Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Funct Integr Genomics ; 23(2): 183, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233833

ABSTRACT

Cotton is an important fiber crop cultivated around the world under diverse climate conditions and generates billions of dollars in annual revenue globally. Biotic and abiotic stresses have caused reduction in yield and productivity of cotton crops. In this review, we comprehensively analyzed and summarized the effect of biotic and abiotic stress on secondary metabolite production in cotton. The development of cotton varieties with improved tolerance against abiotic and biotic stress can play an important role in sustainable cotton production. Under stress conditions, plants develop a variety of defense mechanisms such as initiating signaling functions to upregulate defense responsive genes and accumulation of secondary metabolites. Understanding the impact of stress on secondary metabolite production in cotton is crucial for developing strategies to alleviate the negative effects of stress on crop yield and quality. Further, the potential industrial applications of these secondary metabolites in cotton, such as gossypol, could provide new opportunities for sustainable cotton production and the development of value-added products. Additionally, transgenic and genome-edited cotton cultivars can be developed to provide tolerance to both abiotic and biotic stress in cotton production.


Subject(s)
Gossypium , Metabolomics , Gossypium/genetics , Stress, Physiological/genetics
2.
Int J Biol Macromol ; 274(Pt 2): 133320, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950798

ABSTRACT

The increasing urge to make an impactful contribution towards attaining nutritional security amidst the ever-rising demand for food, changing climate and maintaining environmental health and safety has become the main focal point for today's researchers globally. Slow-release fertilizers (SRFs) are a broad, dynamic, and advance category of fertilizers but despite its environmental benefits and scientifically proven results it often faces some critical challenges, primarily due to its high cost, often stemming from synthetic coatings, deteriorating soil health and with unrevealed potential environmental impacts. Organo-monomers have gained immense popularity due to their organic origin, biodegradable nature, biocompatibility, bio-sustainability and as a targeted delivery of nutrients in the plant system leading to increase in nutrient use efficiency (NUE). They can form strong bond with other monomers, fertilizers elements and improve the soil quality, carbon sequestration and holistically the environment. This review emphasizes on organo-monomers based SRFs, its synthesis, application and deliberate mechanism of nutrient release; boosting crop productivity and global economy. In conclusion, provided the significant challenges posed by the classical or synthetically coated fertilizers; the application of organo-monomers based SRFs demonstrates immense potential for achieving sustainable yield, to help build a global nutritionally secure population.

3.
Food Chem ; 428: 136783, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37450955

ABSTRACT

Tea residues represent one of the major agricultural wastes that are generated after the processing of tea. They account for 21-28% of crude protein and are often discarded without the extraction of valuable proteins. Due to various bioactivity and functional properties, tea proteins are an excellent alternative to other plant-based proteins for usage as food supplements at a higher dosage. Moreover, their good gelation capacity is ideal for the manufacturing of dairy products, jellies, condensation protein, gelatin gel, bread, etc. The current study is the first to comprehend various tea protein extraction methods and their amino acid profile. The preparation of tea protein bioactive peptides and hydrolysates are summarized. Several functional properties (solubility, foaming capacity, emulsification, water/oil absorption capacity) and bioactivities (antioxidant, antihypertensive, antidiabetic) of tea proteins are emphasized.


Subject(s)
Camellia sinensis , Camellia sinensis/chemistry , Tea/chemistry , Antioxidants/chemistry , Plant Proteins , Peptides
4.
Plants (Basel) ; 10(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34371632

ABSTRACT

The aim of this study was to determine the elemental and nutritive values of leaf parts of 10 selected wild medicinal plants, Acer pictum, Acer caecium, Betula utilis, Oxalis corniculata, Euphorbia pilosa, Heracleum lanatum, Urtica dioica, Berberis lycium, Berberis asiaticaand, and Quercus ilex, collected from the high hills of the Chitkul range in district Kinnaur, Western Himalaya. The nutritional characteristics of medicinal plant species were analyzed by using muffle furnace and micro-Kjeldahl methods, and the mineral content in plants was analyzed through atomic absorption spectrometry. The highest percentage of used value was reported in Betula utilis (0.42) and the lowest in Quercus ilex (0.17). In this study, it was found that new generations are not much interested in traditional knowledge of ethnomedicinal plants due to modernization in society. Therefore, there is an urgent need to document ethnomedicinal plants along with their phytochemical and minerals analysis in study sites. It was found that rural people in western Himalaya are dependent on wild medicinal plants, and certain steps must be taken to conserve these plants from extinction in the cold desert of Himalayan region. They are an alternative source of medicine because they contain saponin, alkaloid, and flavonoid etc. as well as minerals. The leaves used for analysis possesses good mineral content, such as Na, N, K, P, Zn, Fe, Cu, Mn, Ca, Mg, and S. Hence, in the current study it was observed that medicinal plants are not only used for therapeutic purposes, but they can also be used as nutritional supplements.

5.
Sci Rep ; 10(1): 773, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964910

ABSTRACT

The amount of Paper Board Mill Effluent Treatment Plant Sludge (PBM-ETPS) dumped from paper mills are huge and its conversion into hydrochar for the purpose of energy has broad prospects. This study investigated the optimum conditions for the production of PBM-ETPS derived hydrochar (PBM-ETPSH) through Reponse Surface Methodology (RSM) for more surface area and pore volume with minimal hydrogen to carbon (H/C) and oxygen to carbon (O/C) ratios. The PBM-ETPSH had higher heating value (HHV) of 18.39 MJ kg-1 with fixed carbon percentage of 15.6. Our results showed a reduction in H/C (35.05%) and O/C (43.7%) ratios confirming the coalification of optimized PBM-ETPSH. Thermogravimetric investigations of blending PBM-ETPSH with coal in 1:1 ratio increased its HHV to 22.25 MJ kg-1 making it suitable as an energy alternative for paper mills.

SELECTION OF CITATIONS
SEARCH DETAIL