Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Molecules ; 27(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36235220

ABSTRACT

Interactions with dietary fibers in the gastrointestinal tract might affect the potential bioactivities of phenolic compounds. In this study, the interactions between apple phenolic compounds and ß-glucan (a dietary fiber) were studied by studying the adsorption process in simulated gastric and intestinal fluid electrolyte solutions. Phenolic compounds were extracted from apples, adsorbed onto ß-glucan (2 h, 37 °C, in gastric or intestinal fluid electrolyte solutions), and determined using high performance liquid chromatography. Phenolic compounds (flavan-3-ols, flavonols, phenolic acids, and dihydrochalcone) were stable in the gastric fluid (pH 3). In the intestinal fluid (pH 7), flavan-3-ols were not found and chlorogenic acid isomerized. Polyphenols from the apple peel (up to 182 and 897 mg g-1) and flesh (up to 28 and 7 mg g-1) were adsorbed onto ß-glucan in the gastric and intestinal fluids, respectively. The adsorption was affected by the initial concentration of the polyphenols and ß-glucan and by the environment (either gastric or intestinal fluid electrolyte solution). By increasing the initial polyphenol amount, the quantity of adsorbed polyphenols increased. Increasing the amount of ß-glucan decreased the amount adsorbed. The results can be helpful in explaining the fate of phenolic compounds in the gastrointestinal tract.


Subject(s)
Malus , beta-Glucans , Adsorption , Chlorogenic Acid , Dietary Fiber/analysis , Flavonols , Phenols/analysis , Polyphenols/chemistry
2.
Front Chem ; 10: 912822, 2022.
Article in English | MEDLINE | ID: mdl-35864866

ABSTRACT

Thiazolidinediones are five-membered, heterocyclic compounds that possess a number of pharmacological activities such as antihyperglycemic, antitumor, antiarthritic, anti-inflammatory, and antimicrobial. Conventional methods for their synthesis are often environmentally unacceptable due to the utilization of various catalysts and organic solvents. In this study, deep eutectic solvents were used in the synthesis of thiazolidinedione derivatives that acted as both solvents and catalysts. Initially, a screening of 20 choline chloride-based deep eutectic solvents for thiazolidinedione synthesis, via Knoevenagel condensation, was performed in order to find the most suitable solvent. Deep eutectic solvent, choline chloride, N-methylurea, was proven to be the best for further synthesis of 19 thiazolidinedione derivatives. Synthesized thiazolidinediones are obtained in yields from 21.49% to 90.90%. The synthesized compounds were tested for the inhibition of lipid peroxidation as well as for the inhibition of soy lipoxygenase enzyme activity. The antioxidant activity of the compounds was also determined by the ABTS and DPPH methods. Compounds showed lipoxygenase inhibition in the range from 7.7% to 76.3%. Quantitative structure-activity relationship model (R 2 = 0.88; Q 2 loo = 0.77; F = 33.69) for the inhibition of soybean lipoxygenase was obtained with descriptors Mor29m, G2u, and MAXDP. The molecular docking confirms experimentally obtained results, finding the binding affinity and interactions with the active sites of soybean LOX-3.

3.
Foods ; 11(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35159559

ABSTRACT

One of the major challenges in sustainable waste management in the agri-food industry following the "zero waste" model is the application of the circular economy strategy, including the development of innovative waste utilization techniques. The conversion of agri-food waste into carriers for the immobilization of enzymes is one such technique. Replacing chemical catalysts with immobilized enzymes (i.e., immobilized/heterogeneous biocatalysts) could help reduce the energy efficiency and environmental sustainability problems of existing chemically catalysed processes. On the other hand, the economics of the process strongly depend on the price of the immobilized enzyme. The conversion of agricultural and food wastes into low-cost enzyme carriers could lead to the development of immobilized enzymes with desirable operating characteristics and subsequently lower the price of immobilized enzymes for use in biocatalytic production. In this context, this review provides insight into the possibilities of reusing food industry wastes, namely, eggshells, coffee grounds, and brown onion skins, as carriers for lipase immobilization.

