Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nat Immunol ; 19(1): 29-40, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29242539

ABSTRACT

Although deletion of certain autophagy-related genes has been associated with defects in hematopoiesis, it remains unclear whether hyperactivated mitophagy affects the maintenance and differentiation of hematopoietic stem cells (HSCs) and committed progenitor cells. Here we report that targeted deletion of the gene encoding the AAA+-ATPase Atad3a hyperactivated mitophagy in mouse hematopoietic cells. Affected mice showed reduced survival, severely decreased bone-marrow cellularity, erythroid anemia and B cell lymphopenia. Those phenotypes were associated with skewed differentiation of stem and progenitor cells and an enlarged HSC pool. Mechanistically, Atad3a interacted with the mitochondrial channel components Tom40 and Tim23 and served as a bridging factor to facilitate appropriate transportation and processing of the mitophagy protein Pink1. Loss of Atad3a caused accumulation of Pink1 and activated mitophagy. Notably, deletion of Pink1 in Atad3a-deficient mice significantly 'rescued' the mitophagy defect, which resulted in restoration of the progenitor and HSC pools. Our data indicate that Atad3a suppresses Pink1-dependent mitophagy and thereby serves a key role in hematopoietic homeostasis.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Hematopoietic Stem Cells/metabolism , Homeostasis , Mitochondrial Proteins/metabolism , Mitophagy , Protein Kinases/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , HEK293 Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Protein Kinases/genetics
2.
Mol Cell ; 80(2): 263-278.e7, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33022274

ABSTRACT

Cancer metastasis accounts for the major cause of cancer-related deaths. How disseminated cancer cells cope with hostile microenvironments in secondary site for full-blown metastasis is largely unknown. Here, we show that AMPK (AMP-activated protein kinase), activated in mouse metastasis models, drives pyruvate dehydrogenase complex (PDHc) activation to maintain TCA cycle (tricarboxylic acid cycle) and promotes cancer metastasis by adapting cancer cells to metabolic and oxidative stresses. This AMPK-PDHc axis is activated in advanced breast cancer and predicts poor metastasis-free survival. Mechanistically, AMPK localizes in the mitochondrial matrix and phosphorylates the catalytic alpha subunit of PDHc (PDHA) on two residues S295 and S314, which activates the enzymatic activity of PDHc and alleviates an inhibitory phosphorylation by PDHKs, respectively. Importantly, these phosphorylation events mediate PDHc function in cancer metastasis. Our study reveals that AMPK-mediated PDHA phosphorylation drives PDHc activation and TCA cycle to empower cancer cells adaptation to metastatic microenvironments for metastasis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Citric Acid Cycle , Pyruvate Dehydrogenase Complex/metabolism , Animals , Catalytic Domain , Cell Line, Tumor , Cell Survival , Enzyme Activation , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Phosphorylation , Phosphoserine/metabolism , Signal Transduction , Stress, Physiological , Survival Analysis
3.
Mol Cell ; 64(4): 803-814, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27818144

ABSTRACT

Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.


Subject(s)
Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Mitochondria/metabolism , TNF Receptor-Associated Factor 6/genetics , Tumor Suppressor Protein p53/genetics , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Cytosol/drug effects , Cytosol/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Lysine/metabolism , Mice , Mitochondria/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Transplantation , Protein Transport , Signal Transduction , Sulfonamides/pharmacology , Survival Analysis , TNF Receptor-Associated Factor 6/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Ubiquitination , Xenograft Model Antitumor Assays , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
4.
Mol Cell ; 57(6): 1022-1033, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25728766

ABSTRACT

LKB1 is activated by forming a heterotrimeric complex with STRAD and MO25. Recent studies suggest that LKB1 has pro-oncogenic functions, besides acting as a tumor suppressor. How the LKB1 activity is maintained and how LKB1 regulates cancer development are largely unclear. Here we show that K63-linked LKB1 polyubiquitination by Skp2-SCF ubiquitin ligase is critical for LKB1 activation by maintaining LKB1-STRAD-MO25 complex integrity. We further demonstrate that oncogenic Ras acts upstream of Skp2 to promote LKB1 polyubiquitination by activating Skp2-SCF ubiquitin ligase. Moreover, Skp2-mediated LKB1 polyubiquitination is required for energy-stress-induced cell survival. We also detected overexpression of Skp2 and LKB1 in late-stage hepatocellular carcinoma (HCC), and their overexpression predicts poor survival outcomes. Finally, we show that Skp2-mediated LKB1 polyubiquitination is important for HCC tumor growth in vivo. Our study provides new insights into the upstream regulation of LKB1 activation and suggests a potential target, the Ras/Skp2/LKB1 axis, for cancer therapy.


Subject(s)
Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , S-Phase Kinase-Associated Proteins/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Aged , Animals , Calcium-Binding Proteins/metabolism , Cell Survival , Female , Humans , Liver Neoplasms/metabolism , Male , Mice, Nude , Middle Aged , Protein Serine-Threonine Kinases/genetics , Retrospective Studies , S-Phase Kinase-Associated Proteins/genetics , Stress, Physiological , Ubiquitination , Xenograft Model Antitumor Assays , ras Proteins/genetics , ras Proteins/metabolism
5.
Mol Cell ; 58(6): 989-1000, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26051179

ABSTRACT

The regulation of RagA(GTP) is important for amino-acid-induced mTORC1 activation. Although GATOR1 complex has been identified as a negative regulator for mTORC1 by hydrolyzing RagA(GTP), how GATOR1 is recruited to RagA to attenuate mTORC1 signaling remains unclear. Moreover, how mTORC1 signaling is terminated upon amino acid stimulation is also unknown. We show that the recruitment of GATOR1 to RagA is induced by amino acids in an mTORC1-dependent manner. Skp2 E3 ligase drives K63-linked ubiquitination of RagA, which facilitates GATOR1 recruitment and RagA(GTP) hydrolysis, thereby providing a negative feedback loop to attenuate mTORC1 lysosomal recruitment and prevent mTORC1 hyperactivation. We further demonstrate that Skp2 promotes autophagy but inhibits cell size and cilia growth through RagA ubiquitination and mTORC1 inhibition. We thereby propose a negative feedback whereby Skp2-mediated RagA ubiquitination recruits GATOR1 to restrict mTORC1 signaling upon sustained amino acid stimulation, which serves a critical mechanism to maintain proper cellular functions.


Subject(s)
Amino Acids/pharmacology , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , S-Phase Kinase-Associated Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy/genetics , Cell Line, Tumor , Enzyme Activation/drug effects , Feedback, Physiological/drug effects , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Immunoblotting , Lysine/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Microscopy, Confocal , Models, Biological , NIH 3T3 Cells , Protein Binding/drug effects , RNA Interference , S-Phase Kinase-Associated Proteins/genetics , Ubiquitination/drug effects
6.
Mol Cell ; 46(3): 351-61, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22464731

ABSTRACT

The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Recombinational DNA Repair , S-Phase Kinase-Associated Proteins/physiology , Tumor Suppressor Proteins/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Line, Tumor , DNA Damage , HEK293 Cells , HeLa Cells , Humans , Mice , Models, Genetic , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Ubiquitination
7.
PLoS Comput Biol ; 11(1): e1004021, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569504

ABSTRACT

The Grb2-associated binding protein 1 (GAB1) integrates signals from different signaling pathways and is over-expressed in many cancers, therefore representing a new therapeutic target. In the present study, we aim to target the pleckstrin homology (PH) domain of GAB1 for cancer treatment. Using homology models we derived, high-throughput virtual screening of five million compounds resulted in five hits which exhibited strong binding affinities to GAB1 PH domain. Our prediction of ligand binding affinities is also in agreement with the experimental KD values. Furthermore, molecular dynamics studies showed that GAB1 PH domain underwent large conformational changes upon ligand binding. Moreover, these hits inhibited the phosphorylation of GAB1 and demonstrated potent, tumor-specific cytotoxicity against MDA-MB-231 and T47D breast cancer cell lines. This effort represents the discovery of first-in-class GAB1 PH domain inhibitors with potential for targeted breast cancer therapy and provides novel insights into structure-based approaches to targeting this protein.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/chemistry , Antineoplastic Agents/pharmacology , Blood Proteins/antagonists & inhibitors , Breast Neoplasms/metabolism , Phosphoproteins/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Antineoplastic Agents/chemistry , Blood Proteins/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Discovery , Female , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Phosphoproteins/chemistry , Protein Binding , Sequence Alignment , Thermodynamics
8.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189140, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909632

ABSTRACT

FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.

