Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930798

ABSTRACT

An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.


Subject(s)
Capsaicin , Diclofenac , Salicylates , Skin , Capsaicin/analysis , Capsaicin/analogs & derivatives , Diclofenac/analysis , Chromatography, High Pressure Liquid/methods , Salicylates/analysis , Skin/chemistry , Animals , Rabbits , Chromatography, Reverse-Phase/methods , Diethylamines/chemistry
2.
Drug Dev Ind Pharm ; 48(9): 457-469, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36093810

ABSTRACT

This work designates EthoLeciplex, a vesicular system consisting of phospholipid, CTAB, ethanol and water, as an innovative vesicular system for cutaneous/transfollicular minoxidil (MX) delivery. MX-loaded EthoLeciplex was fabricated by one-step fabrication process. Formulations were designed to study the effects of drug/phospholipid ratio, CTAB/phospholipid ratio, and ethanol concentration on vesicular size, PDI, surface charge and EE%. The optimized formulation was characterized by in vitro release, drug/excipient compatibility, ex vivo skin permeability and safety. A size of 83.6 ± 7.3 to 530.3 ± 29.4 nm, PDI of 0.214 ± 0.01 to 0.542 ± 0.08 and zeta potential of +31.6 ± 4.8 to +57.4 ± 12.5 mV were observed. Encapsulation efficiency was obtained in its maximum value (91.9 ± 16.2%) at the lowest drug/phospholipid ratio, median CTAB/phospholipid and the highest ethanol concentration. The optimized formulation was consisted of 0.3 as drug/lipid ratio, 1.25 as CTAB/lipid ratio and 30% ethanol concentration and showed responses' values in agreement with the predicted results. Differential scanning calorimetry studies suggested that EthoLeciplex existed in flexible state with complete incorporation of MX into lipid bilayer. The cumulative amount of MX permeated from EthoLeciplex, conventional liposome and ethanolic solution after 12 h were 36.3 ± 1.5 µg/ml, 21 ± 2.0 µg/ml and 55 ± 4.0 µg/ml respectively. Based on the remaining amount, the amount of MX accumulated in different skin layers can be predicted in descending order as follows; EthoLeciplex > conventional liposome > MX solution. EthoLeciplex produced marked disorder in the stratum corneum integrity and swelling with no features of skin toxicity. This new cationic system is a promising carrier for cutaneous/transfollicular drug delivery.


Subject(s)
Liposomes , Minoxidil , Minoxidil/metabolism , Liposomes/chemistry , Cetrimonium/metabolism , Administration, Cutaneous , Skin/metabolism , Phospholipids/chemistry , Ethanol/chemistry , Particle Size
3.
Pharm Dev Technol ; 27(4): 435-447, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531946

ABSTRACT

Oxidative stress is a leading cause of different diseases. Genistein is a valuable bioflavonoid possessing antioxidant and anti-inflammatory activity but unfortunately, it suffers from low aqueous solubility, extremely poor bioavailability and first pass effect when used in its pure state. The aim of this work was to formulate and characterize genistein-loaded highly phospholipid-containing lipid nanocarriers to improve oral bioavailability and pharmacodynamic performance. Lipid nanocarriers were prepared by the emulsification/sonication technique. The influence of phospholipid percentage (1%-10%) on physicochemical properties, drug release and stability was investigated. The particle size, zeta potential and EE% were in ranges from 211.9 ± 21.6 to 342.3 ± 7.9 nm, -11.6 ± 1.7 to -19.4 ± 3.1 mV and 78.5 ± 4.7% to 92.2 ± 1.9%, respectively. Drug release was less predominant in the case of SLN formulations when compared to corresponding NLC formulations. High phospholipid percentage produced less stable formulations in terms of particle size growth, gelation and heterogeneous particle distributions. DSC, FT-IR and XRD tools revealed that genistein has existed in an amorphous form in NLC4. The bioavailability of NLC4 was approximately 2.6-fold greater than that of conventional suspension. Additionally, lipid peroxidation in liver homogenate and histopathological alterations in liver and kidney sections were particularly improved, providing a promising strategy for oral administration of genistein.


Subject(s)
Nanoparticles , Phospholipids , Administration, Oral , Biological Availability , Drug Carriers/chemistry , Genistein/chemistry , Genistein/pharmacology , Nanoparticles/chemistry , Particle Size , Phospholipids/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared
4.
Drug Dev Ind Pharm ; 47(2): 215-224, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33317339

ABSTRACT

There are many synthetic drugs in literature have been utilized in healing of the wounds although the natural product specially antioxidants can offer similar if not better biological activity in that regard. Genus Sophora is well known to contain flavonoids and phenolic compounds which have antioxidant and inflammatory effects. So, the aim of the current study was to develop and evaluate chitosan/gelatin based Sophora gibbosa extract-loaded microemulsion as wound dressing. Sophora gibbosa extract (SGE) contained 16 major compounds which have reasonable antioxidant activity. The developed microemulsion showed that Tween 80 produced significant (p < 0.05) lower particle size than Pluronic F127 at the same SGE concentration whereas high concentration of extract results in large particle size. Thermodynamic stability studies showed that using higher concentration of the extract produced less stable formulations. The selected formulation was impregnated in the dressing base (chitosan/gelatin; 2:1 w/w ratio) which exhibited more water absorption. In vivo evaluation revealed that the dressing displayed superior wound repair compared to the control in terms histological examination and determination of alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA). Thus, SGE-loaded microemulsion-impregnated gelatin/chitosan could be a potential candidate for the wound healing.


Subject(s)
Chitosan , Plant Extracts/chemistry , Sophora , Bandages , Gelatin , Plant Extracts/isolation & purification , Wound Healing
5.
Drug Dev Ind Pharm ; 47(2): 246-258, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33416006

ABSTRACT

The aim of this work was to prepare and optimize mucoadhesive nanostructured lipid carrier (NLC) impregnated with fluconazole for better management of oral candidiasis. The NLCs were fabricated using an emulsification/sonication technique. The nanoparticles consisted of stearic acid, oleic acid, Pluronic F127, and lecithin. Box-Behnken design, artificial neural networking, and variable weight desirability were employed to optimize the joint effect of drug concentration in the drug/lipid mixture, solid lipid concentration in the solid/liquid lipid mixture, and surfactant concentration in the total mixture on size and entrapment. The optimized NLCs were coated with chitosan. The nanoparticles were characterized by surface charge, spectroscopic, thermal, morphological, mucoadhesion, release, histopathological, and antifungal properties. The nanoparticles are characterized by a particle size of 335 ± 13.5 nm, entrapment efficiency of 73.1 ± 4.9%, sustained release, minor histopathological effects on rabbit oral mucosa, and higher fungal inhibition efficiency for an extended period of time compared with fluconazole solution. Coating the nanoparticles with chitosan increased its adhesion to rabbit oral buccal mucosa and improved its anti-candidiasis activity. It is concluded that mucoadhesive lipid-based nanoparticles amplify the effect of fluconazole on Candida albicans in vitro. This finding warrants pre-clinical and clinical studies in oral candidiasis disease models to corroborate in vitro findings.


Subject(s)
Candidiasis, Oral , Fluconazole/pharmacology , Lipids/chemistry , Nanoparticles , Nanostructures , Animals , Candidiasis, Oral/drug therapy , Drug Carriers , Fluconazole/administration & dosage , Fluconazole/chemistry , Machine Learning , Particle Size , Rabbits
6.
Mol Biol Rep ; 47(4): 2509-2519, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32088817

ABSTRACT

Early diagnosis and treatment of colorectal cancer (CRC) are important for improving patients' survival. Metadherin is an oncogene that plays a pivotal role in carcinogenesis and can be suggested as a cancer biomarker. This study aimed to elucidate the efficacy of serum Metadherin mRNA expression as a potential non-invasive biomarker for early diagnosis of CRC in relation to other screening markers as carcinoembryonic antigen (CEA), carbohydrate antigen 19.9 (CA19.9) and Fecal occult blood (FOB) and also to assess its relationship with the tumor stage and survival rate. A convenience series of 86 CRC cases (group I) were recruited with 78 subjects as controls (group II). Serum Metadherin mRNA expression level was determined using reverse transcription polymerase chain reaction (RT-PCR). Serum Metadherin mRNA expression level was significantly elevated in CRC cases when compared with controls (P < 0.001). For CRC diagnosis; Receiver operator characteristic (ROC) analyses revealed that the diagnostic accuracy of serum Metadherin mRNA (AUC = 0.976) was significantly higher than other routine CRC screening markers as CEA, CA19.9 and FOB. The combined accuracy of these markers (AUC = 0.741) was increased when used with serum Metadherin mRNA (AUC = 0.820). High serum Metadherin mRNA expression was associated with poorly differentiated histological grade, advanced tumor stage and lower survival rate. AUC of Metadherin was 0.820 for differentiating advanced versus early tumor stages. Serum Metadherin mRNA expression is a useful non-invasive biomarker for CRC. It can be used for screening and early diagnosis of CRC and can increase the efficacy of other routine CRC screening markers when it is estimated in CRC patients with them. It is also associated with advanced tumor stage and a lower survival rate.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , Adult , Aged , Area Under Curve , Biomarkers, Tumor/blood , CA-19-9 Antigen/analysis , CA-19-9 Antigen/blood , Carcinoembryonic Antigen/analysis , Carcinoembryonic Antigen/blood , Case-Control Studies , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Early Detection of Cancer/methods , Female , Humans , Male , Membrane Proteins/blood , Membrane Proteins/metabolism , Middle Aged , Occult Blood , Prognosis , RNA, Messenger/analysis , RNA-Binding Proteins/blood , RNA-Binding Proteins/metabolism , ROC Curve
7.
Int Urol Nephrol ; 56(4): 1395-1402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37741921

ABSTRACT

PURPOSE: Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus. Inflammation and histamine are potentially involved in the disease progression. This study aimed to evaluate the role of fexofenadine in patients with DKD. METHODS: From January 2020 to February 2022, out of 123 patients screened for eligibility, 61 patients completed the study. Patients were randomized into two groups, the fexofenadine group (n = 30): received ramipril plus fexofenadine, and the control group (n = 31): received ramipril only for six months. Changes in urinary albumin to creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were considered primary outcomes. Measurements of urinary cyclophilin A, monocyte chemoattractant protein-1 (MCP-1), 8-hydroxy-2' deoxyguanosine (8-OHdG), and podocalyxin (PCX) were considered secondary outcomes. The study was prospectively registered on clinicaltrial.gov on January 13, 2020, with identification code NCT04224428. RESULTS: At the end of the study, fexofenadine reduced UACR by 16% (95% CI, - 23.4% to - 9.3%) versus a noticeable rise of 11% (95% CI, 4.1% to 17.8%) in UACR in the control group, (p < 0.001). No significant difference in eGFR was revealed between the two groups. However, the control group showed a significant decrease of - 3.5% (95% CI, - 6.6% to - 0.3%) in eGFR, compared to its baseline value. This reduction was not reported in the fexofenadine group. Fexofenadine use was associated with a significant decline in MCP-1, 8-OHdG, and PCX compared to baseline values. CONCLUSION: Fexofenadine is a possible promising adjuvant therapy in patients with DKD. Further large-scale trials are needed to confirm our preliminary results.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Terfenadine/analogs & derivatives , Humans , Diabetic Nephropathies/etiology , Diabetic Nephropathies/complications , Ramipril/therapeutic use , Diabetes Mellitus, Type 2/complications , Kidney Function Tests , Glomerular Filtration Rate , Albuminuria/complications
8.
Int J Pharm X ; 7: 100225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38230407

ABSTRACT

Celecoxib (CLX), a selective inhibitor for cyclooxygenase 2 (COX-2), has manifested potential activity against diverse types of cancer. However, low bioavailability and cardiovascular side effects remain the major challenges that limit its exploitation. In this work, we developed ultra-elastic nanovesicles (UENVs) with pH-triggered surface charge reversal traits that could efficiently deliver CLX to colorectal segments for snowballed tumor targeting. CLX-UENVs were fabricated via a thin-film hydration approach. The impact of formulation factors (Span 80, Tween 80, and sonication time) on the nanovesicular features was evaluated using Box-Behnken design, and the optimal formulation was computed. The optimum formulation was positively coated with polyethyleneimine (CLX-PEI-UENVs) and then coated with Eudragit S100 (CLX-ES-PEI-UENVs). The activity of the optimized nano-cargo was explored in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. Levels of COX-2, Wnt-2 and ß-catenin were assessed in rats' colon. The diameter of the optimized CLX-ES-PEI-UENVs formulation was 253.62 nm, with a zeta potential of -23.24 mV, 85.64% entrapment, and 87.20% cumulative release (24 h). ES coating hindered the rapid release of CLX under acidic milieu (stomach and early small intestine) and showed extended release in the colon section. In colonic environments, the ES coating layer was removed due to high pH, and the charge on the nanovesicular corona was shifted from negative to positive. Besides, a pharmacokinetics study revealed that CLX-ES-PEI-UENVs had superior oral bioavailability by 2.13-fold compared with CLX suspension. Collectively, these findings implied that CLX-ES-PEI-UENVs could be a promising colorectal-targeted nanoplatform for effective tumor management through up-regulation of the Wnt/ß-catenin pathway.

9.
Diabetol Metab Syndr ; 15(1): 22, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36793092

ABSTRACT

BACKGROUND: Diabetic kidney disease (DKD) is a serious complication that begins with albuminuria and often leads to a rapid progressive decline in renal function. Niclosamide is a potent inhibitor of the Wnt/ß-catenin pathway, which controls the expression of multiple genes of the renin-angiotensin-aldosterone system (RAAS), which in turn is influences the progression of DKD. This study was conducted to evaluate the effect of niclosamide as adjuvant therapy on DKD. METHODS: Out of 127 patients screened for eligibility, 60 patients completed the study. After randomization, 30 patients in the niclosamide arm received ramipril plus niclosamide, and 30 patients in the control arm received ramipril only for 6 months. The primary outcomes were the changes in urinary albumin to creatinine ratio (UACR), serum creatinine, and estimated glomerular filtration rate (eGFR). The secondary outcomes were measurements of urinary matrix metalloproteinase-7 (MMP-7), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and podocalyxin (PCX). Comparisons between the two arms were done using student t-test. Correlation analysis was done using Pearson correlation. RESULTS: Niclosamide decreased UACR by 24% (95% CI - 30 to - 18.3%) while there was a rise in UACR in the control arm by 11% (95% CI 4 to 18.2%) after 6 months (P < 0.001). Moreover, a significant reduction in MMP-7 and PCX was noticed in the niclosamide arm. Regression analysis revealed a strong association between MMP-7, which is a noninvasive biomarker predicting the activity of the Wnt/ß-catenin signaling, and UACR. A 1 mg/dL decline in MMP-7 level was associated with a 25 mg/g lowering in UACR (B = 24.95, P < 0.001). CONCLUSION: The addition of niclosamide to patients with diabetic kidney disease receiving an angiotensin-converting enzyme inhibitor significantly reduces albumin excretion. Further larger-scale trials are needed to confirm our results. TRIAL REGISTRATION: The study was prospectively registered on clinicaltrial.gov on March 23, 2020, with identification code NCT04317430.

10.
Polymers (Basel) ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904364

ABSTRACT

In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.

11.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36986562

ABSTRACT

COVID-19 infection is now considered one of the leading causes of human death. As an attempt towards the discovery of novel medications for the COVID-19 pandemic, nineteen novel compounds containing 1,2,3-triazole side chains linked to phenylpyrazolone scaffold and terminal lipophilic aryl parts with prominent substituent functionalities were designed and synthesized via a click reaction based on our previous work. The novel compounds were assessed using an in vitro effect on the growth of SARS-CoV-2 virus-infested Vero cells with different compound concentrations: 1 and 10 µM. The data revealed that most of these derivatives showed potent cellular anti-COVID-19 activity and inhibited viral replication by more than 50% with no or weak cytotoxic effect on harboring cells. In addition, in vitro assay employing the SARS-CoV-2-Main protease inhibition assay was done to test the inhibitors' ability to block the common primary protease of the SARS-CoV-2 virus as a mode of action. The obtained results show that the one non-linker analog 6h and two amide-based linkers 6i and 6q were the most active compounds with IC50 values of 5.08, 3.16, and 7.55 µM, respectively, against the viral protease in comparison to data of the selective antiviral agent GC-376. Molecular modeling studies were done for compound placement within the binding pocket of protease which reveal conserved residues hydrogen bonding and non-hydrogen interactions of 6i analog fragments: triazole scaffold, aryl part, and linker. Moreover, the stability of compounds and their interactions with the target pocket were also studied and analyzed by molecular dynamic simulations. The physicochemical and toxicity profiles were predicted, and the results show that compounds behave as an antiviral activity with low or no cellular or organ toxicity. All research results point to the potential usage of new chemotype potent derivatives as promising leads to be explored in vivo that might open the door to rational drug development of SARS-CoV-2 Main protease potent medicines.

12.
ACS Omega ; 8(21): 18714-18725, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37273643

ABSTRACT

The barrier functionalities of the skin offer a major but not insuperable hindrance for fabrication of skin delivery effective systems. This work aimed to develop an optimized lipid polymer hybrid nanoparticle and assess the skin delivery effectiveness of hydrocortisone (9.872 ± 0.361 × 10-3 cm2/h) of a drug through the skin from an optimized formulation when compared with a drug solution. Meanwhile, histological examination after topical application of the optimized formulation showed a safe increase in epidermal thickness. In vivo, the optimized formulation showed promising anti-inflammatory activity in a croton oil-induced ear rosacea model. As an excellent anti-inflammatory agent, these findings propose that the use of lipomers could be a promising strategy to improve the topical effectiveness of hydrocortisone acetate (HCA) against inflammatory diseases. Collectively, these results support our view that lipid polymer hybrid nanoparticles can proficiently deliver hydrocortisone to the skin in treating skin inflammatory conditions.

13.
Pharmaceutics ; 15(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37631309

ABSTRACT

Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Quercetin (QER) demonstrated antidepressant effects in rats exhibiting anxiety and depressive-like behaviors. In an attempt to improve QER's antidepressant activity, a QER-loaded transferosome (QER-TFS) thermosensitive gel for intranasal administration was formulated and optimized. The therapeutic effectiveness of the optimized formulation was assessed in a depressed rat model by conducting a behavioral analysis. Behavioral study criteria such as immobility, swimming, climbing, sucrose intake, number of crossed lines, rearing, active interaction, and latency to feed were all considerably enhanced by intranasal treatment with the QER-TFS in situ gel in contrast to other formulations. A nasal histopathological study indicated that the QER-TFS thermosensitive gel was safe for the nasal mucosa. An immunohistochemical analysis showed that the animals treated with the QER-TFS thermosensitive gel had the lowest levels of c-fos protein expression, and brain histopathological changes in the depressed rats were alleviated. According to pharmacodynamic, immunohistochemical, and histopathological experiments, the intranasal administration of the QER-TFS thermosensitive gel substantially alleviated depressive symptoms in rats. However, extensive preclinical investigations in higher animal models are needed to anticipate its effectiveness in humans.

14.
Pharmaceutics ; 15(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37513991

ABSTRACT

Numerous neurological disorders have a pathophysiology that involves an increase in free radical production in the brain. Quercetin (QER) is a nutraceutical compound that shields the brain against oxidative stress-induced neurodegeneration. Nonetheless, its low oral bioavailability diminishes brain delivery. Therefore, the current study aimed to formulate QER-loaded transferosomal nanovesicles (QER-TFS) in situ gel for QER brain delivery via the intranasal route. This study explored the impacts of lipid amount, edge activator (EA) amount, and EA type on vesicle diameter, entrapment, and cumulative amount permeated through nasal mucosa (24 h). The optimum formulation was then integrated into a thermosensitive gel after its physical and morphological characteristics were assessed. Assessments of the optimized QER-TFS showed nanometric vesicles (171.4 ± 3.4 nm) with spherical shapes and adequate entrapment efficiency (78.2 ± 2.8%). The results of short-term stability and high zeta potential value (-32.6 ± 1.4 mV) of QER-TFS confirmed their high stability. Compared with the QER solution, the optimized QER-TFS in situ gel formulation exhibited sustained release behavior and augmented nasal mucosa permeability. CT scanning of rat brains demonstrated the buildup of gold nanoparticles (GNPs) in the brains of all treatment groups, with a greater level of GNPs noted in the rats given the transferosomal gel. Additionally, in vitro studies on PCS-200-014 cells revealed minimal cytotoxicity of QER-TFS in situ gel. Based on these results, the developed transferosomal nanovesicles may be a suitable nanocarrier for QER brain targeting through the intranasal route.

15.
Drug Deliv Transl Res ; 13(10): 2568-2588, 2023 10.
Article in English | MEDLINE | ID: mdl-37000409

ABSTRACT

Growing evidence suggests quercetin and aspirin may have anticancer properties, notably in the case of colorectal cancer. The goal of this study was to create Pluronic F127 and polyethylene glycol4000 solid dispersion-loaded chitosan nanoparticles for colonic quercetin and aspirin delivery. In 1:1 polymeric stoichiometric ratio, solubility and complex formation were verified. Solid dispersion-loaded chitosan nanoparticles with a diameter of 244.45 ± 8.5 nm, a surface charge of 34.1 ± 3.3 mV, and encapsulation effectiveness of 76.3 ± 4.3% were generated under ideal conditions. In some cases, coating with Eudragit L100 resulted in a decrease in zeta potential and an increase in particle size. The coated formulation released the actives in a pH-dependent manner, considering their physicochemical features. Surprisingly, when compared to the actives' suspension and uncoated formulation, the coated formulation had greater anti-inflammatory efficacy, with a substantial reduction of PGE2 and IL-8 production in colonic tissues (16.9 ± 7.9 ng/g tissue and 134.9 ± 10.1 pg/g tissue, respectively). It also reversed most of the dimethyl hydrazine-induced histological alterations in the colon. It also demonstrated a greater reduction in TNF expression in colonic tissues. As a result, Eudragit L100-coated QT/AS-loaded chitosan nanoparticles are suggested to provide a potential platform for colonic delivery of quercetin and aspirin.


Subject(s)
Chitosan , Colorectal Neoplasms , Nanoparticles , Rats , Animals , Quercetin/chemistry , Chitosan/chemistry , Aspirin , Nanoparticles/chemistry , Colorectal Neoplasms/drug therapy , Particle Size , Drug Carriers/chemistry
16.
J Biomol Struct Dyn ; 41(21): 12411-12425, 2023.
Article in English | MEDLINE | ID: mdl-36661285

ABSTRACT

Treatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epidermal growth factor receptor (EGFR-TK) and cyclin-dependent kinases-9 (CDK-9) overexpression correlates with worse overall survival in breast cancer patients. Pyranopyrazole and pyrazolone are privileged options for the development of anticancer agents. Inspired by this proven scientific fact, we report here the synthesis of two new series of suggested anticancer molecules incorporating both heterocycles together with their characterization by IR, 1H NMR, 13C NMR, 13C NMR-DEPT, and X-ray diffraction methods. An attempt to get the pyranopyrazole-gold complexes was conducted but unexpectedly yielded benzylidene-2,4-dihydro-3H-pyrazol-3-one instead. This unexpected result was confirmed by X-ray crystallographic analysis. All newly synthesized compounds were assessed for their anti-proliferative activity against two different human breast cancer cells, and the obtained results were compared with the reference drug Staurosporine. The target compounds revealed variable cytotoxicity with IC50 at a low micromolar range with superior selectivity indices. Target enzyme EGFR-TK and CDK-9 assays showed that compounds 22 and 23 effectively inhibited both biological targets with IC50 values of 0.143 and 0.121 µM, respectively. Molecular docking experiments and molecular dynamics simulation were also conducted to further rationalize the in vitro obtained results.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Pyrazolones , Humans , Female , Structure-Activity Relationship , Cell Proliferation , Crystallography, X-Ray , Molecular Docking Simulation , Cell Line, Tumor , ErbB Receptors/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Pyrazolones/pharmacology , Drug Screening Assays, Antitumor , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
17.
ScientificWorldJournal ; 2012: 134876, 2012.
Article in English | MEDLINE | ID: mdl-22536120

ABSTRACT

This study focuses on the effect of different flexible liposomes containing sodium cholate, Tween 80, or cineol on skin deposition of carboxyfluorescein (CF). Size distribution, morphology, zeta potential, and stability of the prepared vesicles were evaluated. The influence of these systems on the skin deposition of CF utilizing rat skin as membrane model was investigated. Results showed that all of the investigated liposomes had almost spherical shapes with low polydispersity (PDI < 0.3) and particles size range from 83 to 175 nm. All liposomal formulations exhibited negative zeta potential, good drug entrapment efficiency, and stability. In vitro skin deposition data showed that flexible liposomes gave significant deposition of CF on the skin compared to conventional liposomes and drug solutions. This study revealed that flexible liposomes, containing cineole, were able to deliver higher amount of CF suggesting that the hydrophilic drugs delivery to the skin was strictly correlated to the vesicle composition.


Subject(s)
Fluoresceins/pharmacokinetics , Liposomes , Skin/metabolism , Animals , Cryoelectron Microscopy , Membranes, Artificial , Microscopy, Electron, Transmission , Particle Size , Rats
18.
J Biomed Nanotechnol ; 18(1): 234-242, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35180917

ABSTRACT

Olive oil is a vegetable oil which has been successfully used as a skin penetrating agent. Acidity of olive oil is considered as one of the characteristic properties of olive oil. Olive oil acidity was selected as a parameter under investigation for evaluation of skin permeability. The acidities of the three investigated olive oils are varying from 0.75±0.16 to 2±0.17. Olive oil with acidity equals 2.0 showed the highest skin permeation for 12 h and cutaneous deposition with significant difference compared to the permeation values of 0.75 and F1.4 acidities. Results of cutaneous secretion of cytokines suggested that higher penetration was accompanied higher cytokines' secretions. Olive oil with acidity equals 2.0 also showed more prominent skin changes which suggested to be due to acidity and fatty acids' content. These results suggest that olive oil might improve the epidermal permeability, which is more pronounced in highly acidic olive oil, through weakening of skin barriers followed by acting of cytokines on re-building effective barriers. Finally, based on the current study, highly acidic olive oil is more efficient skin permeation enhancer vehicle than less acidic ones and can be efficiently used in formulation of cutaneous drug delivery systems.


Subject(s)
Diclofenac , Skin , Administration, Cutaneous , Diclofenac/pharmacology , Olive Oil/pharmacology , Permeability , Plant Oils/pharmacology
19.
BMC Chem ; 16(1): 71, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153557

ABSTRACT

Cabergoline (CAB) is effective prolactin lowering drug. Evaluation of the bioequivalence for the new test product (0.5 mg CAB film-coated tablets) in Egypt is strongly needed for approval of the drug by the official health authority. Therefore, a highly sensitive and rapid (LC-MS/MS) method was validated for CAB analysis in human plasma. CAB was extracted from plasma via diethyl ether using Quetiapine (QUE) as an internal standard. Multiple reaction monitoring (MRM) in positive ion mode was used, m/z 452.3 → 381.2 for CAB and 384.2 → 253.1 for QUE. Separation was accomplished on a reversed-phase C18. FDA procedures for the bio-analytical method were followed. The method was used in the bioequivalence study to compare the test product (0.5 mg CAB) versus Dostinex tablets, on 24 healthy Egyptian volunteers. The total analysis time was 5.5 min for each sample which permits analysis of various samples per day. The linearity range was from 2.00 to 200.00 pg/mL for CAB. LOD and LOQ were found to be 0.5 and 1.6 pg/mL, respectively. The final greenness numerical value was 0.63 using AGREE tool. The results of pharmacokinetic parameter Tmax were 2.17, and 2.33 h; for test and reference products, respectively. The generic formulation of test product is considered bioequivalent to the reference product Dostinex 0.5 mg tablets and satisfies the requirements of the Egyptian market. The merits of the method over the previous published methods are low cost; availability of cheap internal standard; rapidness; use of acetonitrile-free solvents mobile phase.

20.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35337139

ABSTRACT

The renin angiotensin aldosterone system has a localized key regulatory action, especially in liver and body circulation. Furthermore, it accomplishes a significant role in the downregulation of the PI3K/AKT/mTOR signaling pathway that is involved in type II diabetes mellitus pathogenesis. The current study aimed to evaluate the effect of a synthetic pioglitazone analogue (benzenesulfonamide derivative) compared to the standard pioglitazone hypoglycemic drug on enhancing liver insulin sensitivity via ACE 2/Ang (1-7)/PI3K/AKT/mTOR in experimental STZ-induced diabetes. After the model was established, rats were distributed into the normal control group, diabetic group, pioglitazone group (20 mg/kg), and a benzenesulfonamide derivative group (20 mg/kg), with the last 2 groups receiving oral treatment for 14 consecutive days. Our results suggested enhancing liver insulin sensitivity against the ACE2/Ang (1-7)/PI3K/AKT/mTOR pathway. Moreover, the synthetic compound produced a reduction in blood glucose levels, restored hyperinsulinemia back to normal, and enhanced liver glycogen deposition. In addition, it up regulated the ACE2/Ang (1-7)/PI3K/AKT/mTOR signaling pathway via increasing insulin receptor substrate 1 and 2 sensitivity to insulin, while it increased glucose transporter 2 expression in the rat pancreas. The study findings imply that the hypoglycemic effect of the benzenesulfonamide derivative is due to enhancing liver sensitivity to regulate blood glucose level via the ACE2/Ang (1-7)/PI3K/AKT/mTOR pathway.

SELECTION OF CITATIONS
SEARCH DETAIL