4.
Biomolecules ; 11(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33503885

ABSTRACT

Lipoxygenases are widespread enzymes that catalyze oxidation of polyunsaturated fatty acids (linoleic, linolenic, and arachidonic acid) to produce hydroperoxides. Lipoxygenase reactions can be desirable, but also lipoxygenases can react in undesirable ways. Most of the products of lipoxygenase reactions are aromatic compounds that can affect food properties, especially during long-term storage. Lipoxygenase action on unsaturated fatty acids could result in off-flavor/off-odor development, causing food spoilage. In addition, lipoxygenases are present in the human body and play an important role in stimulation of inflammatory reactions. Inflammation is linked to many diseases, such as cancer, stroke, and cardiovascular and neurodegenerative diseases. This review summarized recent research on plant families and species that can inhibit lipoxygenase activity.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Inflammation/drug therapy , Lipoxygenase Inhibitors/pharmacology , Oxygen/chemistry , Plant Extracts/pharmacology , Animals , Arachidonate 15-Lipoxygenase/biosynthesis , Arachidonate 5-Lipoxygenase/biosynthesis , Arachidonic Acid , Fatty Acids , Flowers/enzymology , Humans , Hydrogen Peroxide/chemistry , Inhibitory Concentration 50 , Lipoxygenase/metabolism , Lipoxygenase Inhibitors/chemistry , Oxidation-Reduction , Plant Leaves/enzymology , Polyphenols/chemistry
5.
Biotechnol Prog ; 37(2): e3109, 2021 03.
Article in English | MEDLINE | ID: mdl-33314760

ABSTRACT

Despite the already established route of chemically catalyzed transesterification reaction in biodiesel production, due to some of its shortcomings, biocatalysts such as lipases present a vital alternative. Namely, it was noticed that one of the key shortcomings for the optimization of the enzyme catalyzed biodiesel synthesis process is the information on the lipase activity in the reaction mixture. In addition to making optimization difficult, it also makes it impossible to compare the results of the independent research. This article shows how lipase intended for use in biodiesel synthesis can be easily and accurately characterized and what is the enzyme concentration that enables achievement of the desired level of fatty acid methyl esters (FAME) in the final product mixture. Therefore, this study investigated the effect of two different activity loads of Burkholderia cepacia lipase on the biodiesel synthesis varying the pH and temperature optimal for lipase activity. The optimal lipase pH and temperature were determined by two different enzyme assays: spectrophotometric and titrimetric. The B. cepacia lipase pH optimum differentiated between assays, while the lipase optimally hydrolyzed substrates at 50°C. The analysis of FAME during 24 hr of biodiesel synthesis, at two different enzyme concentrations, pH 7, 8, and 10, and using two different buffers, revealed that the transesterification reaction at optimal pH, 1 hr reaction time and lipase activity load of 250 U per gram of reaction mixture was sufficient to produce more than 99% FAME.


Subject(s)
Biofuels/analysis , Burkholderia cepacia/enzymology , Enzymes, Immobilized/metabolism , Esters/metabolism , Fatty Acids/metabolism , Lipase/metabolism , Esterification , Hydrogen-Ion Concentration , Methyltransferases/metabolism , Temperature
6.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34577557

ABSTRACT

Carbon quantum dots (CQDs) have recently emerged as innovative theranostic nanomaterials, enabling fast and effective diagnosis and treatment. In this study, a facile hydrothermal approach for N-doped biomass-derived CQDs preparation from Citrus clementina peel and amino acids glycine (Gly) and arginine (Arg) has been presented. The gradual increase in the N-dopant (amino acids) nitrogen content increased the quantum yield of synthesized CQDs. The prepared CQDs exhibited good biocompatibility, stability in aqueous, and high ionic strength media, similar optical properties, while differences were observed regarding the structural and chemical diversity, and biological and antioxidant activity. The antiproliferative effect of CQD@Gly against pancreatic cancer cell lines (CFPAC-1) was observed. At the same time, CQD@Arg has demonstrated the highest quantum yield and antioxidant activity by DPPH scavenging radical method of 81.39 ± 0.39% and has been further used for the ion sensing and cellular imaging of cancer cells. The obtained results have demonstrated selective response toward Fe3+ detection, with linear response ranging from 7.0 µmol dm-3 to 50.0 µmol dm-3 with R2 = 0.9931 and limit of detection (LOD) of 4.57 ± 0.27 µmol dm-3. This research could be a good example of sustainable biomass waste utilization with potential for biomedical analysis and ion sensing applications.

7.
Pharmaceuticals (Basel) ; 13(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709129

ABSTRACT

Lipoxygenases (LOXs) are a family of enzymes found in plants, mammals, and microorganisms. In animals and plants, the enzyme has the capability for the peroxidation of unsaturated fatty acids. Although LOXs participate in the plant defense system, the enzyme's metabolites can have numerous negative effects on human health. Therefore, many types of research are searching for compounds that can inhibit LOXs. The best quantitative structure-activity relationship (QSAR) model was obtained using a Genetic Algorithm (GA). Molecular docking was performed with iGEMDOCK. The inhibition of lipoxygenase was in the range of 7.1 to 96.6%, and the inhibition of lipid peroxidation was 7.0-91.0%. Among the synthesized compounds, the strongest inhibitor of soybean LOX-3 (96.6%) was found to be 3-benzoyl-7-(benzyloxy)-2H-chromen-2-one. A lipid peroxidation inhibition of 91.0% was achieved with ethyl 7-methoxy-2-oxo-2H-chromene-3-carboxylate. The docking scores for the soybean LOX-3 and human 5-LOX also indicated that this compound has the best affinity for these LOX enzymes. The best multiple linear QSAR model contains the atom-centered fragment descriptors C-06, RDF035p, and HATS8p. QSAR and molecular docking studies elucidated the structural features important for the enhanced inhibitory activity of the most active compounds, such as the presence of the benzoyl ring at the 3-position of coumarin's core. Compounds with benzoyl substituents are promising candidates as potent lipoxygenase inhibitors.

8.
Sci Rep ; 10(1): 725, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959903

ABSTRACT

The impact of fullerene C60 water soluble daughter molecules - fullerols C60(OH)24 nanoparticles (FNP) on emerging (non-aflatoxin biosynthetic pathway) toxins production in mycelia and yeast extract sucrose (YES) media of A. flavus was investigated under growth conditions of 29 °C in the dark for a 168 h period. The FNP solution (10, 100 and 1000 ng mL-1) contained predominantly nanoparticles of 8 nm diameter and with zeta potential mean value of -33 mV. Ten emerging metabolites were produced at concentrations reaching 1,745,035 ng 50 mL-1 YES medium. Seven of the metabolites were found in mycelia and media, while three were only in mycelia. Majority of the metabolites were detected in higher quantity in mycelia than in media, at a ratio of 99:1 (m/m). However, higher metabolite quantities were found in media following FNP application, while FNP caused a decrease of total metabolite quantities in mycelia. The concentrations of the metabolites in media increased in the presence of 1000 ng mL-1 FNP while mycelial quantities of the metabolites decreased with increased applied FNP dose. The impacts of global climate changes on FNP availability in the environment and on mycotoxin occurrence in crops increase the relevance of this study for risk assessment of nanoparticles. Cordycepin is reported for the first time as metabolite of A. flavus.


Subject(s)
Aspergillus flavus/metabolism , Fullerenes/adverse effects , Mycotoxins/biosynthesis , Aspergillus flavus/growth & development , Climate Change , Culture Media , Nanoparticles , Sucrose
9.
Eng Life Sci ; 18(12): 924-931, 2018 Dec.
Article in English | MEDLINE | ID: mdl-32624886

ABSTRACT

In order to increase the current knowledge on cold-press oil cakes composition, the present study aims to determine the chemical composition of oil cakes from hull-less pumpkin (Cucurbita pepo L.), flax (Linum usitatissimum L.), and hemp (Canabis sativa L.) before and after the biological treatment with Trametes versicolor and Humicola grisea using fungal-based solid-state technology. After 10 days of treatment, the content of ash, total nitrogen, total proteins, and total organic carbon increased in all the three oil cakes, while the content of ether extracts decreased. After treatment, the concentration of soluble carbohydrates decreased in pumpkin and hemp seed oil cakes, whereas it increased in flaxseed oil cake. During treatment with T. versicolor, the content of fructose significantly increased in hull-less pumpkin seed oil cake. Fiber content decreased in pumpkin and flaxseed oil cakes after treatment with both of the fungi, whereas it increased in flaxseed oil cake.

10.
Toxins (Basel) ; 10(12)2018 12 10.
Article in English | MEDLINE | ID: mdl-30544693

ABSTRACT

Aspergillus flavus is the most important mycotoxin-producing fungus involved in the global episodes of aflatoxin B1 contamination of crops at both the pre-harvest and post-harvest stages. However, in order to effectively control aflatoxin contamination in crops using antiaflatoxigenic and/or antifungal compounds, some of which are photosensitive, a proper understanding of the photo-sensitive physiology of potential experimental strains need to be documented. The purpose of the study is therefore to evaluate the effect of visible (VIS) light illumination on growth and conidiation, aflatoxin production ability and modulation of A. flavus oxidative status during in vitro experiment. Aflatoxigenic A. flavus strain was inoculated in aflatoxin-inducing YES media and incubated under three different VIS illumination regimes during a 168 h growth period at 29 °C. VIS illumination reduced A. flavus mycelia biomass yield, both during growth on plates and in liquid media, promoted conidiation and increased the aflatoxin production. Furthermore, aflatoxin production increased with increased reactive oxidative species (ROS) levels at 96 h of growth, confirming illumination-driven oxidative stress modulation activity on A. flavus cells.


Subject(s)
Aflatoxins/metabolism , Aspergillus flavus/radiation effects , Light , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Oxidative Stress/radiation effects
11.
AMB Express ; 8(1): 14, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29404802

ABSTRACT

Increased interest in fullerene C60 and derivatives in recent years implies an intensification of their environmental spread. Yet, the potential risks for living organisms are largely unknown, including the interaction of C60 with fungal organisms. This may be especially relevant for mycotoxigenic fungi since C60 may both scavenge and produce reactive oxygen species (ROS), and oxidative stress induces mycotoxin production in fungi. Therefore, this study examined effects of environmentally plausible concentrations of C60 (0, 10, 50, and 100 ng/mL) on Aspergillus flavus growth and aflatoxin production in culture media. In addition, ROS-dependent oxidative stress biomarkers-thiobarbituric acid reactive substances (TBARS), reduced and oxidised glutathione ratio, superoxide dismutase isoenzymes, catalase, glutathione peroxidase, and glutathione reductase were determined in mycelia. Nanoparticles of fullerene C60 (nC60) did not exhibit strong antifungal activity against A. flavus. At the same time, nC60 caused an antiaflatoxigenic effect at 10-100 ng/mL, and 50 ng/mL unexpectedly enhanced aflatoxin production. The TBARS content, reduced and oxidised glutathione ratio, and copper, zinc superoxide dismutase activity suggest that 10 ng/mL nC60 exerted antioxidative action and reduced aflatoxin B1 production within fungal cells. Detected prooxidative effects of 50 ng/mL fullerene exceeded cellular defenses and consequently enhanced aflatoxin B1 production. Finally, the results obtained with 100 ng/mL nC60 point to prooxidative effects, but the absence of increase in aflatoxin output may indicate additional, presumably cytotoxic effects of nC60. Thus, a range of rather low levels of nC60 in the environment has a potential to modify aflatoxin production in A. flavus. Due to possible implications, further studies should test these results in environmental conditions.

12.
Sci Rep ; 8(1): 12855, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30150708

ABSTRACT

The water soluble fullerene C60 daughter product - fullerols C60(OH)24 (FNP) possesses a great potential of modifying secondary metabolites biosynthesis. In order to clarify the extent of interaction, the impact of FNP (10, 100 and 1000 ng mL-1) on aflatoxin production and the available precursors of biosynthesis pathway from Aspergillus flavus NRRL 3251 was determined, in both the mycelia and yeast extract sucrose (YES) medium, during a 168-hour growth period at 29 °C in the dark. The FNP of 8 nm in diameter, and with a zeta potential of -33 mV affected mycelial growth at 1000 ng mL-1 while conidia production was slightly affected at 10 ng mL-1. The FNP effect on aflatoxin and it biosynthetic precursors was concentration dependent and alteration of the sterigmatocystin (ST) export from the cell was observed. Most of the monitored aflatoxin precursors, except norsolorinic acid, were detected in both mycelia and YES medium. However, observed precursor concentrations were much higher in mycelia, with exception of ST. The study shows the loss of FNP antioxidative effect after 120 hours of growth, and strong concentration dependent aflatoxigenic effect after that time. Thus, this data is relevant to guide future considerations on FNP-fungal interactions in the environments and on risk assessment.


Subject(s)
Aflatoxin B1/biosynthesis , Aspergillus flavus/metabolism , Fullerenes/metabolism , Nanoparticles , Aflatoxin B1/chemistry , Fullerenes/chemistry
13.
Arh Hig Rada Toksikol ; 68(1): 9-15, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28365677

ABSTRACT

The antifungal and antiaflatoxigenic effects of two series of coumarinyl thiosemicarbazides on Aspergillus flavus NRRL 3251 were studied. Fungi were grown in YES medium for 72 h at 29 °C in the presence of 0, 0.1, 1, and 10 µg mL-1 of coumarinyl thiosemicarbazides: one series with substitution in position 7 and another with substitution in position 4 of the coumarin core. Dry mycelia weight determination was used for antifungal activity estimation, while the aflatoxin B1 content in YES media, determined by the dilute and shoot LC-MS/MS technique, was used for the antiaflatoxigenic effect estimation. Standard biochemical assays were used for oxidative status marker (TBARS, SOD, CAT, and GPX) determination in A. flavus NRRL 3251 mycelia. Results show that 7-substituted-coumarinyl thiosemicarbazides possess a better antifungal and antiaflatoxigenic activity than 4-substituted ones. The most prominent substituted compound was the compound 3, N-(4-chlorophenyl)-2-(2-((4-methyl-2-oxo-2H-chromen-7-yl)oxy)acetyl)hydrazine-1-carbothioamide, which completely inhibited aflatoxin production at the concentration of 10 µg mL-1. Oxidative stress response of A. flavus exposed to the selected compounds points to the modulation of oxidative stress as a possible reason of aflatoxin production inhibition.


Subject(s)
Aflatoxins/pharmacology , Antifungal Agents/pharmacology , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Food Contamination/prevention & control , Semicarbazides/pharmacology
14.
Environ Sci Pollut Res Int ; 24(20): 16673-16681, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28560625

ABSTRACT

Increased use of fullerols in various fields and expected increase of their environmental spread impose the necessity for testing fullerol nanoparticles (FNP) effects on microbiota. There is little information available on the interaction of mycotoxigenic fungi and FNP, despite FNP having a great potential of modifying mycotoxin production. Namely, FNP exhibit both ROS-quenching and ROS-producing properties, while oxidative stress stimulates mycotoxin synthesis in the fungi. In order to shed some light on the extent of interaction between FNP and mycotoxigenic fungi, the effects of fullerol C60(OH)24 nanoparticles (10, 100, 1000 ng/mL) on mycelial growth, aflatoxin production and oxidative stress modulation in an aflatoxigenic strain of Aspergillus flavus (NRRL 3251) during 168 h of incubation in a liquid culture medium were examined. FNP slightly reduced mycelial biomass weight, but significantly decreased aflatoxin concentration in media. Lipid peroxide content, superoxide dismutase, catalase and glutathione peroxidase activities suggest that FNP treatments hormetically reduced oxidative stress within fungal cells in turn suppressing aflatoxin production. These findings contribute to the assessment of environmental risk and application potential of fullerols.


Subject(s)
Aspergillus flavus , Fullerenes/toxicity , Nanoparticles/toxicity , Aflatoxins , Fungi , Mycotoxins
SELECTION OF CITATIONS
SEARCH DETAIL