9.
Blood ; 118(11): 3107-18, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21803845

ABSTRACT

Defective Fas signaling leads to resistance to various anticancer therapies. Presence of potential inhibitors of Fas which could block Fas signaling can explain cancer cells resistance to apoptosis. We identified promyelocytic leukemia protein (PML) as a Fas-interacting protein using mass spectrometry analysis. The function of PML is blocked by its dominant-negative form PML-retinoic acid receptor α (PMLRARα). We found PMLRARα interaction with Fas in acute promyelocytic leukemia (APL)-derived cells and APL primary cells, and PML-Fas complexes in normal tissues. Binding of PMLRARα to Fas was mapped to the B-box domain of PML moiety and death domain of Fas. PMLRARα blockage of Fas apoptosis was demonstrated in U937/PR9 cells, human APL cells and transgenic mouse APL cells, in which PMLRARα recruited c-FLIP(L/S) and excluded procaspase 8 from Fas death signaling complex. PMLRARα expression in mice protected the mice against a lethal dose of agonistic anti-Fas antibody (P < .001) and the protected tissues contained Fas-PMLRARα-cFLIP complexes. Taken together, PMLRARα binds to Fas and blocks Fas-mediated apoptosis in APL by forming an apoptotic inhibitory complex with c-FLIP. The presence of PML-Fas complexes across different tissues implicates that PML functions in apoptosis regulation and tumor suppression are mediated by direct interaction with Fas.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Oncogene Proteins, Fusion/metabolism , fas Receptor/metabolism , Animals , Apoptosis/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/physiology , Cells, Cultured , Down-Regulation , Female , HL-60 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/physiology , Protein Binding/physiology , U937 Cells , fas Receptor/antagonists & inhibitors , fas Receptor/genetics , fas Receptor/physiology
10.
Neoplasia ; 41: 100904, 2023 07.
Article in English | MEDLINE | ID: mdl-37148656

ABSTRACT

Circadian clock orchestrates the intergenic biochemical, physiological and behavioral changes to form an approximate 24h oscillation through the transcription-translation feedback loop (TTFL). Mechanistically, a heterodimer of transcriptional activator formed by BMAL1 and CLOCK, governs the expression of its transcriptional repressors, CRY, PER and REV-ERBα/ß proteins, thereby controlling more than 50 % of protein encoding genes in human. There is also increasing evidence showing that tumor microenvironment can disrupt specific clock gene functions to facilitate tumorigenesis. Although there is great progress in understanding the molecular mechanisms of the circadian clock, aging and cancer, elucidating their complex relationships among these processes remains challenging. Herein, the optimization of the chronochemotherapy regimen has not been justified yet for treatment of cancer. Here, we discuss the hypothesis of relocalization of chromatin modifiers (RCM) along with function(s) of the circadian rhythm on aging and carcinogenesis. We will also introduce the function of the chromatin remodeling as a new avenue for rejuvenation of competent tissues to combat aging and cancer.


Subject(s)
Circadian Clocks , Neoplasms , Humans , Circadian Clocks/genetics , ARNTL Transcription Factors/genetics , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Rhythm/genetics , Aging/genetics , Neoplasms/genetics
11.
Adv Protein Chem Struct Biol ; 135: 179-201, 2023.
Article in English | MEDLINE | ID: mdl-37061331

ABSTRACT

The recent findings advance our knowledge for the prevention of the premature activation of the major oncogenic pathways including MYC and the cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6) axis. D-type cyclins are frequently deregulated in human cancer and promote cell division in part through activation of CDK4/6. Therefore, the activation of the cyclin D-CDK4/6 axis stimulates cell proliferation and cancer progression, which represents a unique therapeutic target. However, we have shown that inhibition of CDK4/6 upregulates protein levels of RB1 and CDK6 for acquisition of drug resistance to CDK4/6 inhibitors. Here, we review new progress in the control of cyclin D-dependent cancer cell cycle and proliferation, along with identification of novel E3 ligase for the stability of cyclin D. Cullin4-RING E3 ligase (CRL4)AMBRA1 complex plays a critical role in regulating D-type cyclins through their protein destabilization to control S phase entry and maintain genomic integrity. We also summarize the strategy for inhibition of the cyclin D-associated kinases CDK4/6 and other potential cell cycle regulators for targeting cancer with altered cyclin D expression. We also uncover the function of CK1ɛ as an effective target to potentiate therapeutic efficacy of CDK4/6 inhibitors. Moreover, as the level of PD-L1 is considered in the severe clinical problem in the patients treated with CDK4 inhibitors, we assume that a therapeutic combination using PD-L1 immunotherapy might lower the development of drug resistance and targeting cyclin D will likely inhibit tumor growth and overcome resistance to cyclin D-associated CDK4/6 inhibitors.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/metabolism , Retinoblastoma Protein/metabolism , Phosphorylation , Cyclins/genetics , Cyclin D/metabolism , Signal Transduction , Neoplasms/drug therapy , Carcinogenesis , Cyclin-Dependent Kinase 4/metabolism , Adaptor Proteins, Signal Transducing/metabolism
12.
Neoplasia ; 38: 100890, 2023 04.
Article in English | MEDLINE | ID: mdl-36871351

ABSTRACT

SKP2, an F-box protein of the SCF type of the E3 ubiquitin ligase complex, plays an important function in driving tumorigenesis through the destruction of numerous tumor-suppressive proteins. Besides its critical role in cell cycle regulation, proto-oncogenic functions of SKP2 have also been shown in a cell cycle regulation-independent manner. Therefore, uncovering novel physiological upstream regulators of SKP2 signaling pathways would be essential to retard aggressive malignancies. Here, we report that elevation of SKP2 and EP300 transcriptomic expression is a hallmark of castration-resistant prostate cancer. We also found that SKP2 acetylation is likely a critical driven event in castration-resistant prostate cancer cells. Mechanistically, SKP2-acetylation is mediated by the p300 acetyltransferase enzyme for post-translational modification (PTM) event that is induced upon stimulation with dihydrotestosterone (DHT) in prostate cancer cells. Moreover, ectopic expression of acetylation-mimetic K68/71Q mutant of SKP2 in LNCaP cells could confer resistance to androgen withdrawal-induced growth arrest and promotes prostate cancer stem cell (CSC)-like traits including survival, proliferation, stemness formation, lactate production, migration, and invasion. Furthermore, inhibition of p300-mediated SKP2 acetylation or SKP2-mediated p27-degradation by pharmacological inhibition of p300 or SKP2 could attenuate epithelial-mesenchymal transition (EMT) and the proto-oncogenic activities of the SKP2/p300 and androgen receptor (AR) signaling pathways. Therefore, our study identifies the SKP2/p300 axis as a possible molecular mechanism driving castration-resistant prostate cancers, which provides pharmaceutical insight into inactivation of the SKP2/p300 axis for restriction of CSC-like properties, thereby benefiting clinical diagnosis and cancer therapy.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgens , Signal Transduction , Protein Processing, Post-Translational , Cell Line, Tumor
13.
iScience ; 26(2): 105965, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824274

ABSTRACT

Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.

14.
Sci Transl Med ; 15(725): eadh7668, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055802

ABSTRACT

Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/metabolism , Ubiquitin Thiolesterase
15.
Acta Mater Med ; 1(1): 24-41, 2022.
Article in English | MEDLINE | ID: mdl-35237768

ABSTRACT

Neurodegenerative diseases (NDs) are characteristic with progression of neuron degeneration, resulting in dysfunction of cognition and mobility. Many neurodegenerative diseases are because of proteinopathies that results from unusual protein accumulations and aggregations. The aggregation of misfolded proteins like ß-amyloid, α-synuclein, tau, and polyglutamates are hallmarked in Alzheimer's disease (AD), which are undruggable targets, and usually do not respond to conventional small-molecule agents. Therefore, developing novel technology and strategy for reducing the levels of protein aggregates would be critical for treatment of AD. Recently, the emerging proteolysis targeting chimeras (PRPTACs) technology has been significantly considered for artificial and selective degradation of aberrant target proteins. These engineered bifunctional molecules engage target proteins to be degraded by either the cellular degradation machinery in the ubiquitin-proteasome system (UPS) or via the autophagy-lysosome degradation pathway. Although the application of PROTACs technology is preferable than oligonucleotide and antibodies for treatment of NDs, many limitations such as their pharmacokinetic properties, tissue distribution and cell permeabilities, still need to be corrected. Herein, we review the recent advances in PROTACs technology with their limitation for pharmaceutical targeting of aberrant proteins involved in Alzheimer's diseases. We also review therapeutic potential of dysregulated signaling such as PI3K/AKT/mTOR axis for the management of AD.

16.
Acta Mater Med ; 1(1): 42-55, 2022.
Article in English | MEDLINE | ID: mdl-35233562

ABSTRACT

Maintaining neuronal integrity and functions requires precise mechanisms controlling organelle and protein quality. Alzheimer's disease (AD) is characterized by functional defects in the clearance and recycling of intracellular components. As such, neuronal homeostasis involves autophagy, mitophagy, and apoptosis. Compromised activity in these cellular processes may cause pathological phenotypes of AD. Dysfunction of mitochondria is one of the hallmarks of AD. Mitophagy is a critical mitochondria quality control system, and the impaired mitophagy is observed in AD. Myeloid cell leukemia 1 (MCL1), a member of the pro-survival B-cell lymphoma protein 2 (BCL2) family, is a mitochondria-targeted protein that contributes to maintaining mitochondrial integrity. Mcl1 knockout mice display peri-implantation lethality. The studies on conditional Mcl1 knockout mice demonstrate that MCL1 plays a central role in neurogenesis and neuronal survival during brain development. Accumulating evidence reveals the critical role of MCL1 as a regulator of neuronal autophagy, mitophagy, and survival. In this review, we discuss the emerging neuroprotective function of MCL1 and how dysregulation of MCL1 signaling is involved in the pathogenesis of AD. As the pro-survival BCL2 family of proteins are promising targets of pharmacological intervention with BH3 mimetic drugs, we also discuss the promise of MCL1-targeting therapy in AD.

17.
Genes (Basel) ; 12(6)2021 05 30.
Article in English | MEDLINE | ID: mdl-34070860

ABSTRACT

ATM is among of the most critical initiators and coordinators of the DNA-damage response. ATM canonical and non-canonical signaling pathways involve hundreds of downstream targets that control many important cellular processes such as DNA damage repair, apoptosis, cell cycle arrest, metabolism, proliferation, oxidative sensing, among others. Of note, ATM is often considered a major tumor suppressor because of its ability to induce apoptosis and cell cycle arrest. However, in some advanced stage tumor cells, ATM signaling is increased and confers remarkable advantages for cancer cell survival, resistance to radiation and chemotherapy, biosynthesis, proliferation, and metastasis. This review focuses on addressing major characteristics, signaling pathways and especially the diverse roles of ATM in cellular homeostasis and cancer development.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Carcinogenesis/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/chemistry , Ataxia Telangiectasia Mutated Proteins/metabolism , Carcinogenesis/metabolism , DNA Repair , Humans , Signal Transduction
18.
Cancer Res ; 80(2): 139-150, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31767626

ABSTRACT

The ataxia-telangiectasia mutated (ATM) protein kinase is widely known for its function as a chief mobilizer of the DNA damage response (DDR) upon DNA double-strand breaks. ATM orchestrates the DDR by modulating the expression of various miRNAs through several mechanisms. On the other hand, a set of miRNAs contribute to tight regulation of ATM by directly targeting the 3'-untranslated region of ATM mRNA. This review addresses the therapeutic application and molecular mechanisms that underlie the intricate interactions between miRNAs and ATM. It also describes therapeutic delivery of miRNAs in different environments such as hypoxic tumor microenvironments.


Subject(s)
Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Chemoradiotherapy/methods , MicroRNAs/metabolism , Neoplasms/therapy , Radiation Tolerance/genetics , 3' Untranslated Regions/genetics , Antagomirs/pharmacology , Antagomirs/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Hypoxia/genetics , Cell Hypoxia/radiation effects , Combined Modality Therapy/methods , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/agonists , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Neoplasms/genetics , Radiation Tolerance/drug effects , Signal Transduction/genetics , Signal Transduction/radiation effects , Tumor Microenvironment/genetics , Tumor Microenvironment/radiation effects
20.
J Vet Med Sci ; 71(5): 561-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19498280

ABSTRACT

Calcitonin (CT) has been shown to have various functions including osteoclast activity and calcium and phosphorus metabolism in mammals. In the present study, we measured the amounts of CT mRNA in the mouse brain, liver, kidney, heart and testis at various development stages, 14 days post-coitum (dpc), 17-dpc, newborn, 1 week and 8 weeks (adult), using real-time PCR. In the brain and kidney, the amount of CT mRNA decreased with development. In the testis, elevated amounts were observed at 17-dpc and 8 weeks. In the liver, the amount increased from the 14 dpc embryo to newborn stage and then decreased. In the heart, elevated amounts were observed at 17-dpc. Additionally, the CT antisense transcript was determined using a modified RT-PCR and nucleotide sequencing in the present study. Organs with high mRNA expressions were examined for localization of transcripts using in situ hybridization. The CT sense and antisense transcripts in the 14 dpc brain were mainly localized in the mesencephalon. In the pre- and postnatal stages, sense and antisense transcripts were shown to exist rather uniformly in the kidney, heart, liver and testis. In the 17-dpc rib and thyroid lobe and the adult ovary, the sense and antisense transcripts were found to be densely localized.


Subject(s)
Calcitonin/biosynthesis , Animals , Animals, Newborn , Brain/physiology , Calcitonin/genetics , Embryonic Development/genetics , Embryonic Development/physiology , Gene Expression Profiling , Heart/physiology , In Situ Hybridization , Kidney/physiology , Liver/physiology , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Testis/physiology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL