Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biol Chem ; 296: 100349, 2021.
Article in English | MEDLINE | ID: mdl-33524394

ABSTRACT

The histone methyltransferase EZH2 has been the target of numerous small-molecule inhibitor discovery efforts over the last 10+ years. Emerging clinical data have provided early evidence for single agent activity with acceptable safety profiles for first-generation inhibitors. We have developed kinetic methodologies for studying EZH2-inhibitor-binding kinetics that have allowed us to identify a unique structural modification that results in significant increases in the drug-target residence times of all EZH2 inhibitor scaffolds we have studied. The unexpected residence time enhancement bestowed by this modification has enabled us to create a series of second-generation EZH2 inhibitors with sub-pM binding affinities. We provide both biophysical evidence validating this sub-pM potency and biological evidence demonstrating the utility and relevance of such high-affinity interactions with EZH2.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Allosteric Regulation/drug effects , Animals , Drug Discovery , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , HeLa Cells , Humans , Mice, SCID , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
2.
Bioconjug Chem ; 26(4): 650-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25643134

ABSTRACT

The systemic stability of the antibody-drug linker is crucial for delivery of an intact antibody-drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.


Subject(s)
Aminobenzoates/chemistry , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Immunoconjugates/chemistry , Oligopeptides/chemistry , Pancreatic Neoplasms/drug therapy , Aminobenzoates/blood , Aminobenzoates/pharmacokinetics , Aminobenzoates/pharmacology , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Carbamates/chemistry , Cathepsin B/chemistry , Cathepsin B/metabolism , Cell Line, Tumor , Dipeptides/chemistry , Drug Delivery Systems/methods , Drug Stability , Female , Humans , Immunoconjugates/blood , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice , Mice, Nude , Models, Molecular , Oligopeptides/blood , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 25(21): 4941-4944, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25987375

ABSTRACT

Facilitating activation, or delaying inactivation, of the native Kv7 channel reduces neuronal excitability, which may be beneficial in controlling spontaneous electrical activity during epileptic seizures. In an effort to identify a compound with such properties, the structure-activity relationship (SAR) and in vitro ADME for a series of heterocyclic Kv7.2-7.5 channel openers was explored. PF-05020182 (2) demonstrated suitable properties for further testing in vivo where it dose-dependently decreased the number of animals exhibiting full tonic extension convulsions in response to corneal stimulation in the maximal electroshock (MES) assay. In addition, PF-05020182 (2) significantly inhibited convulsions in the MES assay at doses tested, consistent with in vitro activity measure. The physiochemical properties, in vitro and in vivo activities of PF-05020182 (2) support further development as an adjunctive treatment of refractory epilepsy.


Subject(s)
Drug Discovery , Epilepsy/drug therapy , Ion Channel Gating/drug effects , KCNQ2 Potassium Channel/metabolism , Piperidines/pharmacology , Pyrimidines/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Electroshock , Humans , KCNQ2 Potassium Channel/agonists , Microsomes/drug effects , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 11(6): 1205-1212, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551002

ABSTRACT

Histone methyltransferase EZH2, which is the catalytic subunit of the PRC2 complex, catalyzes the methylation of histone H3K27-a transcriptionally repressive post-translational modification (PTM). EZH2 is commonly mutated in hematologic malignancies and frequently overexpressed in solid tumors, where its expression level often correlates with poor prognosis. First generation EZH2 inhibitors are beginning to show clinical benefit, and we believe that a second generation EZH2 inhibitor could further build upon this foundation to fully realize the therapeutic potential of EZH2 inhibition. During our medicinal chemistry campaign, we identified 4-thiomethyl pyridone as a key modification that led to significantly increased potency and prolonged residence time. Leveraging this finding, we optimized a series of EZH2 inhibitors, with enhanced antitumor activity and improved physiochemical properties, which have the potential to expand the clinical use of EZH2 inhibition.

5.
Mol Cancer Ther ; 15(5): 958-70, 2016 05.
Article in English | MEDLINE | ID: mdl-26944918

ABSTRACT

The degree of stability of antibody-drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody-drug conjugates (ADC) in vivo Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-p-aminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC-based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC-based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958-70. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Carbamates/chemistry , Citrulline/chemistry , Immunoconjugates/chemistry , Valine/chemistry , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biomarkers , Carboxylesterase/chemistry , Carboxylesterase/metabolism , Drug Design , Drug Stability , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice , Mice, Knockout , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Structure-Activity Relationship
6.
PLoS One ; 10(7): e0132282, 2015.
Article in English | MEDLINE | ID: mdl-26161543

ABSTRACT

The efficacy of an antibody-drug conjugate (ADC) is dependent on the properties of its linker-payload which must remain stable while in systemic circulation but undergo efficient processing upon internalization into target cells. Here, we examine the stability of a non-cleavable Amino-PEG6-based linker bearing the monomethyl auristatin D (MMAD) payload site-specifically conjugated at multiple positions on an antibody. Enzymatic conjugation with transglutaminase allows us to create a stable amide linkage that remains intact across all tested conjugation sites on the antibody, and provides us with an opportunity to examine the stability of the auristatin payload itself. We report a position-dependent degradation of the C terminus of MMAD in rodent plasma that has a detrimental effect on its potency. The MMAD cleavage can be eliminated by either modifying the C terminus of the toxin, or by selection of conjugation site. Both approaches result in improved stability and potency in vitro and in vivo. Furthermore, we show that the MMAD metabolism in mouse plasma is likely mediated by a serine-based hydrolase, appears much less pronounced in rat, and was not detected in cynomolgus monkey or human plasma. Clarifying these species differences and controlling toxin degradation to optimize ADC stability in rodents is essential to make the best ADC selection from preclinical models. The data presented here demonstrate that site selection and toxin susceptibility to mouse plasma degradation are important considerations in the design of non-cleavable ADCs, and further highlight the benefits of site-specific conjugation methods.


Subject(s)
Aminobenzoates/pharmacokinetics , Drug Carriers/pharmacokinetics , Oligopeptides/pharmacokinetics , Aminobenzoates/administration & dosage , Aminobenzoates/chemistry , Animals , Antibodies/administration & dosage , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Stability , Female , HEK293 Cells , Humans , Macaca fascicularis , Mice, SCID , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL