Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Leukemia ; 38(6): 1342-1352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491305

ABSTRACT

Thrombopoietin (Tpo), which binds to its specific receptor, the Mpl protein, is the major cytokine regulator of megakaryopoiesis and circulating platelet number. Tpo binding to Mpl triggers activation of Janus kinase 2 (Jak2) and phosphorylation of the receptor, as well as activation of several intracellular signalling cascades that mediate cellular responses. Three tyrosine (Y) residues in the C-terminal region of the Mpl intracellular domain have been implicated as sites of phosphorylation required for regulation of major Tpo-stimulated signalling pathways: Mpl-Y565, Mpl-Y599 and Mpl-Y604. Here, we have introduced mutations in the mouse germline and report a consistent physiological requirement for Mpl-Y599, mutation of which resulted in thrombocytopenia, deficient megakaryopoiesis, low hematopoietic stem cell (HSC) number and function, and attenuated responses to myelosuppression. We further show that in models of myeloproliferative neoplasms (MPN), where Mpl is required for pathogenesis, thrombocytosis was dependent on intact Mpl-Y599. In contrast, Mpl-Y565 was required for negative regulation of Tpo responses; mutation of this residue resulted in excess megakaryopoiesis at steady-state and in response to myelosuppression, and exacerbated thrombocytosis associated with MPN.


Subject(s)
Hematopoiesis , Myeloproliferative Disorders , Receptors, Thrombopoietin , Thrombopoietin , Tyrosine , Animals , Receptors, Thrombopoietin/metabolism , Receptors, Thrombopoietin/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Mice , Thrombopoietin/metabolism , Tyrosine/metabolism , Tyrosine/genetics , Phosphorylation , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Signal Transduction , Mutation , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Thrombopoiesis/genetics
2.
Sci Adv ; 10(10): eadj8803, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457494

ABSTRACT

Philadelphia chromosome-positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the BCR::ABL1 fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling identified up-regulation of oncogenic transcription factors ERG and c-MYC in BCR::ABL1 B-ALL with ERG and c-MYC required for BCR::ABL1 B-ALL in murine and human models. Profiling of ERG- and c-MYC-dependent gene expression and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL that controls expression of genes involved in several biological processes. Prominent was control of ribosome biogenesis, including expression of RNA polymerase I (POL I) subunits, the importance of which was validated by inhibition of BCR::ABL1 cells by POL I inhibitors, including CX-5461, that prevents promoter recruitment and transcription initiation by POL I. Our results reveal an essential ERG- and c-MYC-dependent transcriptional network involved in regulation of metabolic and ribosome biogenesis pathways in BCR::ABL1 B-ALL, from which previously unidentified vulnerabilities and therapeutic targets may emerge.


Subject(s)
Fusion Proteins, bcr-abl , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Transcriptional Regulator ERG , Animals , Humans , Mice , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/therapeutic use , Gene Regulatory Networks , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics
3.
Proc Natl Acad Sci U S A ; 107(38): 16625-30, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20823251

ABSTRACT

With the notable exception of humans, uric acid is degraded to (S)-allantoin in a biochemical pathway catalyzed by urate oxidase, 5-hydroxyisourate (HIU) hydrolase, and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase in most vertebrate species. A point mutation in the gene encoding mouse HIU hydrolase, Urah, that perturbed uric acid metabolism within the liver was discovered during a mutagenesis screen in mice. The predicted substitution of cysteine for tyrosine in a conserved helical region of the mutant-encoded HIU hydrolase resulted in undetectable protein expression. Mice homozygous for this mutation developed elevated platelet counts secondary to excess thrombopoietin production and hepatomegaly. The majority of homozygous mutant mice also developed hepatocellular carcinoma, and tumor development was accelerated by exposure to radiation. The development of hepatomegaly and liver tumors in mice lacking Urah suggests that uric acid metabolites may be toxic and that urate oxidase activity without HIU hydrolase function may affect liver growth and transformation. The absence of HIU hydrolase in humans predicts slowed metabolism of HIU after clinical administration of exogenous urate oxidase in conditions of uric acid-related pathology. The data suggest that prolonged urate oxidase therapy should be combined with careful assessment of toxicity associated with extrahepatic production of uric acid metabolites.


Subject(s)
Amidohydrolases/deficiency , Amidohydrolases/genetics , Hepatomegaly/enzymology , Hepatomegaly/genetics , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/genetics , Point Mutation , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Sequence , Animals , Female , Genes, Tumor Suppressor , Hepatocytes/enzymology , Hepatomegaly/etiology , Liver Neoplasms, Experimental/etiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Models, Molecular , Molecular Sequence Data , Mutagenesis , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Thrombocytosis/enzymology , Thrombocytosis/genetics , Thrombopoietin/biosynthesis , Urate Oxidase/metabolism , Uric Acid/metabolism , Uric Acid/toxicity
4.
Leukemia ; 35(8): 2205-2219, 2021 08.
Article in English | MEDLINE | ID: mdl-33483615

ABSTRACT

The majority of cases of T-cell acute lymphoblastic leukemia (T-ALL) contain chromosomal abnormalities that drive overexpression of oncogenic transcription factors. However, whether these initiating oncogenes are required for leukemia maintenance is poorly understood. To address this, we developed a tetracycline-regulated mouse model of T-ALL driven by the oncogenic transcription factor Lmo2. This revealed that whilst thymus-resident pre-Leukemic Stem Cells (pre-LSCs) required continuous Lmo2 expression, the majority of leukemias relapsed despite Lmo2 withdrawal. Relapse was associated with a mature phenotype and frequent mutation or loss of tumor suppressor genes including Ikzf1 (Ikaros), with targeted deletion Ikzf1 being sufficient to transform Lmo2-dependent leukemias to Lmo2-independence. Moreover, we found that the related transcription factor TAL1 was dispensable in several human T-ALL cell lines that contain SIL-TAL1 chromosomal deletions driving its overexpression, indicating that evolution to oncogene independence can also occur in human T-ALL. Together these results indicate an evolution of oncogene addiction in murine and human T-ALL and show that loss of Ikaros is a mechanism that can promote self-renewal of T-ALL lymphoblasts in the absence of an initiating oncogenic transcription factor.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Gene Expression Regulation, Leukemic , Ikaros Transcription Factor/physiology , LIM Domain Proteins/physiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
5.
Proc Natl Acad Sci U S A ; 103(44): 16442-7, 2006 Oct 31.
Article in English | MEDLINE | ID: mdl-17062753

ABSTRACT

An N-ethyl-N-nitrosourea mutagenesis screen in mice was performed to isolate regulators of circulating platelet number. We report here recessive thrombocytopenia and kidney disease in plt1 mice, which is the result of a severe but partial loss-of-function mutation in the gene encoding glycoprotein-N-acetylgalactosamine-3-beta-galactosyltransferase (C1GalT1), an enzyme essential for the synthesis of extended mucin-type O-glycans. Platelet half-life and basic hemostatic parameters were unaffected in plt1/plt1 mice, and the thrombocytopenia and kidney disease were not attenuated on a lymphocyte-deficient rag1-null background. gpIbalpha and podocalyxin were found to be major underglycosylated proteins in plt1/plt1 platelets and the kidney, respectively, implying that these are key targets for C1GalT1, appropriate glycosylation of which is essential for platelet production and kidney function. Compromised C1GalT1 activity has been associated with immune-mediated diseases in humans, most notably Tn syndrome and IgA nephropathy. The disease in plt1/plt1 mice suggests that, in addition to immune-mediated effects, intrinsic C1Gal-T1 deficiency in megakaryocytes and the kidney may contribute to pathology.


Subject(s)
Galactosyltransferases/metabolism , Kidney Diseases/metabolism , Thrombocytopenia/metabolism , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Cell Line , Cell Proliferation , Female , Galactosyltransferases/genetics , Glycosylation , Humans , Kidney Diseases/genetics , Kidney Diseases/pathology , Male , Mice , Mutation/genetics , Survival Rate , Thrombocytopenia/genetics , Thrombocytopenia/pathology
6.
Proc Natl Acad Sci U S A ; 101(43): 15446-51, 2004 Oct 26.
Article in English | MEDLINE | ID: mdl-15494444

ABSTRACT

SOCS7 is a member of the suppressor of cytokine signaling (SOCS) family of proteins (SOCS1-SOCS7 and CIS). SOCS proteins are composed of an N-terminal domain of variable length, a central Src homology 2 domain, and a C-terminal SOCS box. Biochemical and genetic studies have revealed that SOCS1, SOCS2, SOCS3, and CIS play an important role in the termination of cytokine and growth factor signaling. However, the biological actions of other SOCS proteins are less well defined. To investigate the physiological role of SOCS7, we have used gene targeting to generate mice that lack expression of the Socs7 gene. Socs7-/- mice were born in expected numbers, were fertile, and did not exhibit defects in hematopoiesis or circulating glucose or insulin concentrations. However, Socs7-/- mice were 7-10% smaller than their wild-type littermates, and within 15 weeks of age approximately 50% of the Socs7-/- mice died as a result of hydrocephalus that was characterized by cranial distortion, dilation of the ventricular system, reduced thickness of the cerebral cortex, and disorganization of the subcommissural organ. In situ hybridization studies revealed prominent expression of Socs7 in the brain, suggestive of an important functional role of SOCS7 in this organ.


Subject(s)
Hydrocephalus/genetics , Nuclear Proteins/genetics , Animals , Flow Cytometry , Gene Expression , Glucose/metabolism , Growth , Homeostasis , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/physiopathology , Mice , Mice, Knockout , Suppressor of Cytokine Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL