vaccinium , Adenocarcinoma/drug therapy , Aspirin , Colon , Fruit , Humans
19.
Food Chem ; 365: 130528, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34325350

ABSTRACT

Mango bagasse (MB) is an agro-industrial by-product rich in bioactive polyphenols with potential application as a functional ingredient. This study aimed to delineate the metabolic fate of monomeric/polymeric MB polyphenols subjected to simulated gastrointestinal digestion. The main identified compounds by LC/MS-TOF-ESI were phenolic acids [gallic acid (GA) and derivates, and chlorogenic acid], gallotannins and derivatives [di-GA (DA) and 3GG-to-8GG], benzophenones [galloylated maclurins (MGH, MDH)], flavonoids [Quercetin (Quer) and (QuerH)] and xanthones [mangiferin isomers]. The bioaccessibility depended on the polyphenols' structure, being Quer, 5G to 8G the main drivers. The results suggested that the gastrointestinal fate of MB polyphenols is mainly governed by benzophenones and gallotannins degalloylation and spontaneous xanthone isomerization in vitro to sustain GA bioaccessibility.


Subject(s)
Mangifera , Antioxidants , Cellulose , Plant Extracts , Polyphenols
20.
Food Chem Toxicol ; 151: 112119, 2021 May.
Article in English | MEDLINE | ID: mdl-33722603

ABSTRACT

Underutilized marine food products such as cephalopods' ink could be sources of bioactive compounds providing health benefits. This study aimed to assess the anti-proliferative and anti-inflammatory effects from Octopus vulgaris ink extracts (hexane-, ethyl acetate-, dichloromethane- (DM), and water extracts) using human colorectal (HT-29/HCT116) and breast (MDA-MB-231) cancer cells, and LPS-challenged murine RAW 264.7 cells. Except by ethyl-acetate, all of the extracts exhibited anti-proliferative effects without being cytotoxic to ARPE-19 and RAW 264.7 cells. Among DM fractions (F1/F2/F3), DM-F2 showed the highest anti-proliferative effect (LC50 = 52.64 µg/mL), inducing pro-apoptotic morphological disruptions in HCT116 cells. On RAW 264.7 cells, DM-F2 displayed the lowest nitrites reduction and up-regulation of key-cytokines from the JAK-STAT, PI3K-Akt, and IL-17 pathways. Compared to control, DM-F2 increased IL-4 and decreased NF-κB fluorometric expression in peripheral blood mononuclear cells (PBMCs). Metabolomic analysis of DM-F2 highlighted hexadecanoic acid and 1-(15-methyl-1-oxohexadecyl)-pyrrolidine as the most important metabolites. These compounds also exhibited high in silico binding affinity (-4.6 to -5.8 kcal/mol) to IL-1α, IL-1ß, and IL-2. Results suggested the joint immuno-modulatory and anti-proliferative effect derived from selected compounds of underutilized marine food products such as ink. This is the first report of such biological activities in extracts from O. vulgaris ink.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Proliferation/drug effects , Octopodiformes/chemistry , Animals , Cytokines/metabolism , HCT116 Cells , Humans , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Metabolomics , Methylene Chloride/chemistry , Mice , Nitrites/metabolism , RAW 264.7 Cells , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL