Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Nature ; 618(7964): 402-410, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225994

ABSTRACT

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Ubiquitinated Proteins , Ubiquitination , Animals , Humans , Mice , Autophagy/genetics , Endoplasmic Reticulum/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ubiquitinated Proteins/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology , Intracellular Membranes/metabolism
2.
EMBO J ; 41(23): e110771, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36300838

ABSTRACT

Autophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy. We reveal for the first time that genetic loss of PC biosynthesis via the CDP-DAG pathway leads to changes in lipid composition of autophagic membranes, specifically replacement of PC by phosphatidylserine (PS). This impairs closure of the autophagic membrane and autophagic flux. Consequently, we show that choline-dependent recovery of de novo PC biosynthesis via the CDP-choline pathway restores autophagosome formation and autophagic flux in PC-deficient cells. Our findings therefore implicate phospholipid metabolism in autophagosome biogenesis.


Subject(s)
Autophagosomes , Phospholipids , Autophagosomes/metabolism , Phospholipids/metabolism , Autophagy-Related Proteins/metabolism , Autophagy , Choline/metabolism , Cytidine Diphosphate/metabolism
3.
EMBO Rep ; 25(2): 813-831, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233718

ABSTRACT

Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood. Here we comprehensively analyze the role of phosphorylation events on Atg13 during nutrient-rich conditions and nitrogen starvation. We identify and functionally characterize 48 in vivo phosphorylation sites on Atg13. By generating reciprocal mutants, which mimic the dephosphorylated active and phosphorylated inactive state of Atg13, we observe that disrupting the dynamic regulation of Atg13 leads to insufficient or excessive autophagy, which are both detrimental to cell survival. We furthermore demonstrate an involvement of Atg11 in bulk autophagy even during nitrogen starvation, where it contributes together with Atg1 to the multivalency that drives phase separation of the phagophore assembly site. These findings reveal the importance of post-translational regulation on Atg13 early during autophagy initiation, which provides additional layers of regulation to control bulk autophagy activity and integrate cellular signals.


Subject(s)
Autophagy , Saccharomyces cerevisiae Proteins , Phosphorylation , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Signal Transduction , Nitrogen , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
EMBO J ; 40(20): e107966, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34520050

ABSTRACT

Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.


Subject(s)
Acetyl-CoA Carboxylase/genetics , Fatty Acid Synthases/genetics , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Phosphatidylcholines/deficiency , Saccharomyces cerevisiae/metabolism , Acetyl-CoA Carboxylase/metabolism , Chromosomes, Fungal , Fatty Acid Synthases/metabolism , Feedback, Physiological , Gene Expression Regulation, Fungal , Lipid Bilayers/chemistry , Lipid Metabolism/genetics , Membrane Fluidity , Membrane Lipids/chemistry , Point Mutation , Saccharomyces cerevisiae/genetics
5.
Immunity ; 44(6): 1392-405, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27287411

ABSTRACT

Although numerous polymorphisms have been associated with inflammatory bowel disease (IBD), identifying the function of these genetic factors has proved challenging. Here we identified a role for nine genes in IBD susceptibility loci in antibacterial autophagy and characterized a role for one of these genes, GPR65, in maintaining lysosome function. Mice lacking Gpr65, a proton-sensing G protein-coupled receptor, showed increased susceptibly to bacteria-induced colitis. Epithelial cells and macrophages lacking GPR65 exhibited impaired clearance of intracellular bacteria and accumulation of aberrant lysosomes. Similarly, IBD patient cells and epithelial cells expressing an IBD-associated missense variant, GPR65 I231L, displayed aberrant lysosomal pH resulting in lysosomal dysfunction, impaired bacterial restriction, and altered lipid droplet formation. The GPR65 I231L polymorphism was sufficient to confer decreased GPR65 signaling. Collectively, these data establish a role for GPR65 in IBD susceptibility and identify lysosomal dysfunction as a potentially causative element in IBD pathogenesis with effects on cellular homeostasis and defense.


Subject(s)
Colitis/immunology , Epithelial Cells/immunology , Inflammatory Bowel Diseases/genetics , Lysosomes/physiology , Receptors, G-Protein-Coupled/metabolism , Salmonella Infections/immunology , Salmonella enterica/immunology , Salmonella typhimurium/immunology , Animals , Genetic Predisposition to Disease , HeLa Cells , Humans , Inflammatory Bowel Diseases/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagosomes/physiology , Polymorphism, Genetic , Receptors, G-Protein-Coupled/genetics , Risk
6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35101986

ABSTRACT

Fragments of the endoplasmic reticulum (ER) are selectively delivered to the lysosome (mammals) or vacuole (yeast) in response to starvation or the accumulation of misfolded proteins through an autophagic process known as ER-phagy. A screen of the Saccharomyces cerevisiae deletion library identified end3Δ as a candidate knockout strain that is defective in ER-phagy during starvation conditions, but not bulk autophagy. We find that loss of End3 and its stable binding partner Pan1, or inhibition of the Arp2/3 complex that is coupled by the End3-Pan1 complex to endocytic pits, blocks the association of the cortical ER autophagy receptor, Atg40, with the autophagosomal assembly scaffold protein Atg11. The membrane contact site module linking the rim of cortical ER sheets and endocytic pits, consisting of Scs2 or Scs22, Osh2 or Osh3, and Myo3 or Myo5, is also needed for ER-phagy. Both Atg40 and Scs2 are concentrated at the edges of ER sheets and can be cross-linked to each other. Our results are consistent with a model in which actin assembly at sites of contact between the cortical ER and endocytic pits contributes to ER sequestration into autophagosomes.


Subject(s)
Actins/metabolism , Autophagosomes/metabolism , Autophagy , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Actins/genetics , Autophagosomes/genetics , Endoplasmic Reticulum/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
7.
J Biol Chem ; 299(5): 104712, 2023 05.
Article in English | MEDLINE | ID: mdl-37060997

ABSTRACT

Autophagy is a key process in eukaryotes to maintain cellular homeostasis by delivering cellular components to lysosomes/vacuoles for degradation and reuse of the resulting metabolites. Membrane rearrangements and trafficking events are mediated by the core machinery of autophagy-related (Atg) proteins, which carry out a variety of functions. How Atg9, a lipid scramblase and the only conserved transmembrane protein within this core Atg machinery, is trafficked during autophagy remained largely unclear. Here, we addressed this question in yeast Saccharomyces cerevisiae and found that retromer complex and dynamin Vps1 mutants alter Atg9 subcellular distribution and severely impair the autophagic flux by affecting two separate autophagy steps. We provide evidence that Vps1 interacts with Atg9 at Atg9 reservoirs. In the absence of Vps1, Atg9 fails to reach the sites of autophagosome formation, and this results in an autophagy defect. The function of Vps1 in autophagy requires its GTPase activity. Moreover, Vps1 point mutants associated with human diseases such as microcytic anemia and Charcot-Marie-Tooth are unable to sustain autophagy and affect Atg9 trafficking. Together, our data provide novel insights on the role of dynamins in Atg9 trafficking and suggest that a defect in this autophagy step could contribute to severe human pathologies.


Subject(s)
Autophagosomes , Saccharomyces cerevisiae Proteins , Humans , Autophagosomes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Dynamins/metabolism , Vacuoles/metabolism , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Protein Transport , GTP-Binding Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Membrane Proteins/metabolism
8.
EMBO J ; 39(20): e105117, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32840906

ABSTRACT

Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cytoplasmic Vesicles/metabolism , GTPase-Activating Proteins/metabolism , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism , ADP-Ribosylation Factors/genetics , Biological Transport, Active/genetics , Casein Kinase I/genetics , Casein Kinase I/metabolism , Cytoplasmic Vesicles/ultrastructure , GTPase-Activating Proteins/genetics , Gene Deletion , Golgi Apparatus/metabolism , Mass Spectrometry , Membrane Fusion , Microscopy, Electron , Mitochondrial Membranes/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Vacuoles/ultrastructure , Vesicular Transport Proteins/genetics
9.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34028531

ABSTRACT

Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.


