Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Bioorg Med Chem Lett ; 92: 129394, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37379958

ABSTRACT

Our previous work on the optimization of a new class of small molecule PCSK9 mRNA translation inhibitors focused on empirical optimization of the amide tail region of the lead PF-06446846 (1). This work resulted in compound 3 that showed an improved safety profile. We hypothesized that this improvement was related to diminished binding of 3 to non-translating ribosomes and an apparent improvement in transcript selectivity. Herein, we describe our efforts to further optimize this series of inhibitors through modulation of the heterocyclic head group and the amine fragment. Some of the effort was guided by an emerging cryo electron microscopy structure of the binding mode of 1 in the ribosome. These efforts led to the identification of 15 that was deemed suitable for evaluation in a humanized PCSK9 mouse model and a rat toxicology study. Compound 15 demonstrated a dose dependent reduction of plasma PCSK9 levels. The rat toxicological profile was not improved over that of 1, which precluded 15 from further consideration as a clinical candidate.

3.
PLoS Biol ; 15(3): e2001882, 2017 03.
Article in English | MEDLINE | ID: mdl-28323820

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts.


Subject(s)
Protein Biosynthesis/drug effects , Ribosomes/drug effects , Animals , Cell Line , Cell-Free System , Cholesterol/blood , Escherichia coli/genetics , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Mass Spectrometry , Molecular Targeted Therapy , Proprotein Convertase 9/blood , Proprotein Convertase 9/genetics , Protein Biosynthesis/physiology , Rabbits , Rats , Rats, Sprague-Dawley , Ribosomes/metabolism , Ribosomes/physiology
4.
J Am Chem Soc ; 140(21): 6596-6603, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29668265

ABSTRACT

CRISPR-Cas RNA-guided endonucleases hold great promise for disrupting or correcting genomic sequences through site-specific DNA cleavage and repair. However, the lack of methods for cell- and tissue-selective delivery currently limits both research and clinical uses of these enzymes. We report the design and in vitro evaluation of S. pyogenes Cas9 proteins harboring asialoglycoprotein receptor ligands (ASGPrL). In particular, we demonstrate that the resulting ribonucleoproteins (Cas9-ASGPrL RNP) can be engineered to be preferentially internalized into cells expressing the corresponding receptor on their surface. Uptake of such fluorescently labeled proteins in liver-derived cell lines HEPG2 (ASGPr+) and SKHEP (control; diminished ASGPr) was studied by live cell imaging and demonstrates increased accumulation of Cas9-ASGPrL RNP in HEPG2 cells as a result of effective ASGPr-mediated endocytosis. When uptake occurred in the presence of a peptide with endosomolytic properties, we observed receptor-facilitated and cell-type specific gene editing that did not rely on electroporation or the use of transfection reagents. Overall, these in vitro results validate the receptor-mediated delivery of genome-editing enzymes as an approach for cell-selective gene editing and provide a framework for future potential applications to hepatoselective gene editing in vivo.


Subject(s)
CRISPR-Cas Systems , Endonucleases/metabolism , Gene Editing , Cell Line, Tumor , Endonucleases/genetics , Hep G2 Cells , Humans , Molecular Structure , Protein Engineering
5.
Bioorg Med Chem Lett ; 28(23-24): 3685-3688, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30482620

ABSTRACT

A series of N-(piperidin-3-yl)-N-(pyridin-2-yl)piperidine/piperazine-1-carboxamides were identified as small molecule PCSK9 mRNA translation inhibitors. Analogues from this new chemical series, such as 4d and 4g, exhibited improved PCSK9 potency, ADME properties, and in vitro safety profiles when compared to earlier lead structures.


Subject(s)
Amides/chemistry , PCSK9 Inhibitors , Piperidines/chemistry , Protease Inhibitors/chemistry , Amides/metabolism , Amides/pharmacology , Animals , Cell Membrane Permeability/drug effects , Crystallography, X-Ray , Dogs , Humans , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Molecular Conformation , Proprotein Convertase 9/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Structure-Activity Relationship
6.
Angew Chem Int Ed Engl ; 56(51): 16218-16222, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29073340

ABSTRACT

Targeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver. Oral delivery of the poorly permeable zwitterions was achieved by prodrugs susceptible to cleavage by carboxylesterase 1. The synthesis of select tetrazole prodrugs was crucial. A cell-free in vitro translation assay containing human cell lysate and purified target mRNA fused to a reporter was used to identify active zwitterions. In vivo PCSK9 lowering by oral dosing of the candidate prodrug and quantification of the drug fraction delivered to the liver utilizing an oral positron emission tomography 18 F-isotopologue validated our liver-targeting approach.


Subject(s)
Liver/drug effects , PCSK9 Inhibitors , Proprotein Convertase 9/biosynthesis , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/enzymology , Liver/metabolism , Molecular Structure , Proprotein Convertase 9/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 23(1): 194-7, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23177788

ABSTRACT

A novel GPR119 agonist based on the 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole scaffold was designed through lead optimization starting from pyrazole-based GPR119 agonist 1. The design is centered on the conformational restriction of the core scaffold, while minimizing the change in spatial relationships of two key pharmacophoric elements (piperidine-carbamate and aryl sulfone).


Subject(s)
Pyrazoles/chemistry , Receptors, G-Protein-Coupled/agonists , Carbamates/chemistry , Humans , Piperidines/chemistry , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 23(19): 5410-4, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23953189

ABSTRACT

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Subject(s)
Central Nervous System/drug effects , Receptors, Ghrelin/antagonists & inhibitors , Amino Acid Sequence , Animals , Binding Sites , Drug Inverse Agonism , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Indans/chemistry , Indans/pharmacology , Inhibitory Concentration 50 , Isomerism , Molecular Structure , Protein Binding/drug effects , Rats , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 22(13): 4281-7, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22677316

ABSTRACT

The discovery of spirocyclic piperidine-azetidine inverse agonists of the ghrelin receptor is described. The characterization and redressing of the issues associated with these compounds is detailed. An efficient three-step synthesis and a binding assay were relied upon as the primary means of rapidly improving potency and ADMET properties for this class of inverse agonist compounds. Compound 10 n bearing distributed polarity in the form of an imidazo-thiazole acetamide and a phenyl triazole is a unit lower in logP and has significantly improved binding affinity compared to the hit molecule 10a, providing support for further optimization of this series of compounds.


Subject(s)
Azetidines/chemistry , Piperidines/chemistry , Receptors, Ghrelin/agonists , Animals , Azetidines/chemical synthesis , Azetidines/pharmacokinetics , Drug Inverse Agonism , Humans , Microsomes, Liver/metabolism , Rats , Receptors, Ghrelin/metabolism , Structure-Activity Relationship
10.
Chem Res Toxicol ; 24(2): 269-78, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21288051

ABSTRACT

Isopropyl 9-anti-[5-cyano-6-(2-methyl-pyridin-3-yloxy)-pyrimidin-4-yloxy]-3-oxa-7-aza-bicyclo[3.3.1]nonane-7-carboxylate (1) represents a prototypic compound from a lead chemical series of G protein-coupled receptor 119 agonists, intended for treatment of type 2 diabetes. When compound 1 was incubated with NADPH-supplemented human liver microsomes in the presence of glutathione, two thioether conjugates M4-1 and M5-1 were observed. Omission of NADPH from the microsomal incubations prevented the formation of M5-1 but not M4-1. The formation of M4-1 was also discerned in incubations of 1 and glutathione with human liver cytosol, partially purified glutathione transferase, and in phosphate buffer at pH 7.4. M4-1 was isolated, and its structure ascertained from LC-MS/MS and NMR analysis. The mass spectral and NMR data suggested that M4-1 was obtained from a nucleophilic displacement of the 6-(2-methylpyridin-3-yloxy) group in 1 by glutathione. In addition, mass spectral studies revealed that M5-1 was derived from an analogous displacement reaction on a monohydroxylated metabolite of 1; the regiochemistry of hydroxylation was established to be on the isopropyl group. Of great interest were the findings that replacement of the 5-cyano group in 1 with a 5-methyl group resulted in 2, which was practically inert toward reaction with glutathione. This observation suggests that the electron-withdrawing potential of the C5 cyano group serves to increase the electrophilicity of the C6 carbon (via stabilization of the transition state) and favors reaction with the nucleophilic thiol. The mechanistic insights gained from these studies should assist medicinal chemistry efforts toward the design of analogs that retain primary pharmacology but are latent toward reaction with biological nucleophiles, thus mitigating the potential for toxicological outcome due to adduction with glutathione or proteins.


Subject(s)
Glutathione/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Pyrimidines/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , Diabetes Mellitus, Type 2/drug therapy , Glutathione/chemistry , Horses , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Pyrimidines/chemistry
11.
Chem Res Toxicol ; 24(12): 2207-16, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-21939274

ABSTRACT

As part of efforts directed at the G protein-coupled receptor 119 agonist program for type 2 diabetes, a series of cyanopyridine derivatives exemplified by isopropyl-4-(3-cyano-5-(quinoxalin-6-yl)pyridine-2-yl)piperazine-1-carboxylate (1) were identified as novel chemotypes worthy of further hit-to-lead optimization. Compound 1, however, was found to be unstable in plasma (37 °C, pH 7.4) from rat (T(1/2) = 16 min), mouse (T(1/2) = 61 min), and guinea pig (T(1/2) = 4 min). Lowering the temperature of plasma incubations (4-25 °C) attenuated the degradation of 1, implicating the involvement of an enzyme-mediated process. Failure to detect any appreciable amount of 1 in plasma samples from protein binding and pharmacokinetic studies in rats was consistent with its labile nature in plasma. Instability noted in rodent plasma was not observed in plasma from dogs, monkeys, and humans (T(1/2) > 370 min at 37 °C, pH 7.4). Metabolite identification studies in rodent plasma revealed the formation of a single metabolite (M1), which was 16 Da higher than the molecular weight of 1 (compound 1, MH(+) = 403; M1, MH(+) = 419). Pretreatment of rat plasma with allopurinol, but not raloxifene, abolished the conversion of 1 to M1, suggesting that xanthine oxidase (XO) was responsible for the oxidative instability. Consistent with the known catalytic mechanism of XO, the source of oxygen incorporated in M1 was derived from water rather than molecular oxygen. The formation of M1 was also demonstrated in incubations of 1 with purified bovine XO. The structure of M1 was determined by NMR analysis to be isopropyl-4-(3-cyano-5-(3-oxo-3,4-dihydroquinoxalin-6-yl)pyridine-2-yl)piperazine-1-carboxylate. The regiochemistry of quinoxaline ring oxidation in 1 was consistent with ab initio calculations and molecular docking studies using a published crystal structure of bovine XO. A close-in analogue of 1, which lacked the quinoxaline motif (e.g., 5-(4-cyano-3-methylphenyl)-2-(4-(3-isopropyl-1,2,4-oxadiazol-5-yl)piperidin-1-yl)nicotinitrile (2)) was stable in rat plasma and possessed substantially improved GPR119 agonist properties. To the best of our knowledge, our studies constitute the first report on the involvement of rodent XO in oxidative drug metabolism in plasma.


Subject(s)
Oxadiazoles/chemistry , Piperidines/chemistry , Quinoxalines/metabolism , Xanthine Oxidase/blood , Xanthine Oxidase/metabolism , Animals , Binding Sites , Cattle , Computer Simulation , Dogs , Guinea Pigs , Haplorhini , Humans , Magnetic Resonance Spectroscopy , Mice , Oxadiazoles/pharmacokinetics , Oxidation-Reduction , Piperidines/pharmacokinetics , Protein Binding , Protein Structure, Tertiary , Quinoxalines/chemistry , Quinoxalines/pharmacokinetics , Rats , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Temperature
12.
Bioorg Med Chem Lett ; 21(5): 1306-9, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21310611

ABSTRACT

The design and synthesis of a GPR119 agonist bearing a 2-(2,3,6-trifluorophenyl)acetamide group is described. The design capitalized on the conformational restriction found in N-ß-fluoroethylamide derivatives to help maintain good levels of potency while driving down both lipophilicity and oxidative metabolism in human liver microsomes. The chemical stability and bioactivation potential are discussed.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Drug Design , Receptors, G-Protein-Coupled/agonists , Acetamides/chemical synthesis , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Structure , Receptors, G-Protein-Coupled/chemistry
13.
J Med Chem ; 64(1): 326-342, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33356244

ABSTRACT

Sickle cell disease (SCD) is a genetic disorder caused by a single point mutation (ß6 Glu → Val) on the ß-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (±9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials.


Subject(s)
Anemia, Sickle Cell/drug therapy , Hemoglobin A/drug effects , Hemoglobin, Sickle/drug effects , Quinolines/pharmacology , Quinolines/therapeutic use , Animals , Erythrocytes/metabolism , Mice , Oxygen/metabolism , Quinolines/chemistry
14.
Bioorg Med Chem Lett ; 20(2): 469-73, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19969459

ABSTRACT

The structure based drug design, synthesis and structure-activity relationship of a series of C6 sulfur linked triazolopyridine based p38 inhibitors are described. The metabolic deficiencies of this series were overcome through changes in the C6 linker from sulfur to methylene, which was predicted by molecular modeling to be bioisosteric. X-ray of the ethylene linked compound 61 confirmed the predicted binding orientation of the scaffold in the p38 enzyme.


Subject(s)
Benzamides/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Triazoles/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Benzamides/chemical synthesis , Benzamides/pharmacology , Binding Sites , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Crystallography, X-Ray , Drug Design , Humans , Microsomes, Liver/metabolism , Models, Chemical , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Bioorg Med Chem Lett ; 19(6): 1559-63, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19246199

ABSTRACT

The biochemical basis for S9-dependent mutagenic response of the 5-HT(2C) receptor agonist and diazinylpiperazine derivative 1 in the Salmonella Ames assay involves P450-mediated bioactivation to DNA-reactive quinone-methide, aldehyde and nitrone intermediates. Mechanistic information pertaining to the metabolism of 1 was used in the design of diazinylpiperazine 5 to eliminate the safety liability. While 5 was negative in the Ames assay, the compound retained the ability of 1 to form certain electrophilic intermediates. Plausible hypotheses that can collectively account for the differences in mutagenic response of the two piperazine analogs are discussed.


Subject(s)
Chemistry, Pharmaceutical/methods , Piperazines/chemistry , Serotonin 5-HT2 Receptor Agonists , Amides/chemistry , Chromatography/methods , Drug Design , Models, Chemical , Mutagenesis , Mutagenicity Tests , Mutagens , Mutation , NADP/chemistry , Piperazine , Reproducibility of Results , Salmonella/metabolism
16.
ACS Med Chem Lett ; 10(7): 1026-1032, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31312403

ABSTRACT

Macrocycles have emerged as a viable approach for the modulation of tough targets in drug discovery. In this Innovations article we discuss recent progress toward the design of cell permeable and orally bioavailable peptide macrocycles and cyclotides and provide a perspective for their potential as therapeutics. We highlight design concepts that may be broadly relevant to drug discovery efforts beyond the rule of five.

17.
Nat Struct Mol Biol ; 26(6): 501-509, 2019 06.
Article in English | MEDLINE | ID: mdl-31160784

ABSTRACT

The drug-like molecule PF-06446846 (PF846) binds the human ribosome and selectively blocks the translation of a small number of proteins by an unknown mechanism. In structures of PF846-stalled human ribosome nascent chain complexes, PF846 binds in the ribosome exit tunnel in a eukaryotic-specific pocket formed by 28S ribosomal RNA, and alters the path of the nascent polypeptide chain. PF846 arrests the translating ribosome in the rotated state of translocation, in which the peptidyl-transfer RNA 3'-CCA end is improperly docked in the peptidyl transferase center. Selections of messenger RNAs from mRNA libraries using translation extracts reveal that PF846 can stall translation elongation, arrest termination or even enhance translation, depending on nascent chain sequence context. These results illuminate how a small molecule selectively targets translation by the human ribosome, and provides a foundation for developing small molecules that modulate the production of proteins of therapeutic interest.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/pharmacology , Protein Biosynthesis/drug effects , Ribosomes/drug effects , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Models, Molecular , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Ribosomes/metabolism
18.
J Med Chem ; 61(13): 5704-5718, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29878763

ABSTRACT

The optimization of a new class of small molecule PCSK9 mRNA translation inhibitors is described. The potency, physicochemical properties, and off-target pharmacology associated with the hit compound (1) were improved by changes to two regions of the molecule. The last step in the synthesis of the congested amide center was enabled by three different routes. Subtle structural changes yielded significant changes in pharmacology and off-target margins. These efforts led to the identification of 7l and 7n with overall profiles suitable for in vivo evaluation. In a 14-day toxicology study, 7l demonstrated an improved safety profile vs lead 7f. We hypothesize that the improved safety profile is related to diminished binding of 7l to nontranslating ribosomes and an apparent improvement in transcript selectivity due to the lower strength of 7l stalling of off-target proteins.


Subject(s)
PCSK9 Inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Animals , Drug Design , Male , Protease Inhibitors/adverse effects , Protease Inhibitors/metabolism , Rats , Rats, Sprague-Dawley , Safety , Structure-Activity Relationship
19.
J Med Chem ; 48(18): 5728-37, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16134941

ABSTRACT

Mimics of the benzimidazolone nucleus found in inhibitors of p38 kinase are proposed, and their theoretical potential as bioisosteres is described. A set of calculated descriptors relevant to the anticipated binding interaction for the fragments 1-methyl-1H-benzotriazole 5, 3-methyl-benzo[d]isoxazole 3, and 3-methyl-[1,2,4]triazolo[4,3-a]pyridine 4, pyridine 1, and 1,3-dimethyl-1,3-dihydro-benzoimidazol-2-one 2 are reported. The design considerations and synthesis of p38 inhibitors based on these H-bond acceptor fragments is detailed. Comparative evaluation of the pyridine-, benzimidazolone-, benzotriazole-, and triazolopyridine-based inhibitors shows the triazoles 20 and 25 to be significantly more potent experimentally than the benzimidazolone after which they were modeled. An X-ray crystal structure of 25 bound to the active site shows that the triazole group serves as the H-bond acceptor but unexpectedly as a dual acceptor, inducing movement of the crossover connection of p38alpha. The computed descriptors for the hydrophobic and pi-pi interaction capacities were the most useful in ranking potency.


Subject(s)
Benzimidazoles/chemistry , Pyridines/chemistry , Triazoles/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/chemistry , Benzimidazoles/chemical synthesis , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Mimicry , Molecular Structure , Protein Binding , Pyridines/chemical synthesis , Quantitative Structure-Activity Relationship , Static Electricity , Triazoles/chemical synthesis
20.
ACS Med Chem Lett ; 6(2): 156-61, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25699143

ABSTRACT

Several polar heteroaromatic acetic acids and their piperidine amides were synthesized and evaluated as ghrelin or type 1a growth hormone secretagogue receptor (GHS-R1a) inverse agonists. Efforts to improve pharmacokinetic and safety profile was achieved by modulating physicochemical properties and, more specifically, emphasizing increased polarity of our chemical series. ortho-Carboxamide containing compounds provided optimal physicochemical, pharmacologic, and safety profile. pH-dependent chemical stability was also assessed with our series.

SELECTION OF CITATIONS
SEARCH DETAIL