Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Philos Trans A Math Phys Eng Sci ; 382(2275): 20230117, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38910405

ABSTRACT

The rich phenomenology of quantum many-body systems such as atomic nuclei is complex to interpret. Often, the behaviour (e.g. evolution with the number of constituents) of measurable/observable quantities such as binding or excitation energies can be best understood based on a simplified picture involving auxiliary quantities that are not observable, i.e. whose values vary with parameters that are internal to the theoretical construction (contrarily to measurable/observable quantities). While being useful, the simplified interpretation is thus theoretical-scheme dependent. This applies, in particular, to the so-called single-nucleon shell structure based on auxiliary effective single-particle energies (ESPEs). In this context, the present work aims at (i) recalling the way to compute ESPEs out of solutions of many-body Schrödinger's equation, (ii) illustrating the use of ESPEs within the frame of state-of-the-art ab initio calculations to interpret the outcome of a recent nuclear experiment, and (iii) demonstrating the impact of several alterations on the computation of ESPEs. While the chosen alterations constitute approximations within the ab initio scheme, they are built-in when employing other theoretical constructs at play in nuclear physics. The present considerations are thus meant to empirically illustrate variations that can be expected between ESPEs computed within different (equally valid) theoretical schemes. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

2.
Phys Rev Lett ; 128(2): 022502, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35089728

ABSTRACT

Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).

3.
Phys Rev Lett ; 123(14): 142501, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702209

ABSTRACT

Exclusive cross sections and momentum distributions have been measured for quasifree one-neutron knockout reactions from a ^{54}Ca beam striking on a liquid hydrogen target at ∼200 MeV/u. A significantly larger cross section to the p_{3/2} state compared to the f_{5/2} state observed in the excitation of ^{53}Ca provides direct evidence for the nature of the N=34 shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. The distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and ab initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.

4.
Phys Rev Lett ; 120(6): 062503, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481255

ABSTRACT

A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

5.
Phys Rev Lett ; 117(5): 052501, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27517768

ABSTRACT

We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

6.
Phys Rev Lett ; 114(20): 202501, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26047224

ABSTRACT

The recently confirmed neutron-shell closure at N=32 has been investigated for the first time below the magic proton number Z=20 with mass measurements of the exotic isotopes (52,53)K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N=32, slightly lower than for 52Ca, highlighting the doubly magic nature of this nuclide. Skyrme-Hartree-Fock-Bogoliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.

7.
J Clin Oncol ; 23(25): 6107-16, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16135477

ABSTRACT

PURPOSE: We performed a phase I study of a day (D) 1 and D4 bortezomib administration once every 2 weeks to determine the recommended phase II dose and toxicity profile, and the extent of 20S proteasome inhibition obtained. PATIENTS AND METHODS: Patients with solid tumors or lymphomas were treated with bortezomib at 0.25 to 1.9 mg/m2 on D1 and D4, every 2 weeks. 20S proteasome levels in blood were assayed at baseline and at 1, 4, and 24 hours postdose in cycle 1. RESULTS: On this D1 and D4 every 2 weeks' schedule, dose-limiting toxicity (DLT) was evident at the 1.75 and 1.9 mg/m2 dose levels, most commonly in patients receiving individual total doses > or = 3.0 mg. The main DLT was peripheral neuropathy evident at the higher doses and in patients previously exposed to neurotoxic agents. Other DLTs included diarrhea and fatigue; grade 3 thrombocytopenia was also noted. Reversible inhibition of 20S proteasome activity was dose dependent and best fit a total dose (mg) per fraction rather than mg/m2; 70% of baseline activity was inhibited by a dose of 3.0 to 3.5 mg given on D1 and on D4 every other week. Antitumor effects short of confirmed partial responses were observed in patients with melanoma, non-small-cell lung cancer, and renal cell carcinoma. CONCLUSION: Bortezomib (PS-341) is a novel antineoplastic agent that is well tolerated at doses not exceeding 3.0 mg (equivalent to 1.75 mg/m2), repeated on D1 and D4 every other week. This dose correlates with 70% inhibition of 20S proteasome activity. DLTs include neuropathy, fatigue, and diarrhea.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Boronic Acids/pharmacology , Boronic Acids/pharmacokinetics , Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Adult , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Boronic Acids/administration & dosage , Boronic Acids/therapeutic use , Bortezomib , Drug Administration Schedule , Female , Humans , Infusions, Intravenous , Lymphoma/drug therapy , Male , Middle Aged , Neoplasms/drug therapy , Peripheral Nervous System/drug effects , Peripheral Nervous System/pathology , Proteasome Endopeptidase Complex/blood , Proteasome Inhibitors , Pyrazines/administration & dosage , Pyrazines/therapeutic use , Treatment Outcome
9.
Cardiology ; 87(6): 458-68, 1996.
Article in English | MEDLINE | ID: mdl-8904671

ABSTRACT

With the increasing knowledge of the pathogenesis of atherosclerosis, it appears that in the future the prevention of cardiovascular disease will involve not only risk factor correction, but also direct pharmacological control of processes occurring in the arterial wall. Among these, a pivotal role is played by smooth muscle cell (SMC) migration and proliferation, which, together with lipid deposition, are prominent features of atherogenesis and restenosis after angioplasty. Mevalonate and other intermediates of cholesterol synthesis (isoprenoids) are essential for cell growth, hence drugs affecting this metabolic pathway are potential antiatherosclerotic agents. Recently, we provided in vitro and in vivo evidence that fluvastatin, simvastatin and lovastatin, but not pravastatin, decrease SMC migration and proliferation dose dependently, independently of their hypocholesterolemic properties. The in vitro inhibition of cell migration and proliferation induced by simvastatin and fluvastatin (70-90% decrease) was prevented completely by the addition of mevalonate, and partially prevented by farnesol and geranylgeraniol (80%), confirming the specific role of isoprenoid metabolites in regulating these cellular events, probably through prenylated protein(s). The in vivo antiproliferative activity of fluvastatin on neointimal hyperplasia in normocholesterolemic rabbits was also prevented fully by the local delivery of mevalonate, by means of an Alzet pump. Fluvastatin and simvastatin also inhibited cholesterol esterification and deposition induced by acetylated LDL in cultured macrophages. This effect was fully prevented by the addition of mevalonate or geranylgeraniol. Taken together, these results suggest that, beyond their effects on plasma lipids, HMG-CoA reductase inhibitors exert a direct antiatherosclerotic effect on the arterial wall, probably through local inhibition of isoprenoid biosynthesis.


Subject(s)
Anticholesteremic Agents/pharmacology , Arteriosclerosis/physiopathology , Enzyme Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscle, Smooth, Vascular/drug effects , Animals , Anticholesteremic Agents/therapeutic use , Arteriosclerosis/prevention & control , Cell Division/drug effects , Cell Movement/drug effects , Cells, Cultured , Enzyme Inhibitors/therapeutic use , Fatty Acids, Monounsaturated/therapeutic use , Fluvastatin , Indoles/therapeutic use , Lovastatin/analogs & derivatives , Lovastatin/pharmacology , Lovastatin/therapeutic use , Macrophages , Muscle, Smooth, Vascular/cytology , Pravastatin/pharmacology , Pravastatin/therapeutic use , Rabbits , Rats , Rats, Sprague-Dawley , Simvastatin
SELECTION OF CITATIONS
SEARCH DETAIL