Subject(s)
Lipid Droplets , Membrane Proteins , Animals , Endoplasmic Reticulum/genetics , Membrane Proteins/genetics , Phospholipids , Saccharomyces cerevisiae
10.
J Cell Sci ; 135(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35343566

ABSTRACT

Lysosomes mediate degradation of macromolecules to their precursors for cellular recycling. Additionally, lysosome-related organelles mediate cell type-specific functions. Chédiak-Higashi syndrome is an autosomal, recessive disease, in which loss of the protein LYST causes defects in lysosomes and lysosome-related organelles. The molecular function of LYST, however, is largely unknown. Here, we dissected the function of the yeast LYST homolog, Bph1. We show that Bph1 is an endosomal protein and an effector of the minor Rab5 isoform Ypt52. Strikingly, bph1Δ mutant cells have lipidated Atg8 on their endosomes, which is sorted via late endosomes into the vacuole lumen under non-autophagy-inducing conditions. In agreement with this, proteomic analysis of bph1Δ vacuoles reveals an accumulation of Atg8, reduced flux via selective autophagy, and defective endocytosis. Additionally, bph1Δ cells have reduced autophagic flux under starvation conditions. Our observations suggest that Bph1 is a novel Rab5 effector that maintains endosomal functioning. When Bph1 is lost, Atg8 is lipidated at endosomes even during normal growth and ends up in the vacuole lumen. Thus, our results contribute to the understanding of the role of LYST-related proteins and associated diseases.


Subject(s)
Chediak-Higashi Syndrome , Saccharomyces cerevisiae Proteins , Autophagy , Autophagy-Related Protein 8 Family/metabolism , Chediak-Higashi Syndrome/metabolism , Endosomes/metabolism , Humans , Lysosomes/metabolism , Proteins/metabolism , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 117(31): 18530-18539, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690699

ABSTRACT

Endoplasmic reticulum (ER) macroautophagy (hereafter called ER-phagy) uses autophagy receptors to selectively degrade ER domains in response to starvation or the accumulation of aggregation-prone proteins. Autophagy receptors package the ER into autophagosomes by binding to the ubiquitin-like yeast protein Atg8 (LC3 in mammals), which is needed for autophagosome formation. In budding yeast, cortical and cytoplasmic ER-phagy requires the autophagy receptor Atg40. While different ER autophagy receptors have been identified, little is known about other components of the ER-phagy machinery. In an effort to identify these components, we screened the genome-wide library of viable yeast deletion mutants for defects in the degradation of cortical ER following treatment with rapamycin, a drug that mimics starvation. Among the mutants we identified was vps13Δ. While yeast has one gene that encodes the phospholipid transporter VPS13, humans have four vacuolar protein-sorting (VPS) protein 13 isoforms. Mutations in all four human isoforms have been linked to different neurological disorders, including Parkinson's disease. Our findings have shown that Vps13 acts after Atg40 engages the autophagy machinery. Vps13 resides at contact sites between the ER and several organelles, including late endosomes. In the absence of Vps13, the cortical ER marker Rtn1 accumulated at late endosomes, and a dramatic decrease in ER packaging into autophagosomes was observed. Together, these studies suggest a role for Vps13 in the sequestration of the ER into autophagosomes at late endosomes. These observations may have important implications for understanding Parkinson's and other neurological diseases.


Subject(s)
Autophagosomes/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Autophagy , Cell Line , Endoplasmic Reticulum/genetics , Endosomes/genetics , Endosomes/metabolism , Humans , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
12.
J Cell Sci ; 132(22)2019 11 14.
Article in English | MEDLINE | ID: mdl-31649143

ABSTRACT

Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole. How the PAS is anchored to the vacuole and the functional significance of this localization are unknown. Here, we investigated the role of the PAS-vacuole connection for bulk autophagy in the yeast Saccharomyces cerevisiae We show that Vac8 constitutes a vacuolar tether that stably anchors the PAS to the vacuole throughout autophagosome biogenesis via the PAS component Atg13. S. cerevisiae lacking Vac8 show inefficient autophagosome-vacuole fusion, and form fewer and smaller autophagosomes that often localize away from the vacuole. Thus, the stable PAS-vacuole connection established by Vac8 creates a confined space for autophagosome biogenesis between the ER and the vacuole, and allows spatial coordination of autophagosome formation and autophagosome-vacuole fusion. These findings reveal that the spatial regulation of autophagosome formation at the vacuole is required for efficient bulk autophagy.


Subject(s)
Autophagosomes/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism , Autophagy , Saccharomyces cerevisiae/cytology
13.
Nature ; 522(7556): 354-8, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26040720

ABSTRACT

The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis , Apoptosis Regulatory Proteins , Biomarkers/metabolism , Cell Line , Endoplasmic Reticulum/chemistry , Female , Gene Deletion , Humans , Intracellular Signaling Peptides and Proteins , Lysosomes/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Phagosomes/metabolism , Protein Binding , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology
14.
EMBO J ; 34(16): 2117-31, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26162625

ABSTRACT

Autophagy is a major catabolic process responsible for the delivery of proteins and organelles to the lysosome/vacuole for degradation. Malfunction of this pathway has been implicated in numerous pathological conditions. Different organelles have been found to contribute to the formation of autophagosomes, but the exact mechanism mediating this process remains obscure. Here, we show that lipid droplets (LDs) are important for the regulation of starvation-induced autophagy. Deletion of Dga1 and Lro1 enzymes responsible for triacylglycerol (TAG) synthesis, or of Are1 and Are2 enzymes responsible for the synthesis of steryl esters (STE), results in the inhibition of autophagy. Moreover, we identified the STE hydrolase Yeh1 and the TAG lipase Ayr1 as well as the lipase/hydrolase Ldh1 as essential for autophagy. Finally, we provide evidence that the ER-LD contact-site proteins Ice2 and Ldb16 regulate autophagy. Our study thus highlights the importance of lipid droplet dynamics for the autophagic process under nitrogen starvation.


Subject(s)
Autophagy , Esters/metabolism , Lipid Droplets/metabolism , Phagosomes/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Triglycerides/metabolism , Metabolic Networks and Pathways/genetics
15.
EMBO Rep ; 18(5): 765-780, 2017 05.
Article in English | MEDLINE | ID: mdl-28330855

ABSTRACT

Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3-interacting region (LIR) at the C-terminus of the protein and a novel motif at the N-terminus. Although both sites are important for Atg4-Atg8 interaction in vivo, only the new N-terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE-bound Atg8.


Subject(s)
Autophagosomes/metabolism , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Autophagy , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Proteins/genetics , Membranes/chemistry , Membranes/metabolism , Microtubule-Associated Proteins/genetics , Phagosomes/metabolism , Phosphatidylethanolamines/metabolism , Protein Binding , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
16.
Traffic ; 16(2): 135-47, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25409870

ABSTRACT

Membrane junctions or contact sites are close associations of lipid bilayers of heterologous organelles. Ist2 is an endoplasmic reticulum (ER)-resident transmembrane protein that mediates associations between the plasma membrane (PM) and the cortical ER (cER) in baker's yeast. We asked the question what structure in Ist2 bridges the up to 30 nm distance between the PM and the cER and we noted that the region spacing the transmembrane domain from the cortical sorting signal interacting with the PM is predicted to be intrinsically disordered (ID). In Ssy1, a protein that was not previously described to reside at membrane junctions, we recognized a domain organization similar to that in Ist2. We found that the localization of both Ist2 and Ssy1 at the cell periphery depends on the presence of a PM-binding domain, an ID linker region of sufficient length and a transmembrane domain that most probably resides in the ER. We show for the first time that an ID amino acid domain bridges adjacent heterologous membranes. The length and flexibility of ID domains make them uniquely eligible for spanning large distances, and we suggest that this domain structure occurs more frequently in proteins that mediate the formation of membrane contact sites.


Subject(s)
Cell Membrane/metabolism , Intercellular Junctions/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Sequence Data , Protein Binding , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
17.
Traffic ; 15(10): 1164-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25040403

ABSTRACT

Compartmentalization of eukaryotic cells is created and maintained through membrane rearrangements that include membrane transport and organelle biogenesis. Three-dimensional reconstructions with nanoscale resolution in combination with protein localization are essential for an accurate molecular dissection of these processes. The yeast Saccharomyces cerevisiae is a key model system for identifying genes and characterizing pathways essential for the organization of cellular ultrastructures. Electron microscopy studies of yeast, however, have been hampered by the presence of a cell wall that obstructs penetration of resins and cryoprotectants, and by the protein dense cytoplasm, which obscures the membrane details. Here we present an immuno-electron tomography (IET) method, which allows the determination of protein distribution patterns on reconstructed organelles from yeast. In addition, we extend this IET approach into a correlative light microscopy-electron tomography procedure where structures positive for a specific protein localized through a fluorescent signal are resolved in 3D. These new investigative tools for yeast will help to advance our understanding of the endomembrane system organization in eukaryotic cells.


Subject(s)
Electron Microscope Tomography/methods , Imaging, Three-Dimensional/methods , Saccharomyces cerevisiae/metabolism , Immunohistochemistry/methods , Microscopy, Fluorescence/methods , Protein Transport
18.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38536036

ABSTRACT

Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function.


Subject(s)
Endosomes , Saccharomyces cerevisiae Proteins , rab GTP-Binding Proteins , ras GTPase-Activating Proteins , Biological Transport , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Signal Transduction , Vacuoles , ras GTPase-Activating Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
19.
J Cell Sci ; 124(Pt 14): 2424-37, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21693588

ABSTRACT

Cells store metabolic energy in the form of neutral lipids that are deposited within lipid droplets (LDs). In this study, we examine the biogenesis of LDs and the transport of integral membrane proteins from the endoplasmic reticulum (ER) to newly formed LDs. In cells that lack LDs, otherwise LD-localized membrane proteins are homogenously distributed in the ER membrane. Under these conditions, transcriptional induction of a diacylglycerol acyltransferase that catalyzes the formation of the storage lipid triacylglycerol (TAG), Lro1, is sufficient to drive LD formation. Newly formed LDs originate from the ER membrane where they become decorated by marker proteins. Induction of LDs by expression of the second TAG-synthesizing integral membrane protein, Dga1, reveals that Dga1 itself moves from the ER membrane to concentrate on LDs. Photobleaching experiments (FRAP) indicate that relocation of membrane proteins from the ER to LDs is independent of temperature and energy, and thus not mediated by classical vesicular transport routes. LD-localized membrane proteins are homogenously distributed at the perimeter of LDs, they are free to move over the LD surface and can even relocate back into the ER, indicating that they are not restricted to specialized sites on LDs. These observations indicate that LDs are functionally connected to the ER membrane and that this connection allows the efficient partitioning of membrane proteins between the two compartments.


Subject(s)
Endoplasmic Reticulum/metabolism , Lipid Metabolism , Saccharomyces cerevisiae/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/metabolism
20.
J Cell Sci ; 124(Pt 7): 1095-105, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21385844

ABSTRACT

Many different tissues and cell types exhibit regulated secretion of lipoprotein lipase (LPL). However, the sorting of LPL in the trans Golgi network has not, hitherto, been understood in detail. Here, we characterize the role of SorLA (officially known as SorLA-1 or sortilin-related receptor) in the intracellular trafficking of LPL. We found that LPL bound to SorLA under neutral and acidic conditions, and in cells this binding mainly occurred in vesicular structures. SorLA expression changed the subcellular distribution of LPL so it became more concentrated in endosomes. From the endosomes, LPL was further routed to the lysosomes, which resulted in a degradation of newly synthesized LPL. Consequently, an 80% reduction of LPL activity was observed in cells that expressed SorLA. By analogy, SorLA regulated the vesicle-like localization of LPL in primary neuronal cells. Thus, LPL binds to SorLA in the biosynthetic pathway and is subsequently transported to endosomes. As a result of this SorLA mediated-transport, newly synthesized LPL can be routed into specialized vesicles and eventually sent to degradation, and its activity thereby regulated.


Subject(s)
Intracellular Space/metabolism , LDL-Receptor Related Proteins/metabolism , Lipoprotein Lipase/metabolism , Membrane Transport Proteins/metabolism , Animals , Cattle , Cell Line , Cricetinae , Humans , Intracellular Space/chemistry , Intracellular Space/enzymology , Intracellular Space/genetics , LDL-Receptor Related Proteins/genetics , Lipoprotein Lipase/chemistry , Lipoprotein Lipase/genetics , Membrane Transport Proteins/genetics , Protein Binding , Protein Structure, Tertiary , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL