Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Nat Mater ; 20(1): 84-92, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32839589

ABSTRACT

Ni-rich layered cathode materials are among the most promising candidates for high-energy-density Li-ion batteries, yet their degradation mechanisms are still poorly understood. We report a structure-driven degradation mechanism for NMC811 (LiNi0.8Mn0.1Co0.1O2), in which a proportion of the material exhibits a lowered accessible state of charge at the end of charging after repetitive cycling and becomes fatigued. Operando synchrotron long-duration X-ray diffraction enabled by a laser-thinned coin cell shows the emergence and growth in the concentration of this fatigued phase with cycle number. This degradation is structure driven and is not solely due to kinetic limitations or intergranular cracking: no bulk phase transformations, no increase in Li/Ni antisite mixing and no notable changes in the local structure or Li-ion mobility of the bulk are seen in aged NMCs. Instead, we propose that this degradation stems from the high interfacial lattice strain between the reconstructed surface and the bulk layered structure that develops when the latter is at states of charge above a distinct threshold of approximately 75%. This mechanism is expected to be universal in Ni-rich layered cathodes. Our findings provide fundamental insights into strategies to help mitigate this degradation process.

2.
Angew Chem Int Ed Engl ; 61(27): e202204500, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35471635

ABSTRACT

Zeolites have found tremendous applications in the chemical industry. However, the dynamic nature of their active sites under the flow of adsorbate molecules for adsorption and catalysis is unclear, especially in operando conditions, which could be different from the as-synthesized structures. In the present study, we report a structural transformation of the adsorptive active sites in SAPO-34 zeolite by using acetone as a probe molecule under various temperatures. The combination of solid-state nuclear magnetic resonance, in situ variable-temperature synchrotron X-ray diffraction, and in situ diffuse-reflectance infrared Fourier-transform spectroscopy allow a clear identification and quantification that the chemisorption of acetone can convert the classical Brønsted acid site adsorption mode to an induced Frustrated Lewis Pairs adsorption mode at increasing temperatures. Such facile conversion is also supported by the calculations of ab-initio molecular-dynamics simulations. This work sheds new light on the importance of the dynamic structural alteration of active sites in zeolites with adsorbates at elevated temperatures.

3.
J Am Chem Soc ; 143(8): 3205-3218, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33596070

ABSTRACT

Understanding structural responses of metal-organic frameworks (MOFs) to external stimuli such as the inclusion of guest molecules and temperature/pressure has gained increasing attention in many applications, for example, manipulation and manifesto smart materials for gas storage, energy storage, controlled drug delivery, tunable mechanical properties, and molecular sensing, to name but a few. Herein, neutron and synchrotron diffractions along with Rietveld refinement and density functional theory calculations have been used to elucidate the responsive adsorption behaviors of defect-rich Zr-based MOFs upon the progressive incorporation of ammonia (NH3) and variable temperature. UiO-67 and UiO-bpydc containing biphenyl dicarboxylate and bipyridine dicarboxylate linkers, respectively, were selected, and the results establish the paramount influence of the functional linkers on their NH3 affinity, which leads to stimulus-tailoring properties such as gate-controlled porosity by dynamic linker flipping, disorder, and structural rigidity. Despite their structural similarities, we show for the first time the dramatic alteration of NH3 adsorption profiles when the phenyl groups are replaced by the bipyridine in the organic linker. These molecular controls stem from controlling the degree of H-bonding networks/distortions between the bipyridine scaffold and the adsorbed NH3 without significant change in pore volume and unit cell parameters. Temperature-dependent neutron diffraction also reveals the NH3-induced rotational motions of the organic linkers. We also demonstrate that the degree of structural flexibility of the functional linkers can critically be affected by the type and quantity of the small guest molecules. This strikes a delicate control in material properties at the molecular level.

4.
J Am Chem Soc ; 143(23): 8761-8771, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34076425

ABSTRACT

There has been a long debate on how and where active sites are created for molecular adsorption and catalysis in zeolites, which underpin many important industrial applications. It is well accepted that Lewis acidic sites (LASs) and basic sites (LBSs) as active sites in pristine zeolites are generally believed to be the extra-framework Al species and residue anion (OH-) species formed at fixed crystallographic positions after their synthesis. However, the dynamic interactions of adsorbates/reactants with pristine zeotype materials to "create" sites during real conditions remain largely unexplored. Herein, direct experimental observation of the establishment of induced active sites in silicoaluminophosphate (SAPO) by an adsorbate is for the first time made, which contradicts the traditional view of the fixed active sites in zeotype materials. Evidence shows that an induced frustrated Lewis pair (FLP, three-coordinated framework Al as LAS and SiO (H) as LBS) can be transiently favored for heterolytic molecular binding/reactions of competitive polar adsorbates due to their ineffective orbital overlap in the rigid framework. High-resolution magic-angle-spinning solid-state NMR, synchrotron X-ray diffraction, neutron powder diffraction, in situ diffuse reflectance infrared Fourier transform spectroscopy, and ab initio molecular dynamics demonstrate the transformation of a typical Brønsted acid site (Al(OH)Si) in SAPO zeolites to new induced FLP structure for hetereolytic binding upon adsorption of a strong polar adsorbate. Our unprecedented finding opens up a new avenue to understanding the dynamic establishment of active sites for adsorption or chemical reactions under molecular bombardment of zeolitic structures.

5.
Nat Mater ; 19(1): 86-93, 2020 01.
Article in English | MEDLINE | ID: mdl-31844281

ABSTRACT

The efficient production of light olefins from renewable biomass is a vital and challenging target to achieve future sustainable chemical processes. Here we report a hetero-atomic MFI-type zeolite (NbAlS-1), over which aqueous solutions of γ-valerolactone (GVL), obtained from biomass-derived carbohydrates, can be quantitatively converted into butenes with a yield of >99% at ambient pressure under continuous flow conditions. NbAlS-1 incorporates simultaneously niobium(V) and aluminium(III) centres into the framework and thus has a desirable distribution of Lewis and Brønsted acid sites with optimal strength. Synchrotron X-ray diffraction and absorption spectroscopy show that there is cooperativity between Nb(V) and the Brønsted acid sites on the confined adsorption of GVL, whereas the catalytic mechanism for the conversion of the confined GVL into butenes is revealed by in situ inelastic neutron scattering, coupled with modelling. This study offers a prospect for the sustainable production of butene as a platform chemical for the manufacture of renewable materials.


Subject(s)
Alkenes/chemistry , Lactones/chemistry , Zeolites/chemistry , Adsorption , Biomass , Carbohydrates/chemistry , Catalysis , Hydrogen Bonding , Materials Testing , Neutrons , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Synchrotrons
6.
Phys Rev Lett ; 127(5): 055501, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397222

ABSTRACT

Super Invar (SIV), i.e., zero thermal expansion of metallic materials underpinned by magnetic ordering, is of great practical merit for a wide range of high precision engineering. However, the relatively narrow temperature window of SIV in most materials restricts its potential applications in many critical fields. Here, we demonstrate the controlled design of thermal expansion in a family of R_{2}(Fe,Co)_{17} materials (R=rare Earth). We find that adjusting the Fe-Co content tunes the thermal expansion behavior and its optimization leads to a record-wide SIV with good cyclic stability from 3-461 K, almost twice the range of currently known SIV. In situ neutron diffraction, Mössbauer spectra and first-principles calculations reveal the 3d bonding state transition of the Fe-sublattice favors extra lattice stress upon magnetic ordering. On the other hand, Co content induces a dramatic enhancement of the internal molecular field, which can be manipulated to achieve "ultrawide" SIV over broad temperature, composition and magnetic field windows. These findings pave the way for exploiting thermal-expansion-control engineering and related functional materials.

7.
Inorg Chem ; 60(15): 11014-11024, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34242021

ABSTRACT

We present three new hybrid copper(II) chloride layered perovskites of generic composition ACuCl4 or A2CuCl4, which exhibit three distinct structure types. (m-PdH2)CuCl4 (m-PdH22+ = protonated m-phenylenediamine) adopts a Dion-Jacobson (DJ)-like layered perovskite structure type and exhibits a very large axial thermal contraction effect upon heating, as revealed via variable-temperature synchrotron X-ray powder diffraction (SXRD). This can be attributed to the contraction of an interlayer block, via a slight repositioning of the m-PdH22+ moiety. (3-AbaH)2CuCl4 (3-AbaH+ = protonated 3-aminobenzoic acid) and (4-AbaH)2CuCl4 (4-AbaH+ = protonated 4-aminobenzoic acid) possess the same generic formula as Ruddlesden-Popper (RP) layered perovskites, A2BX4, but adopt different structures. (4-AbaH)2CuCl4 adopts a near-staggered structure type, whereas (3-AbaH)2CuCl4 adopts a near-eclipsed structure type, which resembles the DJ rather than the RP family. (3-AbaH)2CuCl4 also displays static disorder of the [CuCl4]∞ layers. The crystal structures of each are discussed in terms of the differing nature of the templating molecular species, and these are compared to related layered perovskites. Preliminary magnetic measurements are reported, suggesting dominant ferromagnetic interactions.

8.
Nanotechnology ; 32(10): 105704, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33242848

ABSTRACT

Two-dimensional (2D) hexagonal boron nitride (h-BN) is becoming increasingly interesting for wider engineering applications. Thermal exfoliation is being suggested as a facile technology to produce large quantities of 2D h-BN. Further optimization of the process requires fundamental understanding of the exfoliation mechanism, which is hardly realized by ex situ techniques. In this study, in situ synchrotron x-ray powder diffraction experiments are conducted while heat treating bulk h-BN up to 1273 K. During the heating process, linear expansion of c-axis is observed and the contraction of a-axis up to around 750 K is consistent with previous research. However, a changing behavior from contraction to expansion in a-axis direction is newly observed when heating over 750 K. With the consideration of previous thermally oxidation studies, a hypothesis of thermal assisted exfoliation with oxygen interstitial and substitution of nitrogen at high temperature is proposed.

9.
Angew Chem Int Ed Engl ; 60(28): 15243-15247, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33848040

ABSTRACT

Selective oxidation of benzylic C-H compounds to ketones is important for the production of a wide range of fine chemicals, and is often achieved using toxic or precious metal catalysts. Herein, we report the efficient oxidation of benzylic C-H groups in a broad range of substrates under mild conditions over a robust metal-organic framework material, MFM-170, incorporating redox-active [Cu2 II (O2 CR)4 ] paddlewheel nodes. A comprehensive investigation employing electron paramagnetic resonance (EPR) spectroscopy and synchrotron X-ray diffraction has identified the critical role of the paddlewheel moiety in activating the oxidant t BuOOH (tert-butyl hydroperoxide) via partial reduction to [CuII CuI (O2 CR)4 ] species.

10.
Angew Chem Int Ed Engl ; 60(26): 14420-14428, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33729669

ABSTRACT

Electronic metal-support interactions (EMSI) describe the electron flow between metal sites and a metal oxide support. It is generally used to follow the mechanism of redox reactions. In this study of CuO-CeO2 redox, an additional flow of electrons from metallic Cu to surface carbon species is observed via a combination of operando X-ray absorption spectroscopy, synchrotron X-ray powder diffraction, near ambient pressure near edge X-ray absorption fine structure spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy. An electronic metal-support-carbon interaction (EMSCI) is proposed to explain the reaction pathway of CO oxidation. The EMSCI provides a complete picture of the mass and electron flow, which will help predict and improve the catalytic performance in the selective activation of CO2 , carbonate, or carbonyl species in C1 chemistry.

11.
J Am Chem Soc ; 142(35): 14903-14913, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32786807

ABSTRACT

Flexible metal-organic frameworks (MOFs) undergo structural transformations in response to physical and chemical stimuli. This is hard to control because of feedback between guest uptake and host structure change. We report a family of flexible MOFs based on derivatized amino acid linkers. Their porosity consists of a one-dimensional channel connected to three peripheral pockets. This network structure amplifies small local changes in linker conformation, which are strongly coupled to the guest packing in and the shape of the peripheral pockets, to afford large changes in the global pore geometry that can, for example, segment the pore into four isolated components. The synergy among pore volume, guest packing, and linker conformation that characterizes this family of structures can be determined by the amino acid side chain, because it is repositioned by linker torsion. The resulting control optimizes noncovalent interactions to differentiate the uptake and structure response of host-guest pairs with similar chemistries.

12.
Anal Chem ; 92(11): 7754-7761, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32365293

ABSTRACT

Understanding the transitions between polymorphs is essential in the development of strategies for manufacturing and maximizing the efficiency of pharmaceuticals. However, this can be extremely challenging: crystallization can be influenced by subtle changes in environment, such as temperature and mixing intensity or even imperfections in the crystallizer walls. Here, we highlight the importance of in situ measurements in understanding crystallization mechanisms, where a segmented flow crystallizer was used to study the crystallization of the pharmaceuticals urea: barbituric acid (UBA) and carbamazepine (CBZ). The reactor provides highly reproducible reaction conditions, while in situ synchrotron powder X-ray diffraction (PXRD) enables us to monitor the evolution of this system. UBA has two polymorphs of almost equivalent free-energy and so is typically obtained as a polymorphic mixture. In situ PXRD analysis uncovered a progression of polymorphs from UBA III to the thermodynamic polymorph UBA I, where different positions along the length of the tubular flow crystallizer correspond to different reaction times. Addition of UBA I seed crystals modified this pathway such that only UBA I was observed throughout, while transformation from UBA III into UBA I still occurred in the presence of UBA III seeds. Information regarding the mixing-dependent kinetics of the CBZ form II to III transformation was also uncovered in a series of seeded and unseeded flow crystallization runs, despite atypical habit expression. These results illustrate the importance of coupling controlled reaction environments with in situ XRD to study the phase relationships in polymorphic materials.


Subject(s)
Barbiturates/chemistry , Carbamazepine/chemistry , Pharmaceutical Preparations/chemistry , Urea/chemistry , Crystallization , Powder Diffraction
13.
Nat Mater ; 18(12): 1358-1365, 2019 12.
Article in English | MEDLINE | ID: mdl-31611671

ABSTRACT

Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4',4‴-(pyridine-3,5-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g-1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(II) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.

14.
Inorg Chem ; 59(21): 15646-15658, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33044820

ABSTRACT

Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host-guest interactions involved at the atomic scale. Metal-organic polyhedra (MOPs) showing permanent porosity upon desolvation are rarely observed. We report a family of MOPs (Cu-1a, Cu-1b, Cu-2), which derive their permanent porosity from cavities between packed cages rather than from within the polyhedra. Thus, for Cu-1a, the void fraction outside the cages totals 56% with only 2% within. The relative stabilities of these MOP structures are rationalized by considering their weak nondirectional packing interactions using Hirshfeld surface analyses. The exceptional stability of Cu-1a enables a detailed structural investigation into the adsorption of CO2 and CH4 using in situ X-ray and neutron diffraction, coupled with DFT calculations. The primary binding sites for adsorbed CO2 and CH4 in Cu-1a are found to be the open metal sites and pockets defined by the faces of phenyl rings. More importantly, the structural analysis of a hydrated sample of Cu-1a reveals a strong hydrogen bond between the adsorbed CO2 molecule and the Cu(II)-bound water molecule, shedding light on previous empirical and theoretical observations that partial hydration of metal-organic framework (MOF) materials containing open metal sites increases their uptake of CO2. The results of the crystallographic study on MOP-gas binding have been rationalized using DFT calculations, yielding individual binding energies for the various pore environments of Cu-1a.

15.
Nanotechnology ; 31(20): 205001, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31962293

ABSTRACT

We demonstrate a controllable p-n junction in a three-dimensional Dirac semimetal (DSM) Cd3As2 nanowire with two recessed bottom gates. The device exhibits four different conductance regimes with gate voltages, the unipolar (n-n and p-p) and bipolar (n-p and n-p) regimes, where p-n junctions are formed. The conductance in the p-n junction regimes decreases drastically when a magnetic field is applied perpendicular to the nanowire. In these regimes, the device shows quantum dot behavior, whereas the device exhibits conductance plateaus in the n-n regime at high magnetic fields. Our experiment shows that the ambipolar tunability of DSM nanowires can enable the realization of quantum devices based on quantum dots and electron optics.

16.
Phys Chem Chem Phys ; 22(34): 18757-18764, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32149303

ABSTRACT

This article highlights the recent fundamental study in using achiral and chiral porous materials for the potential applications in asymmetric catalysis. Thanks to the new-generation synchrotron X-ray powder diffraction (SXRD) facilities, we reveal the presence of the unique 'chiral region' in achiral zeolites with the MFI topology. Both the inherent site-isolation effect of the active sites and internal confinement restraints in zeolites are critical for creating 'chiral regions' that can aid the design of more enantioselective catalytic reactions. We also offer an outlook on the challenges and opportunities of this research area.

17.
Angew Chem Int Ed Engl ; 59(3): 1093-1097, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31701612

ABSTRACT

Reported here is the first crystallographic observation of stereospecific bindings of l- and d-lysine (Lys) in achiral MFI zeolites. The MFI structure offers inherent geometric and internal confinement effects for the enantiomeric difference in l- and d-Lys adsorption. Notable differences have been observed by circular dichroism (CD) spectroscopy and thermogravimetric analysis (TGA). Distinct l- and d-Lys adsorption behaviours on the H-ZSM-5 framework have been revealed by the Rietveld refinement of high-resolution synchrotron X-ray powder diffraction (SXRD) data and the density-functional theory (DFT) calculations. Despite demonstrating the approach for l- and d-Lys over MFI zeolites at an atomistic resolution, the differential adsorption study sheds light on the rational engineering of molecular interaction(s) with achiral microporous materials for chiral separation purposes.

18.
J Am Chem Soc ; 141(18): 7333-7346, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30974948

ABSTRACT

Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (>200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rock salt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+ xNi1- xWO6 (0 ≤ x ≤ 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The Li4.15Ni0.85WO6 (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (>2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O-O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion-anion bonding with the anion redox capacity.

19.
J Am Chem Soc ; 140(46): 15564-15567, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30418751

ABSTRACT

We report a record-high SO2 adsorption capacity of 12.3 mmol g-1 in a robust porous material, MFM-601, at 298 K and 1.0 bar. SO2 adsorption in MFM-601 is fully reversible and highly selective over CO2 and N2. The binding domains for adsorbed SO2 and CO2 molecules in MFM-601 have been determined by in situ synchrotron X-ray diffraction experiments, giving insights at the molecular level to the basis of the observed high selectivity.

20.
J Am Chem Soc ; 140(21): 6661-6667, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29660275

ABSTRACT

Industrial olefin metathesis catalysts generally suffer from low reaction rates and require harsh reaction conditions for moderate activities. This is due to their inability to prevent metathesis active sites (MASs) from aggregation and their intrinsic poor adsorption and activation of olefin molecules. Here, isolated tungstate species as single molecular MASs are immobilized inside zeolite pores by Brønsted acid sites (BASs) on the inner surface. It is demonstrated that unoccupied BASs in atomic proximity to MASs enhance olefin adsorption and facilitate the formation of metallocycle intermediates in a stereospecific manner. Thus, effective cooperative catalysis takes place over the BAS-MAS pair inside the zeolite cavity. In consequence, for the cross-metathesis of ethene and trans-2-butene to propene, under mild reaction conditions, the propene production rate over WO x/USY is ca. 7300 times that over the industrial WO3/SiO2-based catalyst. A propene yield up to 79% (80% selectivity) without observable deactivation was obtained over WO x/USY for a wide range of reaction conditions.

SELECTION OF CITATIONS
SEARCH DETAIL