Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 119(30): e2113963119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858440

ABSTRACT

Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as Mycobacterium tuberculosis MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of Corynebacterium-Mycobacterium-Nocardia species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated M. tuberculosis MmpL3 and Corynebacterium glutamicum CmpL1 proteins and reconstituted them into proteoliposomes. We also generated a series of substrate mimics and inhibitors specific to these transporters, analyzed their activities in the reconstituted proteoliposomes, and carried out molecular dynamics simulations of the model MmpL3 transporter at different pH. We found that all reconstituted proteins facilitate proton translocation across a phospholipid bilayer, but MmpL3 and CmpL1 differ dramatically in their responses to pH and interactions with substrate mimics and indole-2-carboxamide inhibitors. Our results further suggest that some inhibitors abolish the transport activity of MmpL3 and CmpL1 by inhibition of proton translocation.


Subject(s)
Bacterial Proteins , Membrane Transport Proteins , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Corynebacterium , Ion Transport , Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Mycolic Acids/metabolism , Protons , Substrate Specificity
2.
Article in English | MEDLINE | ID: mdl-30602519

ABSTRACT

Nontuberculous mycobacteria (NTM) pathogens particularly infect patients with structural lung disorders. We previously reported novel indole-2-carboxamides (ICs) that are active against a wide panel of NTM pathogens. This study discloses in vivo data for two lead molecules (compounds 5 and 25) that were advanced for efficacy studies in Mycobacterium abscessus-infected mouse models. Oral administration of the lead molecules showed a statistically significant reduction in the bacterial loads in lung and spleen of M. abscessus-infected mice.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Indoles/therapeutic use , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium abscessus/drug effects , Animals , Anti-Bacterial Agents/pharmacokinetics , Disease Models, Animal , Female , Indoles/pharmacokinetics , Membrane Transport Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, SCID , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/genetics
3.
Front Pharmacol ; 11: 603242, 2020.
Article in English | MEDLINE | ID: mdl-33390993

ABSTRACT

Bictegravir (BIC) and tenofovir alafenamide fumarate (TAF), two potent anti-HIV drugs, had been nanoformulated (nBIC-TAF) to achieve once-a-month PrEP coverage. In-vivo mouse experiments for nBIC-TAF exhibited favorable subcutaneous (SC) pharmacokinetics. To probe the clinical suitability of the nBIC-TAF, as the next step, we intend to study nBIC-TAF in non-human primates (NHP), as the best preclinical model to foster clinical trials. Before entering an expensive NHP study, however, we seek to improve our a priori understanding about nBIC-TAF in higher species, having just mouse data. The mechanism-based pharmacokinetic modeling (MBPK) has been used as an appropriate method for pharmacokinetic modeling and interspecies scaling for nanoformulations. Via the use of MBPK, in this work, we created a model for nBIC-TAF able to predict plasma concentration-time curves in NHP. BIKTARVY is a daily oral combination of BIC, TAF, and emtricitabine (Gilead Science, CA), approved for HIV therapy. Using BIKTARVY equivalent dosages (from their NHP studies), we predicted that, following just one SC dose of nBIC-TAF in NHP, both BIC and tenofovir will have detectable and above in vitro efficacy levels for 28 days. Furthermore, the MBPK was able to provide a mechanistic explanation regarding the long-acting mechanism characterizing nBIC-TAF: nanoparticles stores in the SC space from which drugs slowly dissociate. Dissociated drugs in the SC space then buffer the plasma pool over time, yielding an extended-release effect in the plasma. Overall, we predicted for nBIC-TAF a promising long-acting pharmacokinetic in NHP, potentially usable as monthly PrEP. These results will help investigators to gain confidence for facing regulatory submissions at early stages.

4.
AIDS ; 31(4): 469-476, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28121666

ABSTRACT

OBJECTIVE: This report presents tenofovir (TFV) alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles for subcutaneous delivery as prevention strategy. DESIGN: Prospective prevention study in humanized bone marrow-liver-thymus (hu-BLT) mice. METHODS: Using an oil-in-water emulsion solvent evaporation technique, TAF + EVG drugs were entrapped together into nanoparticles containing poly(lactic-co-glycolic acid). In-vitro prophylaxis studies (90% inhibition concentration) compared nanoparticles with drugs in solution. Hu-BLT (n = 5/group) mice were given 200 mg/kg subcutaneous, and vaginally challenged with HIV-1 [5 × 10 tissue culture infectious dose for 50% of cells cultures (TCID50)] 4 and 14 days post-nanoparticle administration (post-nanoparticle injection). Control mice (n = 5) were challenged at 4 days. Weekly plasma viral load was performed using RT-PCR. Hu-BLT mice were sacrificed and lymph nodes were harvested for HIV-1 viral RNA detection by in-situ hybridization. In parallel, CD34 humanized mice (3/time point) compared TFV and EVG drug levels in vaginal tissues from nanoparticles and solution. TFV and EVG were analyzed from tissue using liquid chromatograph-tandem mass spectrometry (LC-MS/MS). RESULTS: TAF + EVG nanoparticles were less than 200 nm in size. In-vitro prophylaxis indicates TAF + EVG nanoparticles 90% inhibition concentration was 0.002 µg/ml and TAF + EVG solution was 0.78 µg/ml. TAF + EVG nanoparticles demonstrated detectable drugs for 14 days and 72 h for solution, respectively. All hu-BLT control mice became infected within 14 days after HIV-1 challenge. In contrast, hu-BLT mice that received nanoparticles and challenged at 4 days post-nanoparticle injection, 100% were uninfected, and 60% challenged at 14 days post-nanoparticle injection were uninfected (P = 0.007; Mantel-Cox test). In-situ hybridization confirmed these results. CONCLUSION: This proof-of-concept study demonstrated sustained protection for TAF + EVG nanoparticles in a hu-BLT mouse model of HIV vaginal transmission.


Subject(s)
Adenine/analogs & derivatives , Delayed-Action Preparations/administration & dosage , Disease Transmission, Infectious/prevention & control , HIV Infections/prevention & control , HIV Infections/transmission , Nanoparticles/administration & dosage , Quinolones/administration & dosage , Adenine/administration & dosage , Alanine , Animals , Female , Injections, Subcutaneous , Mice , Mice, SCID , Plasma/virology , Tenofovir/analogs & derivatives , Treatment Outcome , Vagina/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL