Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Bioinformatics ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950177

ABSTRACT

SUMMARY: Effective collaboration between developers of Bayesian inference methods and users is key to advance our quantitative understanding of biosystems. We here present hopsy, a versatile open-source platform designed to provide convenient access to powerful Markov chain Monte Carlo sampling algorithms tailored to models defined on convex polytopes (CP). Based on the high-performance C ++ sampling library HOPS, hopsy inherits its strengths and extends its functionalities with the accessibility of the Python programming language. A versatile plugin-mechanism enables seamless integration with domain-specific models, providing method developers with a framework for testing, benchmarking, and distributing CP samplers to approach real-world inference tasks. We showcase hopsy by solving common and newly composed domain-specific sampling problems, highlighting important design choices. By likening hopsy to a marketplace, we emphasize its role in bringing together users and developers, where users get access to state-of-the-art methods, and developers contribute their own innovative solutions for challenging domain-specific inference problems. AVAILABILITY AND IMPLEMENTATION: Sources, documentation and a continuously updated list of sampling algorithms are available at https://jugit.fz-juelich.de/IBG-1/ModSim/hopsy, with Linux, Windows and MacOS binaries at https://pypi.org/project/hopsy/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
Metab Eng ; 83: 137-149, 2024 May.
Article in English | MEDLINE | ID: mdl-38582144

ABSTRACT

Metabolic reaction rates (fluxes) play a crucial role in comprehending cellular phenotypes and are essential in areas such as metabolic engineering, biotechnology, and biomedical research. The state-of-the-art technique for estimating fluxes is metabolic flux analysis using isotopic labelling (13C-MFA), which uses a dataset-model combination to determine the fluxes. Bayesian statistical methods are gaining popularity in the field of life sciences, but the use of 13C-MFA is still dominated by conventional best-fit approaches. The slow take-up of Bayesian approaches is, at least partly, due to the unfamiliarity of Bayesian methods to metabolic engineering researchers. To address this unfamiliarity, we here outline similarities and differences between the two approaches and highlight particular advantages of the Bayesian way of flux analysis. With a real-life example, re-analysing a moderately informative labelling dataset of E. coli, we identify situations in which Bayesian methods are advantageous and more informative, pointing to potential pitfalls of current 13C-MFA evaluation approaches. We propose the use of Bayesian model averaging (BMA) for flux inference as a means of overcoming the problem of model uncertainty through its tendency to assign low probabilities to both, models that are unsupported by data, and models that are overly complex. In this capacity, BMA resembles a tempered Ockham's razor. With the tempered razor as a guide, BMA-based 13C-MFA alleviates the problem of model selection uncertainty and is thereby capable of becoming a game changer for metabolic engineering by uncovering new insights and inspiring novel approaches.


Subject(s)
Bayes Theorem , Carbon Isotopes , Escherichia coli , Carbon Isotopes/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Flux Analysis/methods , Models, Biological , Metabolic Engineering/methods , Isotope Labeling
3.
PLoS Comput Biol ; 19(8): e1011378, 2023 08.
Article in English | MEDLINE | ID: mdl-37566638

ABSTRACT

Thinning is a sub-sampling technique to reduce the memory footprint of Markov chain Monte Carlo. Despite being commonly used, thinning is rarely considered efficient. For sampling constraint-based models, a highly relevant use-case in systems biology, we here demonstrate that thinning boosts computational and, thereby, sampling efficiencies of the widely used Coordinate Hit-and-Run with Rounding (CHRR) algorithm. By benchmarking CHRR with thinning with simplices and genome-scale metabolic networks of up to thousands of dimensions, we find a substantial increase in computational efficiency compared to unthinned CHRR, in our examples by orders of magnitude, as measured by the effective sample size per time (ESS/t), with performance gains growing with polytope (effective network) dimension. Using a set of benchmark models we derive a ready-to-apply guideline for tuning thinning to efficient and effective use of compute resources without requiring additional coding effort. Our guideline is validated using three (out-of-sample) large-scale networks and we show that it allows sampling convex polytopes uniformly to convergence in a fraction of time, thereby unlocking the rigorous investigation of hitherto intractable models. The derivation of our guideline is explained in detail, allowing future researchers to update it as needed as new model classes and more training data becomes available. CHRR with deliberate utilization of thinning thereby paves the way to keep pace with progressing model sizes derived with the constraint-based reconstruction and analysis (COBRA) tool set. Sampling and evaluation pipelines are available at https://jugit.fz-juelich.de/IBG-1/ModSim/fluxomics/chrrt.


Subject(s)
Algorithms , Models, Biological , Systems Biology/methods , Metabolic Networks and Pathways , Genome
4.
Microb Cell Fact ; 23(1): 67, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402403

ABSTRACT

BACKGROUND: In recent years, the production of inclusion bodies that retain substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) are formed by genetic fusion of an aggregation-inducing tag to a gene of interest via short linker polypeptides. The resulting CatIBs are known for their easy and cost-efficient production, recyclability as well as their improved stability. Recent studies have outlined the cooperative effects of linker and aggregation-inducing tag on CatIB activities. However, no a priori prediction is possible so far to indicate the best combination thereof. Consequently, extensive screening is required to find the best performing CatIB variant. RESULTS: In this work, a semi-automated cloning workflow was implemented and used for fast generation of 63 CatIB variants with glucose dehydrogenase of Bacillus subtilis (BsGDH). Furthermore, the variant BsGDH-PT-CBDCell was used to develop, optimize and validate an automated CatIB screening workflow, enhancing the analysis of many CatIB candidates in parallel. Compared to previous studies with CatIBs, important optimization steps include the exclusion of plate position effects in the BioLector by changing the cultivation temperature. For the overall workflow including strain construction, the manual workload could be reduced from 59 to 7 h for 48 variants (88%). After demonstration of high reproducibility with 1.9% relative standard deviation across 42 biological replicates, the workflow was performed in combination with a Bayesian process model and Thompson sampling. While the process model is crucial to derive key performance indicators of CatIBs, Thompson sampling serves as a strategy to balance exploitation and exploration in screening procedures. Our methodology allowed analysis of 63 BsGDH-CatIB variants within only three batch experiments. Because of the high likelihood of TDoT-PT-BsGDH being the best CatIB performer, it was selected in 50 biological replicates during the three screening rounds, much more than other, low-performing variants. CONCLUSIONS: At the current state of knowledge, every new enzyme requires screening for different linker/aggregation-inducing tag combinations. For this purpose, the presented CatIB toolbox facilitates fast and simplified construction and screening procedures. The methodology thus assists in finding the best CatIB producer from large libraries in short time, rendering possible automated Design-Build-Test-Learn cycles to generate structure/function learnings.


Subject(s)
Automation, Laboratory , High-Throughput Screening Assays , Reproducibility of Results , Bayes Theorem , Inclusion Bodies , Automation
5.
Microb Cell Fact ; 23(1): 112, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622596

ABSTRACT

BACKGROUND: Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS: This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l - 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h) - 1 , the lowest rate of 0.3 g (l h) - 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in ß -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION: We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.


Subject(s)
Cellulase , Hypocreales , Trichoderma , Cellulase/metabolism , Lactose/metabolism , Reproducibility of Results , Biotechnology , Trichoderma/metabolism
6.
Microb Cell Fact ; 23(1): 74, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433206

ABSTRACT

BACKGROUND: Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS: In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS: Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.


Subject(s)
Bacteriocins , Lactobacillales , Lactococcus lactis , Latilactobacillus sakei , Workflow , Adsorption
7.
Microb Cell Fact ; 23(1): 29, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245756

ABSTRACT

BACKGROUND: Industrial by-products accrue in most agricultural or food-related production processes, but additional value chains have already been established for many of them. Crude glycerol has a 60% lower market value than commercial glucose, as large quantities are produced in the biodiesel industry, but its valorisation is still underutilized. Due to its high carbon content and the natural ability of many microorganisms to metabolise it, microbial upcycling is a suitable option for this waste product. RESULTS: In this work, the use of crude glycerol for the production of the value-added compound itaconate is demonstrated using the smut fungus Ustilago maydis. Starting with a highly engineered strain, itaconate production from an industrial glycerol waste stream was quickly established on a small scale, and the resulting yields were already competitive with processes using commercial sugars. Adaptive laboratory evolution resulted in an evolved strain with a 72% increased growth rate on glycerol. In the subsequent development and optimisation of a fed-batch process on a 1.5-2 L scale, the use of molasses, a side stream of sugar beet processing, eliminated the need for other expensive media components such as nitrogen or vitamins for biomass growth. The optimised process was scaled up to 150 L, achieving an overall titre of 72 g L- 1, a yield of 0.34 g g- 1, and a productivity of 0.54 g L- 1 h- 1. CONCLUSIONS: Pilot-scale itaconate production from the complementary waste streams molasses and glycerol has been successfully established. In addition to achieving competitive performance indicators, the proposed dual feedstock strategy offers lower process costs and carbon footprint for the production of bio-based itaconate.


Subject(s)
Glycerol , Succinates , Glycerol/metabolism , Succinates/metabolism , Glucose/metabolism
8.
Biotechnol Bioeng ; 120(1): 139-153, 2023 01.
Article in English | MEDLINE | ID: mdl-36225165

ABSTRACT

Extracellular production of target proteins simplifies downstream processing due to obsolete cell disruption. However, optimal combinations of a heterologous protein, suitable signal peptide, and secretion host can currently not be predicted, resulting in large strain libraries that need to be tested. On the experimental side, this challenge can be tackled by miniaturization, parallelization, and automation, which provide high-throughput screening data. These data need to be condensed into a candidate ranking for decision-making to focus bioprocess development on the most promising candidates. We screened for Bacillus subtilis signal peptides mediating Sec secretion of two polyethylene terephthalate degrading enzymes (PETases), leaf-branch compost cutinase (LCC) and polyester hydrolase mutants, by Corynebacterium glutamicum. We developed a fully automated screening process and constructed an accompanying Bayesian statistical modeling framework, which we applied in screenings for highest activity in 4-nitrophenyl palmitate degradation. In contrast to classical evaluation methods, batch effects and biological errors are taken into account and their uncertainty is quantified. Within only two rounds of screening, the most suitable signal peptide was identified for each PETase. Results from LCC secretion in microliter-scale cultivation were shown to be scalable to laboratory-scale bioreactors. This work demonstrates an experiment-modeling loop that can accelerate early-stage screening in a way that experimental capacities are focused to the most promising strain candidates. Combined with high-throughput cloning, this paves the way for using large strain libraries of several hundreds of strains in a Design-Build-Test-Learn approach.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/metabolism , Bayes Theorem , Bacillus subtilis/metabolism , Protein Sorting Signals , Bioreactors/microbiology
9.
PLoS Comput Biol ; 18(3): e1009223, 2022 03.
Article in English | MEDLINE | ID: mdl-35255090

ABSTRACT

High-throughput experimentation has revolutionized data-driven experimental sciences and opened the door to the application of machine learning techniques. Nevertheless, the quality of any data analysis strongly depends on the quality of the data and specifically the degree to which random effects in the experimental data-generating process are quantified and accounted for. Accordingly calibration, i.e. the quantitative association between observed quantities and measurement responses, is a core element of many workflows in experimental sciences. Particularly in life sciences, univariate calibration, often involving non-linear saturation effects, must be performed to extract quantitative information from measured data. At the same time, the estimation of uncertainty is inseparably connected to quantitative experimentation. Adequate calibration models that describe not only the input/output relationship in a measurement system but also its inherent measurement noise are required. Due to its mathematical nature, statistically robust calibration modeling remains a challenge for many practitioners, at the same time being extremely beneficial for machine learning applications. In this work, we present a bottom-up conceptual and computational approach that solves many problems of understanding and implementing non-linear, empirical calibration modeling for quantification of analytes and process modeling. The methodology is first applied to the optical measurement of biomass concentrations in a high-throughput cultivation system, then to the quantification of glucose by an automated enzymatic assay. We implemented the conceptual framework in two Python packages, calibr8 and murefi, with which we demonstrate how to make uncertainty quantification for various calibration tasks more accessible. Our software packages enable more reproducible and automatable data analysis routines compared to commonly observed workflows in life sciences. Subsequently, we combine the previously established calibration models with a hierarchical Monod-like ordinary differential equation model of microbial growth to describe multiple replicates of Corynebacterium glutamicum batch cultures. Key process model parameters are learned by both maximum likelihood estimation and Bayesian inference, highlighting the flexibility of the statistical and computational framework.


Subject(s)
Biotechnology , Data Analysis , Bayes Theorem , Calibration , Uncertainty
10.
Microb Cell Fact ; 22(1): 130, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452397

ABSTRACT

BACKGROUND: Modern genome editing enables rapid construction of genetic variants, which are further developed in Design-Build-Test-Learn cycles. To operate such cycles in high throughput, fully automated screening, including cultivation and analytics, is crucial in the Test phase. Here, we present the required steps to meet these demands, resulting in an automated microbioreactor platform that facilitates autonomous phenotyping from cryo culture to product assay. RESULTS: First, an automated deep freezer was integrated into the robotic platform to provide working cell banks at all times. A mobile cart allows flexible docking of the freezer to multiple platforms. Next, precultures were integrated within the microtiter plate for cultivation, resulting in highly reproducible main cultures as demonstrated for Corynebacterium glutamicum. To avoid manual exchange of microtiter plates after cultivation, two clean-in-place strategies were established and validated, resulting in restored sterile conditions within two hours. Combined with the previous steps, these changes enable a flexible start of experiments and greatly increase the walk-away time. CONCLUSIONS: Overall, this work demonstrates the capability of our microbioreactor platform to perform autonomous, consecutive cultivation and phenotyping experiments. As highlighted in a case study of cutinase-secreting strains of C. glutamicum, the new procedure allows for flexible experimentation without human interaction while maintaining high reproducibility in early-stage screening processes.


Subject(s)
Bioreactors , Corynebacterium glutamicum , Humans , Bioreactors/microbiology , Reproducibility of Results , Biomass , Corynebacterium glutamicum/metabolism
11.
Microb Cell Fact ; 22(1): 175, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679814

ABSTRACT

BACKGROUND: Adaptive laboratory evolution (ALE) is known as a powerful tool for untargeted engineering of microbial strains and genomics research. It is particularly well suited for the adaptation of microorganisms to new environmental conditions, such as alternative substrate sources. Since the probability of generating beneficial mutations increases with the frequency of DNA replication, ALE experiments are ideally free of constraints on the required duration of cell proliferation. RESULTS: Here, we present an extended robotic workflow for performing long-term evolution experiments based on fully automated repetitive batch cultures (rbALE) in a well-controlled microbioreactor environment. Using a microtiter plate recycling approach, the number of batches and thus cell generations is technically unlimited. By applying the validated workflow in three parallel rbALE runs, ethanol utilization by Corynebacterium glutamicum ATCC 13032 (WT) was significantly improved. The evolved mutant strain WT_EtOH-Evo showed a specific ethanol uptake rate of 8.45 ± 0.12 mmolEtOH gCDW-1 h-1 and a growth rate of 0.15 ± 0.01 h-1 in lab-scale bioreactors. Genome sequencing of this strain revealed a striking single nucleotide variation (SNV) upstream of the ald gene (NCgl2698, cg3096) encoding acetaldehyde dehydrogenase (ALDH). The mutated basepair was previously predicted to be part of the binding site for the global transcriptional regulator GlxR, and re-engineering demonstrated that the identified SNV is key for enhanced ethanol assimilation. Decreased binding of GlxR leads to increased synthesis of the rate-limiting enzyme ALDH, which was confirmed by proteomics measurements. CONCLUSIONS: The established rbALE technology is generally applicable to any microbial strain and selection pressure that fits the small-scale cultivation format. In addition, our specific results will enable improved production processes with C. glutamicum from ethanol, which is of particular interest for acetyl-CoA-derived products.


Subject(s)
Corynebacterium glutamicum , Robotic Surgical Procedures , Corynebacterium glutamicum/genetics , Workflow , Acetyl Coenzyme A , Ethanol
12.
Metab Eng ; 73: 91-103, 2022 09.
Article in English | MEDLINE | ID: mdl-35750243

ABSTRACT

Current bioprocesses for production of value-added compounds are mainly based on pure cultures that are composed of rationally engineered strains of model organisms with versatile metabolic capacities. However, in the comparably well-defined environment of a bioreactor, metabolic flexibility provided by various highly abundant biosynthetic enzymes is much less required and results in suboptimal use of carbon and energy sources for compound production. In nature, non-model organisms have frequently evolved in communities where genome-reduced, auxotrophic strains cross-feed each other, suggesting that there must be a significant advantage compared to growth without cooperation. To prove this, we started to create and study synthetic communities of niche-optimized strains (CoNoS) that consists of two strains of the same species Corynebacterium glutamicum that are mutually dependent on one amino acid. We used both the wild-type and the genome-reduced C1* chassis for introducing selected amino acid auxotrophies, each based on complete deletion of all required biosynthetic genes. The best candidate strains were used to establish several stably growing CoNoS that were further characterized and optimized by metabolic modelling, microfluidic experiments and rational metabolic engineering to improve amino acid production and exchange. Finally, the engineered CoNoS consisting of an l-leucine and l-arginine auxotroph showed a specific growth rate equivalent to 83% of the wild type in monoculture, making it the fastest co-culture of two auxotrophic C. glutamicum strains to date. Overall, our results are a first promising step towards establishing improved biobased production of value-added compounds using the CoNoS approach.


Subject(s)
Corynebacterium glutamicum , Amino Acids/genetics , Coculture Techniques , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Metabolic Engineering/methods
13.
Microb Cell Fact ; 21(1): 78, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35527247

ABSTRACT

BACKGROUND: Currently, the generation of genetic diversity for microbial cell factories outpaces the screening of strain variants with omics-based phenotyping methods. Especially isotopic labeling experiments, which constitute techniques aimed at elucidating cellular phenotypes and supporting rational strain design by growing microorganisms on substrates enriched with heavy isotopes, suffer from comparably low throughput and the high cost of labeled substrates. RESULTS: We present a miniaturized, parallelized, and automated approach to 13C-isotopic labeling experiments by establishing and validating a hot isopropanol quenching method on a robotic platform coupled with a microbioreactor cultivation system. This allows for the first time to conduct automated labeling experiments at a microtiter plate scale in up to 48 parallel batches. A further innovation enabled by the automated quenching method is the analysis of free amino acids instead of proteinogenic ones on said microliter scale. Capitalizing on the latter point and as a proof of concept, we present an isotopically instationary labeling experiment in Corynebacterium glutamicum ATCC 13032, generating dynamic labeling data of free amino acids in the process. CONCLUSIONS: Our results show that a robotic liquid handler is sufficiently fast to generate informative isotopically transient labeling data. Furthermore, the amount of biomass obtained from a sub-milliliter cultivation in a microbioreactor is adequate for the detection of labeling patterns of free amino acids. Combining the innovations presented in this study, isotopically stationary and instationary automated labeling experiments can be conducted, thus fulfilling the prerequisites for 13C-metabolic flux analyses in high-throughput.


Subject(s)
2-Propanol , Corynebacterium glutamicum , 2-Propanol/metabolism , Amino Acids/metabolism , Carbon Isotopes/metabolism , Corynebacterium glutamicum/metabolism , Isotope Labeling/methods
14.
Microb Cell Fact ; 21(1): 108, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655182

ABSTRACT

BACKGROUND: Catalytically active inclusion bodies (CatIBs) are known for their easy and cost efficient production, recyclability as well as high stability and provide an alternative purely biological technology for enzyme immobilization. Due to their ability to self-aggregate in a carrier-free, biodegradable form, no further laborious immobilization steps or additional reagents are needed. These advantages put CatIBs in a beneficial position in comparison to traditional immobilization techniques. Recent studies outlined the impact of cooperative effects of the linker and aggregation inducing tag on the activity level of CatIBs, requiring to test many combinations to find the best performing CatIB variant. RESULTS: Here, we present the formation of 14 glucose dehydrogenase CatIB variants of Bacillus subtilis, a well-known enzyme in biocatalysis due to its capability for substrate coupled regeneration of reduced cofactors with cheap substrate glucose. Nine variants revealed activity, with highest productivity levels for the more rigid PT-Linker combinations. The best performing CatIB, BsGDH-PT-CBDCell, was characterized in more detail including long-term storage at -20 °C as well as NADH cofactor regeneration performance in repetitive batch experiments with CatIB recycling. After freezing, BsGDH-PT-CBDCell CatIB only lost approx. 10% activity after 8 weeks of storage. Moreover, after 11 CatIB recycling cycles in repetitive batch operation 80% of the activity was still present. CONCLUSIONS: This work presents a method for the effective formation of a highly active and long-term stable BsGDH-CatIB as an immobilized enzyme for robust and convenient NADH regeneration.


Subject(s)
Enzymes, Immobilized , NAD , Biocatalysis , Enzymes, Immobilized/chemistry , Inclusion Bodies/metabolism , NAD/metabolism , Oxidation-Reduction
15.
Appl Microbiol Biotechnol ; 106(12): 4481-4497, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35759036

ABSTRACT

Secretion of bacterial proteins into the culture medium simplifies downstream processing by avoiding cell disruption for target protein purification. However, a suitable signal peptide for efficient secretion needs to be identified, and currently, there are no tools available to predict optimal combinations of signal peptides and target proteins. The selection of such a combination is influenced by several factors, including protein biosynthesis efficiency and cultivation conditions, which both can have a significant impact on secretion performance. As a result, a large number of combinations must be tested. Therefore, we have developed automated workflows allowing for targeted strain construction and secretion screening using two platforms. Key advantages of this experimental setup include lowered hands-on time and increased throughput. In this study, the automated workflows were established for the heterologous production of Fusarium solani f. sp. pisi cutinase in Corynebacterium glutamicum. The target protein was monitored in culture supernatants via enzymatic activity and split GFP assay. Varying spacer lengths between the Shine-Dalgarno sequence and the start codon of Bacillus subtilis signal peptides were tested. Consistent with previous work on the secretory cutinase production in B. subtilis, a ribosome binding site with extended spacer length to up to 12 nt, which likely slows down translation initiation, does not necessarily lead to poorer cutinase secretion by C. glutamicum. The best performing signal peptides for cutinase secretion with a standard spacer length were identified in a signal peptide screening. Additional insights into the secretion process were gained by monitoring secretion stress using the C. glutamicum K9 biosensor strain. KEY POINTS: • Automated workflows for strain construction and screening of protein secretion • Comparison of spacer, signal peptide, and host combinations for cutinase secretion • Signal peptide screening for secretion by C. glutamicum using the split GFP assay.


Subject(s)
Corynebacterium glutamicum , Fusarium , Automation, Laboratory , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Protein Sorting Signals , Protein Transport
16.
Bioprocess Biosyst Eng ; 45(12): 1939-1954, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36307614

ABSTRACT

Autonomously operated parallelized mL-scale bioreactors are considered the key to reduce bioprocess development cost and time. However, their application is often limited to products with very simple analytics. In this study, we investigated enhanced protein expression conditions of a carboxyl reductase from Nocardia otitidiscaviarum in E. coli. Cells were produced with exponential feeding in a L-scale bioreactor. After the desired cell density for protein expression was reached, the cells were automatically transferred to 48 mL-scale bioreactors operated by a liquid handling station where protein expression studies were conducted. During protein expression, the feed rate and the inducer concentration was varied. At the end of the protein expression phase, the enzymatic activity was estimated by performing automated whole-cell biotransformations in a deep-well-plate. The results were analyzed with hierarchical Bayesian modelling methods to account for the biomass growth during the biotransformation, biomass interference on the subsequent product assay, and to predict absolute and specific enzyme activities at optimal expression conditions. Lower feed rates seemed to be beneficial for high specific and absolute activities. At the optimal investigated expression conditions an activity of [Formula: see text] was estimated with a [Formula: see text] credible interval of [Formula: see text]. This is about 40-fold higher than the highest published data for the enzyme under investigation. With the proposed setup, 192 protein expression conditions were studied during four experimental runs with minimal manual workload, showing the reliability and potential of automated and digitalized bioreactor systems.


Subject(s)
Bioreactors , Escherichia coli , Escherichia coli/metabolism , Reproducibility of Results , Bayes Theorem
17.
Biotechnol Bioeng ; 118(7): 2759-2769, 2021 07.
Article in English | MEDLINE | ID: mdl-33871051

ABSTRACT

Given its geometric similarity to large-scale production plants and the excellent possibilities for precise process control and monitoring, the classic stirred tank bioreactor (STR) still represents the gold standard for bioprocess development at a laboratory scale. However, compared to microbioreactor technologies, bioreactors often suffer from a low degree of process automation and deriving key performance indicators (KPIs) such as specific rates or yields often requires manual sampling and sample processing. A widely used parallelized STR setup was automated by connecting it to a liquid handling system and controlling it with a custom-made process control system. This allowed for the setup of a flexible modular platform enabling autonomous operation of the bioreactors without any operator present. Multiple unit operations like automated inoculation, sampling, sample processing and analysis, and decision making, for example for automated induction of protein production were implemented to achieve such functionality. The data gained during application studies was used for fitting of bioprocess models to derive relevant KPIs being in good agreement with literature. By combining the capabilities of STRs with the flexibility of liquid handling systems, this platform technology can be applied to a multitude of different bioprocess development pipelines at laboratory scale.


Subject(s)
Automation, Laboratory , Bioreactors , Corynebacterium glutamicum/growth & development , Models, Biological , Robotics , Laboratories
18.
Microb Cell Fact ; 20(1): 191, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34592997

ABSTRACT

BACKGROUND: The split GFP assay is a well-known technology for activity-independent screening of target proteins. A superfolder GFP is split into two non-fluorescent parts, GFP11 which is fused to the target protein and GFP1-10. In the presence of both, GFP1-10 and the GFP11-tag are self-assembled and a functional chromophore is formed. However, it relies on the availability and quality of GFP1-10 detector protein to develop fluorescence by assembly with the GFP11-tag connected to the target protein. GFP1-10 detector protein is often produced in small scale shake flask cultivation and purified from inclusion bodies. RESULTS: The production of GFP1-10 in inclusion bodies and purification was comprehensively studied based on Escherichia coli as host. Cultivation in complex and defined medium as well as different feed strategies were tested in laboratory-scale bioreactor cultivation and a standardized process was developed providing high quantity of GFP1-10 detector protein with suitable quality. Split GFP assay was standardized to obtain robust and reliable assay results from cutinase secretion strains of Corynebacterium glutamicum with Bacillus subtilis Sec signal peptides NprE and Pel. Influencing factors from environmental conditions, such as pH and temperature were thoroughly investigated. CONCLUSIONS: GFP1-10 detector protein production could be successfully scaled from shake flask to laboratory scale bioreactor. A single run yielded sufficient material for up to 385 96-well plate screening runs. The application study with cutinase secretory strains showed very high correlation between measured cutinase activity to split GFP fluorescence signal proofing applicability for larger screening studies.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Bacillus subtilis/metabolism , Biological Assay/methods , Bioreactors , Corynebacterium glutamicum/metabolism , Green Fluorescent Proteins/classification , Green Fluorescent Proteins/metabolism
19.
Microb Cell Fact ; 20(1): 49, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596923

ABSTRACT

BACKGROUND: In recent years, the production of inclusion bodies that retained substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) were formed by genetic fusion of an aggregation inducing tag to a gene of interest via short linker polypeptides and overproduction of the resulting gene fusion in Escherichia coli. The resulting CatIBs are known for their high stability, easy and cost efficient production, and recyclability and thus provide an interesting alternative to conventionally immobilized enzymes. RESULTS: Here, we present the construction and characterization of a CatIB set of the lysine decarboxylase from Escherichia coli (EcLDCc), constructed via Golden Gate Assembly. A total of ten EcLDCc variants consisting of combinations of two linker and five aggregation inducing tag sequences were generated. A flexible Serine/Glycine (SG)- as well as a rigid Proline/Threonine (PT)-Linker were tested in combination with the artificial peptides (18AWT, L6KD and GFIL8) or the coiled-coil domains (TDoT and 3HAMP) as aggregation inducing tags. The linkers were fused to the C-terminus of the EcLDCc to form a linkage between the enzyme and the aggregation inducing tags. Comprehensive morphology and enzymatic activity analyses were performed for the ten EcLDCc-CatIB variants and a wild type EcLDCc control to identify the CatIB variant with the highest activity for the decarboxylation of L-lysine to 1,5-diaminopentane. Interestingly, all of the CatIB variants possessed at least some activity, whilst most of the combinations with the rigid PT-Linker showed the highest conversion rates. EcLDCc-PT-L6KD was identified as the best of all variants allowing a volumetric productivity of 457 g L- 1 d- 1 and a specific volumetric productivity of 256 g L- 1 d- 1 gCatIB-1. Noteworthy, wild type EcLDCc, without specific aggregation inducing tags, also partially formed CatIBs, which, however showed lower activity compared to most of the newly constructed CatIB variants (volumetric productivity: 219 g L- 1 d- 1, specific volumetric activity: 106 g L- 1 d- 1 gCatIB- 1). Furthermore, we demonstrate that microscopic analysis can serve as a tool to find CatIB producing strains and thus allow for prescreening at an early stage to save time and resources. CONCLUSIONS: Our results clearly show that the choice of linker and aggregation inducing tag has a strong influence on the morphology and the enzymatic activity of the CatIBs. Strikingly, the linker had the most pronounced influence on these characteristics.


Subject(s)
Carboxy-Lyases/metabolism , Escherichia coli/metabolism , Inclusion Bodies/metabolism
20.
Anal Bioanal Chem ; 413(12): 3253-3268, 2021 May.
Article in English | MEDLINE | ID: mdl-33791825

ABSTRACT

With the utilization of small-scale and highly parallelized cultivation platforms embedded in laboratory robotics, microbial phenotyping and bioprocess development have been substantially accelerated, thus generating a bottleneck in bioanalytical bioprocess sample analytics. While microscale cultivation platforms allow the monitoring of typical process parameters, only limited information about product and by-product formation is provided without comprehensive analytics. The use of liquid chromatography mass spectrometry can provide such a comprehensive and quantitative insight, but is often limited by analysis runtime and throughput. In this study, we developed and evaluated six methods for amino acid quantification based on two strong cation exchanger columns and a dilute and shoot approach in hyphenation with either a triple-quadrupole or a quadrupole time-of-flight mass spectrometer. Isotope dilution mass spectrometry with 13C15N labeled amino acids was used to correct for matrix effects. The versatility of the methods for metabolite profiling studies of microbial cultivation supernatants is confirmed by a detailed method validation study. The methods using chromatography columns showed a linear range of approx. 4 orders of magnitude, sufficient response factors, and low quantification limits (7-443 nM) for single analytes. Overall, relative standard deviation was comparable for all analytes, with < 8% and < 11% for unbuffered and buffered media, respectively. The dilute and shoot methods with an analysis time of 1 min provided similar performance but showed a factor of up to 35 times higher throughput. The performance and applicability of the dilute and shoot method are demonstrated using a library of Corynebacterium glutamicum strains producing L-histidine, obtained from random mutagenesis, which were cultivated in a microscale cultivation platform.


Subject(s)
Mass Spectrometry/methods , Metabolism , Amino Acids/analysis , Amino Acids/standards , Bacterial Proteins/chemistry , Chromatography, Ion Exchange/methods , Corynebacterium glutamicum/metabolism , Flow Injection Analysis/methods , Limit of Detection , Reference Standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL