Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Immunol Rev ; 313(1): 298-319, 2023 01.
Article in English | MEDLINE | ID: mdl-36377667

ABSTRACT

During pregnancy, the maternal host must adapt in order to enable growth of the fetus. These changes affect all organ systems and are designed both to protect the fetus and to minimize risk to the mother. One of the most prominent adaptations involves the immune system. The semi-allogenic fetoplacental unit has non-self components and must be protected against attack from the host. This requires both attenuation of adaptive immunity and protection from innate immune defense mechanisms. One of the key innate immune players is complement, and it is important that the fetoplacental unit is not identified as non-self and subjected to complement attack. Adaptation of the complement response must, however, be managed in such a way that maternal protection against infection is not compromised. As the complement system also plays a significant facilitating role in many of the stages of a normal pregnancy, it is also important that any necessary adaptation to accommodate the semi-allogenic aspects of the fetoplacental unit does not compromise this. In this review, both the physiological role of the alternative pathway of complement in facilitating a normal pregnancy, and its detrimental participation in pregnancy-specific disorders, are discussed.


Subject(s)
Complement System Proteins , Pregnancy Complications , Pregnancy , Female , Humans , Complement Activation , Adaptive Immunity
2.
Blood ; 142(16): 1371-1386, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37369098

ABSTRACT

Historically, the majority of patients with complement-mediated atypical hemolytic uremic syndrome (CaHUS) progress to end-stage kidney disease (ESKD). Single-arm trials of eculizumab with a short follow-up suggested efficacy. We prove, for the first time to our knowledge, in a genotype matched CaHUS cohort that the 5-year cumulative estimate of ESKD-free survival improved from 39.5% in a control cohort to 85.5% in the eculizumab-treated cohort (hazard ratio, 4.95; 95% confidence interval [CI], 2.75-8.90; P = .000; number needed to treat, 2.17 [95% CI, 1.81-2.73]). The outcome of eculizumab treatment is associated with the underlying genotype. Lower serum creatinine, lower platelet count, lower blood pressure, and younger age at presentation as well as shorter time between presentation and the first dose of eculizumab were associated with estimated glomerular filtration rate >60 ml/min at 6 months in multivariate analysis. The rate of meningococcal infection in the treated cohort was 550 times greater than the background rate in the general population. The relapse rate upon eculizumab withdrawal was 1 per 9.5 person years for patients with a pathogenic mutation and 1 per 10.8 person years for those with a variant of uncertain significance. No relapses were recorded in 67.3 person years off eculizumab in those with no rare genetic variants. Eculizumab was restarted in 6 individuals with functioning kidneys in whom it had been stopped, with no individual progressing to ESKD. We demonstrated that biallelic pathogenic mutations in RNA-processing genes, including EXOSC3, encoding an essential part of the RNA exosome, cause eculizumab nonresponsive aHUS. Recessive HSD11B2 mutations causing apparent mineralocorticoid excess may also present with thrombotic microangiopathy.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Kidney Failure, Chronic , Thrombotic Microangiopathies , Humans , Child, Preschool , Atypical Hemolytic Uremic Syndrome/drug therapy , Atypical Hemolytic Uremic Syndrome/genetics , Platelet Count , Complement System Proteins , Cohort Studies , Kidney Failure, Chronic/genetics
3.
Haematologica ; 108(7): 1861-1872, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36172817

ABSTRACT

ß2-glycoprotein I (ß2-GPI) is a serum protein widely recognized as the main target of antibodies present in patients with antiphospholipid syndrome (APS). ß2-GPI binds to activated endothelial cells, platelets and leukocytes, key players in thrombus formation. We developed a new targeted thrombolytic agent consisting of nanobubbles (NB) coated with recombinant tissue plasminogen activator (rtPA) and a recombinant antibody specific for cell-bound ß2-GPI. The therapeutic efficacy of targeted NB was evaluated in vitro, using platelet-rich blood clots, and in vivo in three different animal models: i) thrombosis developed in a rat model of APS; ii) ferric chloride-induced mesenteric thrombosis in rats, and iii) thrombotic microangiopathy in a mouse model of atypical hemolytic uremic syndrome (C3-gain-of-function mice). Targeted NB bound preferentially to platelets and leukocytes within thrombi and to endothelial cells through ß2-GPI expressed on activated cells. In vitro, rtPA-targeted NB (rtPA-tNB) induced greater lysis of platelet-rich blood clots than untargeted NB. In a rat model of APS, administration of rtPA-tNB caused rapid dissolution of thrombi and, unlike soluble rtPA that induced transient thrombolysis, prevented new thrombus formation. In a rat model of ferric chloride triggered thrombosis, rtPA-tNB, but not untargeted NB and free rtPA, induced rapid and persistent recanalization of occluded vessels. Finally, treatment of C3-gain-of-function mice with rtPA-tNB, that target ß2-GPI deposited in kidney glomeruli, decreased fibrin deposition, and improved urinalysis data with a greater efficiency than untargeted NB. Our findings suggest that targeting cell-bound ß2-GPI may represent an efficient and thrombus-specific thrombolytic strategy in both APS-related and APS-unrelated thrombotic conditions.


Subject(s)
Antiphospholipid Syndrome , Thromboembolism , Thrombosis , Animals , Mice , Rats , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/therapeutic use , beta 2-Glycoprotein I , Endothelial Cells , Thrombosis/drug therapy , Thrombosis/etiology
4.
Kidney Int ; 97(6): 1260-1274, 2020 06.
Article in English | MEDLINE | ID: mdl-32386968

ABSTRACT

Recessive mutations in diacylglycerol kinase epsilon (DGKE) display genetic pleiotropy, with pathological features reported as either thrombotic microangiopathy or membranoproliferative glomerulonephritis (MPGN), and clinical features of atypical hemolytic uremic syndrome (aHUS), nephrotic syndrome or both. Pathophysiological mechanisms and optimal management strategies have not yet been defined. In prospective and retrospective studies of aHUS referred to the United Kingdom National aHUS service and prospective studies of MPGN referred to the National Registry of Rare Kidney Diseases for MPGN we defined the incidence of DGKE aHUS as 0.009/million/year and so-called DGKE MPGN as 0.006/million/year, giving a combined incidence of 0.015/million/year. Here, we describe a cohort of sixteen individuals with DGKE nephropathy. One presented with isolated nephrotic syndrome. Analysis of pathological features reveals that DGKE mutations give an MPGN-like appearance to different extents, with but more often without changes in arterioles or arteries. In 15 patients presenting with aHUS, ten had concurrent substantial proteinuria. Identified triggering events were rare but coexistent developmental disorders were seen in six. Nine with aHUS experienced at least one relapse, although in only one did a relapse of aHUS occur after age five years. Persistent proteinuria was seen in the majority of cases. Only two individuals have reached end stage renal disease, 20 years after the initial presentation, and in one, renal transplantation was successfully undertaken without relapse. Six individuals received eculizumab. Relapses on treatment occurred in one individual. In four individuals eculizumab was withdrawn, with one spontaneously resolving aHUS relapse occurring. Thus we suggest that DGKE-mediated aHUS is eculizumab non-responsive and that in individuals who currently receive eculizumab therapy it can be safely withdrawn. This has important patient safety and economic implications.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Diacylglycerol Kinase , Atypical Hemolytic Uremic Syndrome/drug therapy , Atypical Hemolytic Uremic Syndrome/epidemiology , Atypical Hemolytic Uremic Syndrome/genetics , Child, Preschool , Diacylglycerol Kinase/genetics , Humans , Prospective Studies , Retrospective Studies , United Kingdom
5.
J Am Soc Nephrol ; 29(6): 1649-1661, 2018 06.
Article in English | MEDLINE | ID: mdl-29588430

ABSTRACT

Background C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway of complement activation, and treatment options for C3G remain limited. Complement factor H (FH) is a potent regulator of the alternative pathway and might offer a solution, but the mass and complexity of FH makes generation of full-length FH far from trivial. We previously generated a mini-FH construct, with FH short consensus repeats 1-5 linked to repeats 18-20 (FH1-5^18-20), that was effective in experimental C3G. However, the serum t1/2 of FH1-5^18-20 was significantly shorter than that of serum-purified FH.Methods We introduced the oligomerization domain of human FH-related protein 1 (denoted by R1-2) at the carboxy or amino terminus of human FH1-5^18-20 to generate two homodimeric mini-FH constructs (FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2, respectively) in Chinese hamster ovary cells and tested these constructs using binding, fluid-phase, and erythrocyte lysis assays, followed by experiments in FH-deficient Cfh-/- mice.Results FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2 homodimerized in solution and displayed avid binding profiles on clustered C3b surfaces, particularly FHR1-2^1-5^18-20 Each construct was >10-fold more effective than FH at inhibiting cell surface complement activity in vitro and restricted glomerular basement membrane C3 deposition in vivo significantly better than FH or FH1-5^18-20 FH1-5^18-20^R1-2 had a C3 breakdown fragment binding profile similar to that of FH, a >5-fold increase in serum t1/2 compared with that of FH1-5^18-20, and significantly better retention in the kidney than FH or FH1-5^18-20Conclusions FH1-5^18-20^R1-2 may have utility as a treatment option for C3G or other complement-mediated diseases.


Subject(s)
Complement C3/metabolism , Complement C3b/metabolism , Complement Factor H/metabolism , Complement Factor H/pharmacokinetics , Glomerulonephritis, Membranoproliferative/metabolism , Animals , Complement Factor H/chemical synthesis , Complement Factor H/genetics , Complement Pathway, Alternative , Cricetinae , Glomerular Basement Membrane/metabolism , Glomerulonephritis, Membranoproliferative/drug therapy , Half-Life , Mice , Protein Binding , Protein Engineering
6.
Kidney Int ; 89(3): 537-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26880449

ABSTRACT

Greenbaum et al. report the first prospective trial of eculizumab in pediatric atypical hemolytic uremic syndrome. As in adult trials, eculizumab appears effective and no serious safety signals were reported. There is the first suggestion of a dichotomy in response to treatment with a trend toward poorer outcome in those without complement abnormalities. This group, however, had worse renal function at presentation, and it remains to be seen whether this represents true non-response or merely late presentation.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Hemolytic-Uremic Syndrome , Child , Humans , Prospective Studies , Safety
7.
Transplantation ; 107(4): 994-1003, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36413152

ABSTRACT

BACKGROUND: Atypical hemolytic uremic syndrome (aHUS) is a rare cause of end-stage kidney disease and associated with poor outcomes after kidney transplantation from early disease recurrence. Prophylactic eculizumab treatment at the time of transplantation is used in selected patients with aHUS. We report a retrospective case note review describing transplant outcomes in patients with aHUS transplanted between 1978 and 2017, including those patients treated with eculizumab. METHODS: The National Renal Complement Therapeutics Centre database identified 118 kidney transplants in 86 recipients who had a confirmed diagnosis of aHUS. Thirty-eight kidney transplants were performed in 38 recipients who received prophylactic eculizumab. The cohort not treated with eculizumab comprised 80 transplants in 60 recipients and was refined to produce a comparable cohort of 33 transplants in 32 medium and high-risk recipients implanted since 2002. Complement pathway genetic screening was performed. Graft survival was censored for graft function at last follow-up or patient death. Graft survival without eculizumab treatment is described by complement defect status and by Kidney Disease: Improving Global Outcomes risk stratification. RESULTS: Prophylactic eculizumab treatment improved renal allograft survival ( P = 0.006) in medium and high-risk recipients with 1-y survival of 97% versus 64% in untreated patients. Our data supports the risk stratification advised by Kidney Disease: Improving Global Outcomes. CONCLUSIONS: Prophylactic eculizumab treatment dramatically improves graft survival making transplantation a viable therapeutic option in aHUS.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Kidney Transplantation , Humans , Atypical Hemolytic Uremic Syndrome/genetics , Kidney Transplantation/adverse effects , Graft Survival , Retrospective Studies , Kidney , Complement System Proteins
8.
Front Immunol ; 13: 1028760, 2022.
Article in English | MEDLINE | ID: mdl-36643920

ABSTRACT

Age-related macular degeneration (AMD) is linked to 2 main disparate genetic pathways: a chromosome 10 risk locus and the alternative pathway (AP) of complement. Rare genetic variants in complement factor H (CFH; FH) and factor I (CFI; FI) are associated with AMD. FH acts as a soluble cofactor to facilitate FI's cleavage and inactivation of the central molecule of the AP, C3b. For personalised treatment, sensitive assays are required to define the functional significance of individual AP genetic variants. Generation of recombinant FI for functional analysis has thus far been constrained by incomplete processing resulting in a preparation of active and inactive protein. Using an internal ribosomal entry site (IRES)-Furin-CFI expression vector, fully processed FI was generated with activity equivalent to serum purified FI. By generating FI with an inactivated serine protease domain (S525A FI), a real-time surface plasmon resonance assay of C3b:FH:FI complex formation for characterising variants in CFH and CFI was developed and correlated well with standard assays. Using these methods, we further demonstrate that patient-associated rare genetic variants lacking enzymatic activity (e.g. CFI I340T) may competitively inhibit the wild-type FI protein. The dominant negative effect identified in inactive factor I variants could impact on the pharmacological replacement of FI currently being investigated for the treatment of dry AMD.


Subject(s)
Complement C3b , Complement Factor H , Complement Factor I , Macular Degeneration , Humans , Complement C3b/genetics , Macular Degeneration/genetics , Complement Factor H/genetics , Complement Factor I/genetics
9.
Front Immunol ; 12: 752916, 2021.
Article in English | MEDLINE | ID: mdl-34956184

ABSTRACT

C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway (AP) of complement and treatment options remain inadequate. Factor H (FH) is a potent regulator of the AP. An in-depth analysis of FH-related protein dimerised minimal (mini)-FH constructs has recently been published. This analysis showed that addition of a dimerisation module to mini-FH not only increased serum half-life but also improved complement regulatory function, thus providing a potential treatment option for C3G. Herein, we describe the production of a murine version of homodimeric mini-FH [mHDM-FH (mFH1-5^18-20^R1-2)], developed to reduce the risk of anti-drug antibody formation during long-term experiments in murine models of C3G and other complement-driven pathologies. Our analysis of mHDM-FH indicates that it binds with higher affinity and avidity to WT mC3b when compared to mouse (m)FH (mHDM-FH KD=505 nM; mFH KD=1370 nM) analogous to what we observed with the respective human proteins. The improved binding avidity resulted in enhanced complement regulatory function in haemolytic assays. Extended interval dosing studies in CFH-/- mice (5mg/kg every 72hrs) were partially effective and bio-distribution analysis in CFH-/- mice, through in vivo imaging technologies, demonstrates that mHDM-FH is preferentially deposited and remains fixed in the kidneys (and liver) for up to 4 days. Extended dosing using an AAV- human HDM-FH (hHDM-FH) construct achieved complete normalisation of C3 levels in CFH-/- mice for 3 months and was associated with a significant reduction in glomerular C3 staining. Our data demonstrate the ability of gene therapy delivery of mini-FH constructs to enhance complement regulation in vivo and support the application of this approach as a novel treatment strategy in diseases such as C3G.


Subject(s)
Complement C3/immunology , Complement Factor H/immunology , Animals , Complement Factor H/deficiency , Kidney/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Front Immunol ; 11: 602284, 2020.
Article in English | MEDLINE | ID: mdl-33519811

ABSTRACT

Membranoproliferative glomerulonephritis (MPGN), C3 glomerulopathy (C3G), atypical haemolytic uraemic syndrome (aHUS) and age-related macular degeneration (AMD) have all been strongly linked with dysfunction of the alternative pathway (AP) of complement. A significant proportion of individuals with MPGN, C3G, aHUS and AMD carry rare genetic variants in the CFH gene that cause functional or quantitative deficiencies in the factor H (FH) protein, an important regulator of the AP. In silico analysis of the deleteriousness of rare genetic variants in CFH is not reliable and careful biochemical assessment remains the gold standard. Six N-terminal variants of uncertain significance in CFH were identified in patients with these diseases of the AP and selected for analysis. The variants were produced in Pichia Pastoris in the setting of FH CCPs 1-4, purified by nickel affinity chromatography and size exclusion and characterized by surface plasmon resonance and haemolytic assays as well as by cofactor assays in the fluid phase. A single variant, Q81P demonstrated a profound loss of binding to C3b with consequent loss of cofactor and decay accelerating activity. A further 2 variants, G69E and D130N, demonstrated only subtle defects which could conceivably over time lead to disease progression of more chronic AP diseases such as C3G and AMD. In the variants S159N, A161S, and M162V any functional defect was below the capacity of the experimental assays to reliably detect. This study further underlines the importance of careful biochemical assessment when assigning functional consequences to rare genetic variants that may alter clinical decisions for patients.


Subject(s)
Atypical Hemolytic Uremic Syndrome/genetics , Genetic Variation , Glomerulonephritis, Membranoproliferative/genetics , Macular Degeneration/genetics , Complement Factor H/chemistry , Complement Factor H/genetics , Humans
11.
J Clin Invest ; 129(3): 1061-1075, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30714990

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is frequently associated in humans with loss-of-function mutations in complement-regulating proteins or gain-of-function mutations in complement-activating proteins. Thus, aHUS provides an archetypal complement-mediated disease with which to model new therapeutic strategies and treatments. Herein, we show that, when transferred to mice, an aHUS-associated gain-of-function change (D1115N) to the complement-activation protein C3 results in aHUS. Homozygous C3 p.D1115N (C3KI) mice developed spontaneous chronic thrombotic microangiopathy together with hematuria, thrombocytopenia, elevated creatinine, and evidence of hemolysis. Mice with active disease had reduced plasma C3 with C3 fragment and C9 deposition within the kidney. Therapeutic blockade or genetic deletion of C5, a protein downstream of C3 in the complement cascade, protected homozygous C3KI mice from thrombotic microangiopathy and aHUS. Thus, our data provide in vivo modeling evidence that gain-of-function changes in complement C3 drive aHUS. They also show that long-term C5 deficiency is not accompanied by development of other renal complications (such as C3 glomerulopathy) despite sustained dysregulation of C3. Our results suggest that this preclinical model will allow testing of novel complement inhibitors with the aim of developing precisely targeted therapeutics that could have application in many complement-mediated diseases.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Complement Activation , Complement C3 , Complement C5 , Kidney , Mutation, Missense , Amino Acid Substitution , Animals , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/pathology , Complement C3/genetics , Complement C3/immunology , Complement C5/genetics , Complement C5/immunology , Complement C9/genetics , Complement C9/immunology , Disease Models, Animal , Glomerulonephritis, Membranous/genetics , Glomerulonephritis, Membranous/immunology , Glomerulonephritis, Membranous/pathology , Kidney/immunology , Kidney/pathology , Mice , Mice, Transgenic
12.
Immunobiology ; 221(10): 1124-30, 2016 10.
Article in English | MEDLINE | ID: mdl-27268256

ABSTRACT

Chromosomal rearrangements affecting the genes encoding complement factor H and the factor H related proteins have been described in aHUS patients. To date such disorders have not been described in other aHUS associated genes. We describe here a heterozygous 875,324bp deletion encompassing the gene (CFI) encoding complement factor I and ten other genes. The index case presented with aHUS and did not recover renal function. No abnormalities were detected on Sanger sequencing of CFI but a low factor I level led to a multiplex ligation-dependent probe amplification assay being undertaken. This showed a complete heterozygous deletion of CFI. The extent of the deletion and the breakpoint was defined. In the Newcastle aHUS cohort we have identified and report here 32 different CFI variants in 56 patients but to date this is the only deletion that we have identified. This finding although rare does suggest that screening for chromosomal rearrangements affecting CFI should be undertaken in all aHUS patients particularly if the factor I level is unexplainably low.


Subject(s)
Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Complement Factor I/genetics , Complement Factor I/immunology , Genetic Predisposition to Disease , Translocation, Genetic , Adult , Alleles , Atypical Hemolytic Uremic Syndrome/blood , Atypical Hemolytic Uremic Syndrome/diagnosis , Chromosome Breakpoints , Complement System Proteins/genetics , DNA Mutational Analysis , Genotype , Humans , Male , Mutation , Polymorphism, Single Nucleotide
14.
Pregnancy Hypertens ; 3(2): 71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-26105868

ABSTRACT

INTRODUCTION: Caveolins and Cavins are the major protein components of caveolae and regulate many cardiovascular functions. Caveolin-1 inhibits eNOS activity. The possible regulation of vascular reactivity/blood pressure by the caveolae are of interest in relation to pre-eclampsia (PE). We hypothesised that expression of Caveolin/Cavin genes would be reduced, paralleling the up-regulated eNOS in PE compared to normotensive controls (NC). OBJECTIVES: To analyse the placental mRNA expression of Caveolins1-3 and, Cavins1-4, eNOS and iNOS; and protein of caveolin-1, cavin-1 and eNOS in NC and PE placentae from White European women. METHODS: Following ethical approval and informed written consent, placental biopsies were taken midway between the cord and periphery, avoiding infarcts, from 24 NC and 23 PE patients. Gene expression was measured by qRT-PCR. Protein localization was identified by immunohistochemistry and expression semi-quantitatively assessed. RESULTS: Results of mRNA/proteins are shown on table below. Protein expression was localised to the cytotrophoblast and syncytiotrophoblast. No differences were found for any other gene/protein. CONCLUSION: As well as their known effects on eNOS expression, caveolae mediate internalisation of numerous hormone receptors, thus potentially changing pressor and depressor responsiveness. This is the first time that structural determinants of caveolae have been studied in NC and PE pregnancy. FUNDING: Tommy's, CAPES.

SELECTION OF CITATIONS
SEARCH DETAIL