Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Mol Cell ; 83(1): 90-104.e4, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36521492

ABSTRACT

RIG-I is essential for host defense against viral pathogens, as it triggers the release of type I interferons upon encounter with viral RNA molecules. In this study, we show that RIG-I is rapidly and efficiently activated by small quantities of incoming viral RNA and that it relies exclusively on the constitutively expressed resident pool of RIG-I receptors for a strong antiviral response. Live-cell imaging of RIG-I following stimulation with viral or synthetic dsRNA reveals that RIG-I signaling occurs without mass aggregation at the mitochondrial membrane. By contrast, interferon-induced RIG-I protein becomes embedded in cytosolic aggregates that are functionally unrelated to signaling. These findings suggest that endogenous RIG-I efficiently recognizes viral RNA and rapidly relays an antiviral signal to MAVS via a transient signaling complex and that cellular aggregates of RIG-I have a function that is distinct from signaling.


Subject(s)
Interferon Type I , Signal Transduction , Signal Transduction/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Antiviral Agents/pharmacology , Interferon Type I/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Immunity, Innate
2.
Mol Cell ; 82(21): 4131-4144.e6, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36272408

ABSTRACT

RIG-I is an essential innate immune receptor for detecting and responding to infection by RNA viruses. RIG-I specifically recognizes the unique molecular features of viral RNA molecules and selectively distinguishes them from closely related RNAs abundant in host cells. The physical basis for this exquisite selectivity is revealed through a series of high-resolution cryo-EM structures of RIG-I in complex with host and viral RNA ligands. These studies demonstrate that RIG-I actively samples double-stranded RNAs in the cytoplasm and distinguishes them by adopting two different types of protein folds. Upon binding viral RNA, RIG-I adopts a high-affinity conformation that is conducive to signaling, while host RNA induces an autoinhibited conformation that stimulates RNA release. By coupling protein folding with RNA binding selectivity, RIG-I distinguishes RNA molecules that differ by as little as one phosphate group, thereby explaining the molecular basis for selective antiviral sensing and the induction of autoimmunity upon RIG-I dysregulation.


Subject(s)
DEAD-box RNA Helicases , RNA, Viral , RNA, Viral/metabolism , Ligands , DEAD-box RNA Helicases/metabolism , Immunity, Innate , DEAD Box Protein 58/metabolism , RNA, Double-Stranded , Carrier Proteins/metabolism
3.
Immunol Rev ; 304(1): 154-168, 2021 11.
Article in English | MEDLINE | ID: mdl-34514601

ABSTRACT

RIG-I is our first line of defense against RNA viruses, serving as a pattern recognition receptor that identifies molecular features common among dsRNA and ssRNA viral pathogens. RIG-I is maintained in an inactive conformation as it samples the cellular space for pathogenic RNAs. Upon encounter with the triphosphorylated terminus of blunt-ended viral RNA duplexes, the receptor changes conformation and releases a pair of signaling domains (CARDs) that are selectively modified and interact with an adapter protein (MAVS), thereby triggering a signaling cascade that stimulates transcription of interferons. Here, we describe the structural determinants for specific RIG-I activation by viral RNA, and we describe the strategies by which RIG-I remains inactivated in the presence of host RNAs. From the initial RNA triggering event to the final stages of interferon expression, we describe the experimental evidence underpinning our working knowledge of RIG-I signaling. We draw parallels with behavior of related proteins MDA5 and LGP2, describing evolutionary implications of their collective surveillance of the cell. We conclude by describing the cell biology and immunological investigations that will be needed to accurately describe the role of RIG-I in innate immunity and to provide the necessary foundation for pharmacological manipulation of this important receptor.


Subject(s)
DEAD-box RNA Helicases , RNA, Double-Stranded , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Immunity, Innate , Interferon-Induced Helicase, IFIH1/genetics , RNA, Viral , Signal Transduction
4.
Proc Natl Acad Sci U S A ; 117(12): 6910-6917, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152121

ABSTRACT

Auxin is a class of plant hormone that plays a crucial role in the life cycle of plants, particularly in the growth response of plants to ever-changing environments. Since the auxin responses are concentration-dependent and higher auxin concentrations might often be inhibitory, the optimal endogenous auxin level must be closely controlled. However, the underlying mechanism governing auxin homeostasis remains largely unknown. In this study, a UDP-glycosyltransferase (UGT76F1) was identified from Arabidopsis thaliana, which participates in the regulation of auxin homeostasis by glucosylation of indole-3-pyruvic acid (IPyA), a major precursor of the auxin indole-3-acetic acid (IAA) biosynthesis, in the formation of IPyA glucose conjugates (IPyA-Glc). In addition, UGT76F1 was found to mediate hypocotyl growth by modulating active auxin levels in a light- and temperature-dependent manner. Moreover, the transcription of UGT76F1 was demonstrated to be directly and negatively regulated by PIF4, which is a key integrator of both light and temperature signaling pathways. This study sheds a light on the trade-off between IAA biosynthesis and IPyA-Glc formation in controlling auxin levels and reveals a regulatory mechanism for plant growth adaptation to environmental changes through glucosylation of IPyA.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Gene Expression Regulation, Plant , Glucose/metabolism , Hypocotyl/growth & development , Indoleacetic Acids/pharmacology , Indoles/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Glucosyltransferases/metabolism , Glycosylation , Hypocotyl/drug effects , Hypocotyl/metabolism , Hypocotyl/radiation effects , Indoles/chemistry , Light , Plant Growth Regulators/pharmacology , Seedlings , Temperature
5.
Plant Physiol ; 180(4): 2167-2181, 2019 08.
Article in English | MEDLINE | ID: mdl-30962291

ABSTRACT

Plant systemic acquired resistance (SAR) provides an efficient broad-spectrum immune response to pathogens. SAR involves mobile signal molecules that are generated by infected tissues and transported to systemic tissues. Methyl salicylate (MeSA), a molecule that can be converted to salicylic acid (SA), is an essential signal for establishing SAR, particularly under a short period of exposure to light after pathogen infection. Thus, the control of MeSA homeostasis is important for an optimal SAR response. Here, we characterized a uridine diphosphate-glycosyltransferase, UGT71C3, in Arabidopsis (Arabidopsis thaliana), which was induced mainly in leaf tissue by pathogens including Pst DC3000/avrRpt2 (Pseudomonas syringae pv tomato strain DC3000 expressing avrRpt2). Biochemical analysis indicated that UGT71C3 exhibited strong enzymatic activity toward MeSA to form MeSA glucosides in vitro and in vivo. After primary pathogen infection by Pst DC3000/avrRpt2, ugt71c3 knockout mutants exhibited more powerful systemic resistance to secondary pathogen infection than that of wild-type plants, whereas systemic resistance in UGT71C3 overexpression lines was compromised. In agreement, after primary infection of local leaves, ugt71c3 knockout mutants accumulated significantly more systemic MeSA and SA than that in wild-type plants. whereas UGT71C3 overexpression lines accumulated less. Our results suggest that MeSA glucosylation by UGT71C3 facilitates negative regulation of the SAR response by modulating homeostasis of MeSA and SA. This study unveils further SAR regulation mechanisms and highlights the role of glucosylation of MeSA and potentially other systemic signals in negatively modulating plant systemic defense.


Subject(s)
Arabidopsis/metabolism , Salicylates/metabolism , Salicylic Acid/isolation & purification , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Pseudomonas syringae/pathogenicity , Signal Transduction
6.
Molecules ; 24(19)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569331

ABSTRACT

As an irreversible and complex degenerative physiological process, the treatment for aging seems strategically necessary, and polysaccharides play important roles against aging owing to their abundant bioactivities. In this paper, the antioxidant and anti-aging activities of Flammulina velutipes polysaccharides (FPS) and its sulfated FPS (SFPS) on d-galactose-induced aging mice were investigated. The in vitro antioxidant activities demonstrated that SFPS had strong reducing power and superior scavenging effects on 2, 2-diphenylpicrylhydrazyl (DPPH), hydroxyl radicals and the chelating activities of Fe2+. The in vivo animal experiments manifested that the SFPS showed superior antioxidant and protective abilities against the d-galactose-induced aging by increasing the antioxidant enzyme activities, decreasing lipid peroxidation, improving the inflammatory response and ameliorating the anile condition of mice. Furthermore, the structural analysis of SFPS was investigated through FT-IR, NMR, and HPLC analysis, and the results indicated that SFPS was a homogeneous heteropolysaccharide with a weight-average molecular weight of 2.81 × 103 Da. Furthermore, SFPS has also changed in characteristic functional groups and monosaccharide composition compared to FPS. These results suggested that sulfated modification could enhance the anti-oxidation, anti-aging and protective activities of F. velutipes polysaccharides, which may provide references for the development of functional foods and natural medicines.


Subject(s)
Antioxidants/pharmacology , Flammulina/chemistry , Fungal Polysaccharides/pharmacology , Protective Agents/pharmacology , Antioxidants/chemistry , Fungal Polysaccharides/chemistry , Monosaccharides/analysis , Protective Agents/chemistry , Spectrum Analysis
7.
Molecules ; 24(15)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344969

ABSTRACT

The present work mainly describes the preparation of acetylated mycelia polysaccharides (AMPS) from Pleurotus djamor and investigates the antioxidant and anti-aging effects in d-galactose-induced aging mice. The optimized procedure indicates the acetyl substitution degree of AMPS is 0.54 ± 0.04 under the conditions of a reaction time of 56 h, a reaction temperature of 37 °C, and 4 mL of added acetic anhydride. The in vitro analysis and in vivo animal experiments indicate that the AMPS could alleviate the aging properties by scavenging the radicals, elevating the enzyme activities, and reducing the lipid contents. As for serum levels, the AMPS can improve the serum biochemical indices and enhance immunological activity. The histopathological observations indicate that the injuries to the liver, kidney, and brain can be remitted by AMPS intervention. The characterization showed that AMPS was one kind of ß-pyranose with the weight-average molecular weights of 3.61 × 105 Da and the major monosaccharides of mannose and glucose. The results suggest that AMPS can be used as a dietary supplement and functional food for the prevention of aging and age-related diseases.


Subject(s)
Antioxidants/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Mycelium/chemistry , Pleurotus/chemistry , Acetylation , Animals , Antioxidants/pharmacology , Biomarkers , Body Weight/drug effects , Dose-Response Relationship, Drug , Mice , Organ Size/drug effects , Spectrum Analysis
8.
Biomed Eng Online ; 17(1): 97, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30016971

ABSTRACT

BACKGROUND: An osteon consists of a multi-layered bone matrix and interstitial fluid flow in the lacunar-canalicular system. Loading-induced interstitial fluid flow in the lacunar-canalicular system is critical for osteocyte mechanotransduction and bone remodelling. METHODS: To investigate the effects of the lamellar structure and heterogeneous material properties of the osteon on the distributions of interstitial fluid flow and seepage velocity, an osteon is idealized as a hollow two-dimensional poroelastic multi-layered slab model subjected to cyclic loading. Based on poroelastic theory, the analytical solutions of interstitial fluid pressure and seepage velocity in lacunar-canalicular pores were obtained. RESULTS: The results show that strain magnitude has a greater influence on interstitial fluid pressure than loading frequency. Interestingly, the heterogeneous distribution of permeability produces remarkable variations in interstitial fluid pressure and seepage velocity in the cross-section of cortical bone. In addition, interstitial fluid flow stimuli to osteocytes are mostly controlled by the value of permeability at the surface of the osteon rather than at the inner wall of the osteon. CONCLUSION: Interstitial fluid flow induced by cycling loading stimuli to an osteocyte housed in a lacunar-canalicular pore is not only correlated with strain amplitude and loading frequency, but also closely correlated with the spatial gradient distribution of permeability. This model can help us better understand the fluid flow stimuli to osteocytes during bone remodelling.


Subject(s)
Elasticity , Haversian System/physiology , Models, Biological , Haversian System/cytology , Hydrodynamics , Mechanotransduction, Cellular , Permeability , Porosity , Pressure , Weight-Bearing
9.
NAR Mol Med ; 1(1): ugae002, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38318492

ABSTRACT

Hsp70 (70 kDa heat shock protein) performs molecular chaperone functions by assisting the folding of newly synthesized and misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases, including neurodegenerative disorders and cancers. It is well established that, immediately after heat shock, Hsp70 gene expression is mediated by a canonical mechanism of cap-dependent translation. However, the molecular mechanism of Hsp70 expression during heat shock remains elusive. Intriguingly, the 5' end of Hsp70 messenger RNA (mRNA) appears to form a compact structure with the potential to regulate protein expression in a cap-independent manner. Here, we determined the minimal length of the mHsp70 5'-terminal mRNA sequence that is required for RNA folding into a highly compact structure. This span of this RNA element was mapped and the secondary structure characterized by chemical probing, resulting in a secondary structural model that includes multiple stable stems, including one containing the canonical start codon. All of these components, including a short stretch of the 5' open reading frame (ORF), were shown to be vital for RNA folding. This work provides a structural basis for future investigations on the role of translational regulatory structures in the 5' untranslated region and ORF sequences of Hsp70 during heat shock.

10.
STAR Protoc ; 4(2): 102166, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36920909

ABSTRACT

Capturing different conformations of receptor proteins that are complexed with ligands by single-particle cryo-EM facilitates our understanding toward the mechanisms of ligand recognition and receptor activation cascades. Here, we present a protocol for capturing RNA-sensing innate immune receptors, such as RIG-I, in multiple conformations by single-particle cryo-EM. We describe steps for protein-ligand sample preparation, data acquisition, and image processing covering focused three-dimensional classification. This protocol can be adapted to capture the dynamic behavior of other receptors that can be stabilized. For complete details on the use and execution of this protocol, please refer to Wang and Pyle (2022).1.

11.
Nat Commun ; 14(1): 7308, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37951994

ABSTRACT

RIG-I is an essential innate immune receptor that responds to infection by RNA viruses. The RIG-I signaling cascade is mediated by a series of post-translational modifications, the most important of which is ubiquitination of the RIG-I Caspase Recruitment Domains (CARDs) by E3 ligase Riplet. This is required for interaction between RIG-I and its downstream adapter protein MAVS, but the mechanism of action remains unclear. Here we show that Riplet is required for RIG-I signaling in the presence of both short and long dsRNAs, establishing that Riplet activation does not depend upon RIG-I filament formation on long dsRNAs. Likewise, quantitative Riplet-RIG-I affinity measurements establish that Riplet interacts with RIG-I regardless of whether the receptor is bound to RNA. To understand this, we solved high-resolution cryo-EM structures of RIG-I/RNA/Riplet complexes, revealing molecular interfaces that control Riplet-mediated activation and enabling the formulation of a unified model for the role of Riplet in signaling.


Subject(s)
Immunity, Innate , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , DEAD Box Protein 58/metabolism , Signal Transduction , Ubiquitination , RNA, Double-Stranded
12.
Front Neurorobot ; 17: 1280501, 2023.
Article in English | MEDLINE | ID: mdl-38034836

ABSTRACT

The field of human-computer interaction is expanding, especially within the domain of intelligent technologies. Scene understanding, which entails the generation of advanced semantic descriptions from scene content, is crucial for effective interaction. Despite its importance, it remains a significant challenge. This study introduces RGBD2Cap, an innovative method that uses RGBD images for scene semantic description. We utilize a multimodal fusion module to integrate RGB and Depth information for extracting multi-level features. And the method also incorporates target detection and region proposal network and a top-down attention LSTM network to generate semantic descriptions. The experimental data are derived from the ScanRefer indoor scene dataset, with RGB and depth images rendered from ScanNet's 3D scene serving as the model's input. The method outperforms the DenseCap network in several metrics, including BLEU, CIDEr, and METEOR. Ablation studies have confirmed the essential role of the RGBD fusion module in the method's success. Furthermore, the practical applicability of our method was verified within the AI2-THOR embodied intelligence experimental environment, showcasing its reliability.

13.
bioRxiv ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-36865185

ABSTRACT

Hsp70 performs molecular chaperone functions by assisting in folding newly synthesized or misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases including neurodegenerative disorders and cancer. It is well established that Hsp70 upregulation during post-heat shock stimulus is mediated by cap-dependent translation. However, the molecular mechanisms of Hsp70 expression during heat shock stimulus remains elusive, even though the 5' end of Hsp70 mRNA may form a compact structure to positively regulate protein expression in the mode of cap-independent translation. The minimal truncation which can fold to a compact structure was mapped and its secondary structure was characterized by chemical probing. The predicted model revealed a highly compact structure with multiple stems. Including the stem where the canonical start codon is located, several stems were identified to be vital for RNA folding, thereby providing solid structural basis for future investigations on the function of this RNA structure on Hsp70 translation during heat shock.

14.
J Ethnopharmacol ; 309: 116321, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36868439

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As a kind of traditional medicinal fungi, Ganoderma lucidum has been employed as folk medicine in China against multiple metabolic diseases on account of its superior bioactivities. Recently, accumulated reports have investigated the protective effects of G. lucidum polysaccharides (GLP) on ameliorating dyslipidemia. However, the specific mechanism by which GLP improves dyslipidemia is not completely clear. AIMS OF THE STUDY: This study aimed to investigate the protective effects of GLP on high-fatdiet-induced hyperlipidemia and exploring its underlying mechanism. MATERIALS AND METHODS: The GLP was successfully obtained from G. lucidum mycelium. The mice were conducted with high-fatdiet to establish the hyperlipidemia model. Biochemical determination, histological analysis, immunofluorescence, western blot and real-time qPCR were used to assess the alterations in high-fatdiet-treated mice after the GLP intervention. RESULTS: It was found that GLP administration significantly decreased body weight gain and the excessive lipid levels, and partly alleviated tissue injury. Oxidative stress and inflammations were efficiently ameliorated after the treatment of GLP by activing Nrf2-Keap1 and inhibiting NF-κB signal pathways. GLP promoted cholesterol reverse transport by LXRα-ABCA1/ABCG1 signaling, increased the expressions of CYP7A1 and CYP27A1 responsible for bile acids production, accompanied by inhibition of intestinal FXR-FGF15 levels. Besides, multiple target proteins involved in lipid metabolism were also significantly modulated under the intervention of GLP. CONCLUSION: Taken together, our results suggested that GLP showed potential lipid-lowering effects and its possible mechanism was involved in improving oxidative stress and inflammation response, modulating bile acids synthesis and lipid regulatory factors, and promoting reverse cholesterol transport, thereby suggesting that GLP may possibly used as a dietary supplement or medication for the adjuvant therapy for hyperlipidemia.


Subject(s)
Dyslipidemias , Reishi , Mice , Animals , Kelch-Like ECH-Associated Protein 1 , Lipid Metabolism , Diet, High-Fat/adverse effects , NF-E2-Related Factor 2 , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Cholesterol , Dyslipidemias/drug therapy , Bile Acids and Salts , Lipids
15.
Int J Biol Macromol ; 242(Pt 2): 124823, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37178886

ABSTRACT

The present work aimed to investigate the potential hepatoprotective effects of Oudemansiella radicata residues polysaccharides (RPS). Our results demonstrated that RPS showed significantly protective effects against carbon tetrachloride (CCl4)-induced liver injury, and the possible mechanisms may be related with the predominant bioactivities of RPS containing anti-oxidation by activating the Nrf2 signal pathways, anti-inflammation by inhibiting NF-κB signal pathways and reducing the release of inflammatory cytokines, anti-apoptosis by regulating Bcl-2/Bax pathway, and anti-fibrosis by inhibiting the expressions of TGF-ß1, Hyp and α-SMA, respectively. These findings suggested that RPS, a typical ß-type glycosidic pyranose, could be used as a promising diet supplement or medication for the adjunctive treatment of hepatic diseases, and also contributed to promoting the recyclable utilization of mushroom residues.


Subject(s)
Agaricales , Chemical and Drug Induced Liver Injury, Chronic , Carbon Tetrachloride/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/metabolism , Oxidative Stress
16.
Food Funct ; 13(10): 5794-5806, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35543179

ABSTRACT

Nonylphenol (NP) exposure has become a crucial inducement of male reproductive disorders in the world. Therefore, it is urgent to seek solutions to alleviate the toxicity of NP. This study was oriented toward studying the protective effects of Macrolepiota procera mycelium polysaccharides (MMP) on NP-induced reproductive impairments. After NP administration, declined sperm amounts and testis index, increased the deformity rate of sperms, aberrant hormone secretion and testicular pathological injury were observed, corporately leading to reproductive capacity attenuation. Importantly, MMP significantly reversed the foregoing changes in NP-treated mice. Notably, it has been observed that the MMP therapy remarkably improved oxidative stress, apoptosis, autophagy and inflammatory responses, and suppressed the Akt/mTOR signaling pathway in testicular tissues. These results manifested that MMP might be a promising treatment strategy for ameliorating the biotoxicity of NP.


Subject(s)
Phenols , Polysaccharides , Testis , Animals , Male , Mice , Agaricales , Apoptosis , Mycelium/metabolism , Oxidative Stress , Phenols/toxicity , Polysaccharides/pharmacology , Testis/drug effects , Testis/metabolism
17.
Polymers (Basel) ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015514

ABSTRACT

Nano-particles and fibers-modified cementitious composite (NFCC) can greatly overcome the shortcomings of traditional cementitious materials, such as high brittleness and low toughness, and improve the durability of the composite, which in turn increases the service life of the structures. Additionally, the polymer coatings covering the surface of the composite can exert a good physical shielding effect on the external water, ions, and gases, so as to improve the permeability and chloride ion penetration resistance of the composite. In this study, the effect of three types of polymer coatings on the water contact angle, permeability resistance, and chloride ion penetration resistance of the NFCC with varied water-binder ratios were investigated. Three kinds of polymers (chlorinated rubber coating, polyurethane coating, and silane coating) were applied in two types of coatings, including single-layer and double-layer coatings. Three water-binder ratios of 35 wt.%, 40 wt.%, and 45 wt.% were used for the NFCC. The research results revealed that the surface of the NFCC treated with polymer coatings exhibited excellent hydrophobicity. The permeability height and chloride diffusion coefficient of the NFCC coated with different types of polymer coatings were 31-48% and 36-47% lower, respectively, than those of the NFCC without polymer coatings. The durability of the NFCC was further improved when the polymer coatings were applied to the surface in two-layer. Furthermore, it was discovered that increasing the water-binder ratio of the NFCC would lessen the positive impact of polymer coatings on the durability of NFCC.

18.
Nat Commun ; 13(1): 2378, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501328

ABSTRACT

Most structurally characterized broadly neutralizing antibodies (bnAbs) against influenza A viruses (IAVs) target the conserved conformational epitopes of hemagglutinin (HA). Here, we report a lineage of naturally occurring human antibodies sharing the same germline gene, VH3-48/VK1-12. These antibodies broadly neutralize the major circulating strains of IAV in vitro and in vivo mainly by binding a contiguous epitope of H3N2 HA, but a conformational epitope of H1N1 HA, respectively. Our structural and functional studies of antibody 28-12 revealed that the continuous amino acids in helix A, particularly N49HA2 of H3 HA, are critical to determine the binding feature with 28-12. In contrast, the conformational epitope feature is dependent on the discontinuous segments involving helix A, the fusion peptide, and several HA1 residues within H1N1 HA. We report that this antibody was initially selected by H3 (group 2) viruses and evolved via somatic hypermutation to enhance the reactivity to H3 and acquire cross-neutralization to H1 (group 1) virus. These findings enrich our understanding of different antigenic determinants of heterosubtypic influenza viruses for the recognition of bnAbs and provide a reference for the design of influenza vaccines and more effective antiviral drugs.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Humans , Influenza A Virus, H3N2 Subtype , Influenza A virus/genetics
19.
Nat Commun ; 13(1): 1547, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301314

ABSTRACT

SARS-CoV-2 remdesivir resistance mutations have been generated in vitro but have not been reported in patients receiving treatment with the antiviral agent. We present a case of an immunocompromised patient with acquired B-cell deficiency who developed an indolent, protracted course of SARS-CoV-2 infection. Remdesivir therapy alleviated symptoms and produced a transient virologic response, but her course was complicated by recrudescence of high-grade viral shedding. Whole genome sequencing identified a mutation, E802D, in the nsp12 RNA-dependent RNA polymerase, which was not present in pre-treatment specimens. In vitro experiments demonstrated that the mutation conferred a ~6-fold increase in remdesivir IC50 but resulted in a fitness cost in the absence of remdesivir. Sustained clinical and virologic response was achieved after treatment with casirivimab-imdevimab. Although the fitness cost observed in vitro may limit the risk posed by E802D, this case illustrates the importance of monitoring for remdesivir resistance and the potential benefit of combinatorial therapies in immunocompromised patients with SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antibodies, Monoclonal, Humanized , Coronavirus RNA-Dependent RNA Polymerase , Female , Humans , Immunocompromised Host , Mutation , SARS-CoV-2/genetics
20.
Sci Rep ; 11(1): 2236, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33500429

ABSTRACT

Research on the wettability of soft matter is one of the most urgently needed studies in the frontier domains, of which the wetting phenomenon of droplets on soft substrates is a hot subject. Scholars have done considerable studies on the wetting phenomenon of single-layer structure, but it is noted that the wetting phenomenon of stratified structure is ubiquitous in nature, such as oil exploitation from geological structural layers and shale gas recovery from shale formations. Therefore, the wettability of droplets on layered elastic gradient soft substrate is studied in this paper. Firstly, considering capillary force, elastic force and surface tension, the constitutive equation of the substrate in the vector function system is derived by using the vector function system in cylindrical coordinates, and the transfer relation of layered structure is obtained. Further, the integral expressions of displacement and stress of double Bessel function are given. Secondly, the numerical results of displacement and stress are obtained by using the numerical formula of double Bessel function integral. The results show that the deformation of the substrate weakens with the increase of the elastic modulus, also the displacement and stress change dramatically near the contact line, while the variation is flat when the contact radius is far away from the droplet radius.

SELECTION OF CITATIONS
SEARCH DETAIL