Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Lung ; 202(2): 157-170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494528

ABSTRACT

PURPOSE: To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS: Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS: Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION: This simple model could be useful to characterize patient serum and epithelial cell properties.


Subject(s)
Inflammation , Transcriptome , Humans , Inflammation/genetics , Inflammation/metabolism , Epithelial Cells/metabolism , Biomarkers/metabolism
2.
Int J Mol Sci ; 24(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36768808

ABSTRACT

PiZZ (Glu342Lys) α1-antitrypsin deficiency (AATD) is characterized by intrahepatic AAT polymerization and is a risk factor for liver disease development in children. The majority of PiZZ children are disease free, hence this mutation alone is not sufficient to cause the disease. We investigated Z-AAT polymers and the expression of fibrosis-related genes in liver tissues of PiZZ children with different clinical courses. Liver biopsies obtained during 1979-2010 at the Department of Paediatrics, Karolinska University Hospital, Sweden, were subjected to histological re-evaluation, immunohistochemistry and NanoString-based transcriptome profiling using a panel of 760 fibrosis plus 8 bile acid-related genes. Subjects were divided into three groups based on clinical outcomes: NCH (neonatal cholestasis, favourable outcome, n = 5), NCC (neonatal cholestasis, early cirrhosis and liver transplantation, n = 4), and NNCH (no neonatal cholestasis, favourable outcome, n = 5, six biopsies). Hepatocytes containing Z-AAT polymers were abundant in all groups whereas NCC showed higher expression of genes related to liver fibrosis/cirrhosis and lower expression of genes related to lipid, aldehyde/ketone, and bile acid metabolism. Z-AAT accumulation per se cannot explain the clinical outcomes of PiZZ children; however, changes in the expression of specific genes and pathways involved in lipid, fatty acid, and steroid metabolism appear to reflect the degree of liver injury.


Subject(s)
Cholestasis , alpha 1-Antitrypsin Deficiency , Humans , Child , Infant, Newborn , alpha 1-Antitrypsin Deficiency/pathology , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Cholestasis/metabolism , Biopsy , Disease Progression , Lipids
3.
Respir Res ; 23(1): 343, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36514048

ABSTRACT

BACKGROUND: SARS-CoV-2 infected patients show heterogeneous clinical presentations ranging from mild symptoms to severe respiratory failure and death. Consequently, various markers reflect this wide spectrum of disease presentations. METHODS: Our pilot cohort included moderate (n = 10) and severe (n = 10) COVID-19 patients, and 10 healthy controls. We determined plasma levels of nine acute phase proteins (APPs) by nephelometry, and full-length (M65), caspase-cleaved (M30) cytokeratin 18, and ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type-1 motif 13) by ELISA. In addition, we examined whole plasma N-glycosylation by capillary gel electrophoresis coupled to laser-induced fluorescence detection (CGE-LIF). RESULTS: When compared to controls, COVID-19 patients had significantly lower concentrations of ADAMTS13 and albumin (ALB) but higher M30, M65, α1-acid glycoprotein (AGP), α1-antitrypsin (AAT), ceruloplasmin (CP), haptoglobin (HP), and high-sensitivity C-reactive protein (hs-CRP). The concentrations of α1-antichymotrypsin (ACT), α2-macroglobulin (A2MG) and serum amyloid A (SAA) proteins did not differ. We found significantly higher levels of AAT and M65 but lower ALB in severe compared to moderate COVID-19 patients. N-glycan analysis of the serum proteome revealed increased levels of oligomannose- and sialylated di-antennary glycans and decreased non-sialylated di-antennary glycan A2G2 in COVID-19 patients compared to controls. CONCLUSIONS: COVID-19-associated changes in levels and N-glycosylation of specific plasma proteins highlight complexity of inflammatory process and grant further investigations.


Subject(s)
COVID-19 , Humans , Acute-Phase Proteins/analysis , COVID-19/diagnosis , Pilot Projects , Polysaccharides , SARS-CoV-2
4.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142337

ABSTRACT

The SERPINA1 gene encodes alpha1-antitrypsin (AAT), an acute phase glycoprotein and serine protease inhibitor that is mainly (80-90%) produced in the liver. Point mutations in the SERPINA1 gene can lead to the misfolding, intracellular accumulation, and deficiency of circulating AAT protein, increasing the risk of developing chronic liver diseases or chronic obstructive pulmonary disease. Currently, siRNA technology can knock down the SERPINA1 gene and limit defective AAT production. How this latter affects other liver genes is unknown. Livers were taken from age- and sex-matched C57BL/6 wild-type (WT) and Serpina1 knockout mice (KO) aged from 8 to 14 weeks, all lacking the five serpin A1a-e paralogues. Total RNA was isolated and RNA sequencing, and transcriptome analysis was performed. The knockout of the Serpina1 gene in mice changed inflammatory, lipid metabolism, and cholesterol metabolism-related gene expression in the liver. Independent single-cell sequencing data of WT mice verified the involvement of Serpina1 in cholesterol metabolism. Our results from mice livers suggested that designing therapeutic strategies for the knockout of the SERPINA1 gene in humans must account for potential perturbations of key metabolic pathways and consequent mitigation of side effects.


Subject(s)
alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin/metabolism , Animals , Cholesterol , Gene Expression , Humans , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , RNA, Small Interfering/metabolism , Serine Proteinase Inhibitors , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin Deficiency/genetics
5.
Respir Res ; 22(1): 295, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789247

ABSTRACT

BACKGROUND: α1-Antitrypsin (AAT) is an acute phase glycoprotein, a multifunctional protein with proteinase inhibitory, anti-inflammatory and cytoprotective properties. Both preclinical and clinical experiences show that the therapy with plasma purified AAT is beneficial for a broad spectrum of inflammatory conditions. The potential effects of AAT therapy have recently been highlighted in lung transplantation (LuTx) as well. METHODS: We used a murine fully mismatched orthotopic single LuTx model (BALB/CJ as donors and C57BL/6 as recipients). Human AAT preparations (5 mg, n = 10) or vehicle (n = 5) were injected to the recipients subcutaneously prior to and intraperitoneally immediately after the LuTx. No immune suppressive drugs were administered. Three days after the transplantation, the mice were sacrificed, and biological samples were assessed. RESULTS: Histological analysis revealed significantly more severe acute rejection in the transplanted lungs of controls than in AAT treated mice (p < 0.05). The proportion of neutrophil granulocytes, B cells and the total T helper cell populations did not differ between two groups. There was no significant difference in serum CXCL1 (KC) levels. However, when compared to controls, human AAT was detectable in the serum of mice treated with AAT and these mice had a higher serum anti-elastase activity, and significantly lower proportion of Th1 and Th17 among all Th cells. Cleaved caspase-3-positive cells were scarce but significantly less abundant in allografts from recipients treated with AAT as compared to those treated with vehicle. CONCLUSION: Therapy with AAT suppresses the acute rejection after LuTx in a mouse model. The beneficial effects seem to involve anti-protease and immunomodulatory activities of AAT.


Subject(s)
Graft Rejection/drug therapy , alpha 1-Antitrypsin/pharmacology , Acute Disease , Allografts , Animals , Disease Models, Animal , Flow Cytometry , Graft Rejection/pathology , Lung Transplantation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serine Proteinase Inhibitors/pharmacology
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34360706

ABSTRACT

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Spike Glycoprotein, Coronavirus/metabolism , alpha 1-Antitrypsin/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/immunology , CHO Cells , COVID-19/therapy , Cells, Cultured , Cricetulus , Cytokines/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/toxicity , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/immunology
7.
Molecules ; 26(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946490

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is influenced by the fundamental cellular processes like epithelial differentiation/polarization, regeneration and epithelial-mesenchymal transition. Defects in CFTR protein levels and/or function lead to decreased airway surface liquid layer facilitating microbial colonization and inflammation. The SERPINA1 gene, encoding alpha1-antitrypsin (AAT) protein, is one of the genes implicated in CF, however it remains unknown whether AAT has any influence on CFTR levels. In this study we assessed CFTR protein levels in primary human lung epithelial cells grown at the air-liquid-interface (ALI) alone or pre-incubated with AAT by Western blots and immunohistochemistry. Histological analysis of ALI inserts revealed CFTR- and AAT-positive cells but no AAT-CFTR co-localization. When 0.5 mg/mL of AAT was added to apical or basolateral compartments of pro-inflammatory activated ALI cultures, CFTR levels increased relative to activated ALIs. This finding suggests that AAT is CFTR-modulating protein, albeit its effects may depend on the concentration and the route of administration. Human lung epithelial ALI cultures provide a useful tool for studies in detail how AAT or other pharmaceuticals affect the levels and activity of CFTR.


Subject(s)
Blood-Air Barrier/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Respiratory Mucosa/metabolism , alpha 1-Antitrypsin/metabolism , Biomarkers , Cell Line , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Fluorescent Antibody Technique , Humans , Immunohistochemistry , alpha 1-Antitrypsin/genetics
8.
J Immunol ; 195(8): 3605-16, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26363050

ABSTRACT

α1-Antitrypsin (A1AT) purified from human plasma upregulates expression and release of angiopoietin-like protein 4 (Angptl4) in adherent human blood monocytes and in human lung microvascular endothelial cells, providing a mechanism for the broad immune-regulatory properties of A1AT independent of its antiprotease activity. In this study, we demonstrate that A1AT (Prolastin), a potent inducer of Angptl4, contains significant quantities of the fatty acids (FA) linoleic acid (C18:2) and oleic acid (C18:1). However, only trace amounts of FAs were present in preparations that failed to increase Angplt4 expression, for example, A1AT (Zemaira) or M-type A1AT purified by affinity chromatography. FA pull-down assays with Western blot analysis revealed a FA-binding ability of A1AT. In human blood-adherent monocytes, A1AT-FA conjugates upregulated expression of Angptl4 (54.9-fold, p < 0.001), FA-binding protein 4 (FABP4) (11.4-fold, p < 0.001), and, to a lesser degree, FA translocase (CD36) (3.1-fold, p < 0.001) relative to A1AT devoid of FA (A1AT-0). These latter effects of A1AT-FA were blocked by inhibitors of peroxisome proliferator-activated receptor (PPAR) ß/δ (ST247) and PPARγ (GW9662). When compared with controls, cell pretreatment with ST247 diminished the effect of A1AT-LA on Angptl4 mRNA (11.6- versus 4.1-fold, p < 0.001) and FABP4 mRNA (5.4- versus 2.8-fold, p < 0.001). Similarly, preincubation of cells with GW9662 inhibited inducing effect of A1AT-LA on Angptl4 mRNA (by 2-fold, p < 0.001) and FABP4 mRNA (by 3-fold, p < 0.001). Thus, A1AT binds to FA, and it is this form of A1AT that induces Angptl4 and FABP4 expression via a PPAR-dependent pathway. These findings provide a mechanism for the unexplored area of A1AT biology independent of its antiprotease properties.


Subject(s)
Angiopoietins/immunology , Gene Expression Regulation/immunology , Linoleic Acid/immunology , Monocytes/immunology , Oleic Acid/immunology , alpha 1-Antitrypsin/immunology , Angiopoietin-Like Protein 4 , Angiopoietins/blood , Fatty Acid-Binding Proteins/blood , Fatty Acid-Binding Proteins/immunology , Female , Humans , Linoleic Acid/blood , Male , Monocytes/metabolism , Oleic Acid/blood , PPAR gamma/immunology , PPAR gamma/metabolism , alpha 1-Antitrypsin/biosynthesis
9.
J Immunol ; 192(11): 5354-62, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24760148

ABSTRACT

The angiopoietin-like protein 4 (angptl4, also known as peroxisome proliferator-activated receptor [PPAR]γ-induced angiopoietin-related protein) is a multifunctional protein associated with acute-phase response. The mechanisms accounting for the increase in angptl4 expression are largely unknown. This study shows that human α1-antitrypsin (A1AT) upregulates expression and release of angplt4 in human blood adherent mononuclear cells and in primary human lung microvascular endothelial cells in a concentration- and time-dependent manner. Mononuclear cells treated for 1 h with A1AT (from 0.1 to 4 mg/ml) increased mRNA of angptl4 from 2- to 174-fold, respectively, relative to controls. In endothelial cells, the maximal effect on angptl4 expression was achieved at 8 h with 2 mg/ml A1AT (11-fold induction versus controls). In 10 emphysema patients receiving A1AT therapy (Prolastin), plasma angptl4 levels were higher relative to patients without therapy (nanograms per milliliter, mean [95% confidence interval] 127.1 [99.5-154.6] versus 76.8 [54.8-98.8], respectively, p = 0.045) and correlated with A1AT levels. The effect of A1AT on angptl4 expression was significantly diminished in cells pretreated with a specific inhibitor of ERK1/2 activation (UO126), irreversible and selective PPARγ antagonist (GW9662), or genistein, a ligand for PPARγ. GW9662 did not alter the ability of A1AT to induce ERK1/2 phosphorylation, suggesting that PPARγ is a critical mediator in the A1AT-driven angptl4 expression. In contrast, the forced accumulation of HIF-1α, an upregulator of angptl4 expression, enhanced the effect of A1AT. Thus, acute-phase protein A1AT is a physiological regulator of angptl4, another acute-phase protein.


Subject(s)
Angiopoietins/immunology , Endothelial Cells/immunology , Gene Expression Regulation/immunology , Leukocytes, Mononuclear/immunology , Transcription, Genetic/immunology , alpha 1-Antitrypsin/immunology , Angiopoietin-Like Protein 1 , Angiopoietin-like Proteins , Angiopoietins/metabolism , Anilides/pharmacology , Emphysema/drug therapy , Emphysema/immunology , Emphysema/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Gene Expression Regulation/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Male , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/immunology , Mitogen-Activated Protein Kinase 3/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphorylation/drug effects , Phosphorylation/immunology , Serine Proteinase Inhibitors/immunology , Serine Proteinase Inhibitors/pharmacology , Transcription Factors/immunology , Transcription Factors/metabolism , Transcription, Genetic/drug effects , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin/pharmacology
10.
Vascul Pharmacol ; : 107396, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897556

ABSTRACT

AIMS: Neutrophils perform various functions in a circadian-dependent manner; therefore, we investigated here whether the effect of alpha1-antitrypsin (AAT), used as augmentation therapy, is dependent on the neutrophil circadian clock. AAT is a vital regulator of neutrophil functions, and its qualitative and/or quantitative defects have significant implications for the development of respiratory diseases. METHODS: Whole blood from 12 healthy women [age years, mean (SD) 29.92 (5.48) was collected twice daily, 8 h apart, and incubated for 30 min at 37 °C alone or with additions of 2 mg/ml AAT (Respreeza) and/or 5 µg/ml lipopolysaccharide (LPS) from Escherichia coli. Neutrophils were then isolated to examine gene expression, migration and phagocytosis. RESULTS: The expression of CD14, CD16, CXCR2 and SELL (encoding CD62L) genes was significantly higher while CDKN1A lower in the afternoon than in the morning neutrophils from untreated blood. Neutrophils isolated in the afternoon had higher migratory and phagocytic activity. Morning neutrophils isolated from AAT-pretreated blood showed higher expression of CXCR2 and SELL than those from untreated morning blood. Pretreatment of blood with AAT enhanced migratory properties of morning but not afternoon neutrophils. Of all genes analysed, only CXCL8 expression was strongly upregulated in morning and afternoon neutrophils isolated from LPS-pretreated blood, whereas CXCR2 expression was downregulated in afternoon neutrophils. The addition of AAT did not reverse the effects of LPS. SIGNIFICANCE: The circadian clock of myeloid cells may affect the effectiveness of various therapies, including AAT therapy used to treat patients with AAT deficiency, and needs further investigation.

11.
Clin Biochem ; 126: 110736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428450

ABSTRACT

INTRODUCTION: Compared to normal PiMM, individuals with severe α1-antitrypsin (AAT) PiZZ (Glu342Lys) genotype deficiency are at higher risk of developing early-onset chronic obstructive pulmonary disease (COPD)/emphysema associated with Z-AAT polymers and neutrophilic inflammation. We aimed to investigate putative differences in plasma levels of acute phase proteins (APP) between PiMM and PiZZ subjects and to determine plasma Z-AAT polymer levels in PiZZ subjects. MATERIALS AND METHODS: Nephelometric analysis of seven plasma APPs was performed in 67 PiMM and 44 PiZZ subjects, of whom 43 and 42, respectively, had stable COPD. Of the PiZZ-COPD patients, 21 received and 23 did not receive intravenous therapy with human AAT preparations (IV-AAT). Plasma levels of Z-AAT polymers were determined by Western blotting using specific mouse monoclonal antibodies (2C1 and LG96). RESULTS: In addition to lower plasma AAT, PiZZ patients had higher α2-macroglobulin (A2MG) levels than PiMM patients. In contrast, PiZZ who received IV-AAT had higher AAT values but lower A2MG values than PiZZ without IV-AAT. Regardless of the AAT genotype, AAT levels were inversely correlated with A2MG, and the AAT/A2MG ratio was correlated with lung diffusion capacity (DCLO%). All PiZZ patients had circulating Z-AAT polymer levels that correlated directly with A2MG. In PiZZ without IV-AAT therapy polymer levels correlated inversely with the ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC). CONCLUSION: Combined measurement of plasma AAT and A2MG levels may be of clinical value in assessing the progression of COPD and requires further attention.


Subject(s)
Pregnancy-Associated alpha 2-Macroglobulins , Pulmonary Disease, Chronic Obstructive , alpha 1-Antitrypsin Deficiency , Female , Animals , Mice , Pregnancy , Humans , alpha 1-Antitrypsin Deficiency/genetics , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/metabolism , Lung , Polymers , alpha 1-Antitrypsin/genetics
12.
Am J Respir Cell Mol Biol ; 49(1): 143-50, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23526215

ABSTRACT

α1-Antitrypsin (A1AT) is an acute-phase reactant, but also a major protective factor against the development of chronic obstructive pulmonary disease, a complex disease with sustained chronic inflammation. The lung-protective effects of A1AT have been attributed to the inhibition of proteases involved in lung matrix fragmentation, macrophage activation, and endothelial-cell apoptosis. More recently, A1AT has been shown to directly interact with or modulate the actions of cytokines such as TNF-α or IL-1 in inflammatory cells, but its effect on the lung endothelium, an active participant in the amplification and resolution of inflammation, has received little attention. An important role of A1AT in modulating lung endothelial inflammatory responses is expected, given the high concentrations of circulating A1AT during inflammation and its active uptake by endothelial cells. We investigated the role of A1AT in primary lung microvascular endothelial cell activation by relevant cytokines such as TNF-α or IL-1ß. Despite an initial marked augmentation of TNF-α self-induced transcription, A1AT inhibited TNF-α receptor 1 up-regulation and significantly reduced TNF-α secretion, effects that were associated with inhibition of TNF-α-converting enzyme activity. Furthermore, A1AT inhibited calpain activity, whose activation by TNF-α contributed to decreased intracellular A1AT concentrations. These data indicate that A1AT initially facilitates acute responses of the endothelium to TNF-α, followed by selective inhibition of TNF-α-induced-self amplification, which may assist the vasculature in the resolution of chronic inflammation.


Subject(s)
Endothelial Cells/pathology , Endothelium, Vascular/pathology , Inflammation/immunology , Tumor Necrosis Factor-alpha/pharmacology , alpha 1-Antitrypsin/pharmacology , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Calpain/metabolism , Cell Membrane/metabolism , Endothelial Cells/immunology , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Enzyme Activation , Enzyme Inhibitors/pharmacology , Flow Cytometry , Humans , I-kappa B Proteins/immunology , I-kappa B Proteins/metabolism , Inflammation/pathology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Lung/cytology , Lung/immunology , Lung/pathology , NF-KappaB Inhibitor alpha , Peptide Fragments/immunology , Peptide Fragments/metabolism , Primary Cell Culture , Proteolysis , Rats , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Receptors, Tumor Necrosis Factor/metabolism , Transcription, Genetic , Tumor Necrosis Factor-alpha/immunology
13.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38076674

ABSTRACT

Plasma levels of α1-antitrypsin-derived C-terminal peptides might be valid as novel biomarkers to predict and/or characterise exacerbations in PiMM and PiZZ COPD patients, or to reflect the efficiency of augmentation therapy in PiZZ patients https://bit.ly/3rNJeLd.

14.
J Leukoc Biol ; 113(1): 58-70, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36822165

ABSTRACT

Rodent models of lipopolysaccharide (LPS)-induced pulmonary inflammation are used for anti-inflammatory drug testing. We aimed to characterize mice responses to aerosolized LPS alone or with intraperitoneal (i.p.) delivery of alpha1-antitrypsin (AAT). Balb/c mice were exposed to clean air or aerosolized LPS (0.21 mg/mL) for 10 min per day, for 3 d. One hour after each challenge, animals were treated i.p. with saline or with (4 mg/kg body weight) one of the AAT preparations: native (AAT), oxidized (oxAAT), recombinant (recAAT), or peptide of AAT (C-36). Experiments were terminated 6 h after the last dose of AATs. Transcriptome data of mice lungs exposed to clean air versus LPS revealed 656 differentially expressed genes and 155 significant gene ontology terms, including neutrophil migration and toll-like receptor signaling pathways. Concordantly, mice inhaling LPS showed higher bronchoalveolar lavage fluid neutrophil counts and levels of myeloperoxidase, inducible nitric oxide synthase, IL-1ß, TNFα, KC, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Plasma inflammatory markers did not increase. After i.p. application of AATs, about 1% to 2% of proteins reached the lungs but, except for GM-CSF, none of the proteins significantly influenced inflammatory markers. All AATs and C-36 significantly inhibited LPS-induced GM-CSF release. Surprisingly, only oxAAT decreased the expression of several LPS-induced inflammatory genes, such as Cxcl3, Cd14, Il1b, Nfkb1, and Nfkb2, in lung tissues. According to lung transcriptome data, oxAAT mostly affected genes related to transcriptional regulation while native AAT or recAAT affected genes of inflammatory pathways. Hence, we present a feasible mice model of local lung inflammation induced via aerosolized LPS that can be useful for systemic drug testing.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Pneumonia , alpha 1-Antitrypsin , Animals , Humans , Mice , Bronchoalveolar Lavage Fluid , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lipopolysaccharides/adverse effects , Lung/metabolism , Pneumonia/chemically induced , Pneumonia/drug therapy , alpha 1-Antitrypsin/therapeutic use
15.
Microorganisms ; 11(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38004695

ABSTRACT

Intracellular lipid droplets (LDs) can accumulate in response to inflammation, metabolic stresses, and other physiological/pathological processes. Herein, we investigated whether spike proteins of SARS-CoV-2 induce LDs in human peripheral blood mononuclear cells (PBMCs) and in pulmonary microvascular endothelial cells (HPMECs). PBMCs or HPMECs were incubated alone or with endotoxin-free recombinant variants of trimeric spike glycoproteins (Alpha, Beta, Delta, and Omicron, 12 µg/mL). Afterward, cells were stained with Oil Red O for LDs, cytokine release was determined through ELISA, and the gene expression was analyzed through real-time PCR using TaqMan assays. Our data show that spikes induce LDs in PBMCs but not in HPMECs. In line with this, in PBMCs, spike proteins lower the expression of genes involving lipid metabolism and LD formation, such as SREBF1, HMGCS1, LDLR, and CD36. On the other hand, PBMCs exposed to spikes for 6 or 18 h did not increase in IL-1ß, IL-6, IL-8, MCP-1, and TNFα release or expression as compared to non-treated controls. Thus, spike-induced LD formation in PBMCs seems to not be related to cell inflammatory activation. Further detailed studies are warranted to investigate in which specific immune cells spikes induce LDs, and what are the pathophysiological mechanisms and consequences of this induction in vivo.

16.
J Neuroinflammation ; 9: 44, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22373413

ABSTRACT

BACKGROUND: Cerebral inflammation is a hallmark of neuronal degeneration. Dipeptidyl peptidase IV, aminopeptidase N as well as the dipeptidyl peptidases II, 8 and 9 and cytosolic alanyl-aminopeptidase are involved in the regulation of autoimmunity and inflammation. We studied the expression, localisation and activity patterns of these proteases after endothelin-induced occlusion of the middle cerebral artery in rats, a model of transient and unilateral cerebral ischemia. METHODS: Male Sprague-Dawley rats were used. RT-PCR, immunohistochemistry and protease activity assays were performed at different time points, lasting from 2 h to 7 days after cerebral ischemia. The effect of protease inhibitors on ischemia-dependent infarct volumes was quantified 7 days post middle cerebral artery occlusion. Statistical analysis was conducted using the t-test. RESULTS: Qualitative RT-PCR revealed these proteases in ipsilateral and contralateral cortices. Dipeptidyl peptidase II and aminopeptidase N were up-regulated ipsilaterally from 6 h to 7 days post ischemia, whereas dipeptidyl peptidase 9 and cytosolic alanyl-aminopeptidase were transiently down-regulated at day 3. Dipeptidyl peptidase 8 and aminopeptidase N immunoreactivities were detected in cortical neurons of the contralateral hemisphere. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were identified in activated microglia and macrophages in the ipsilateral cortex. Seven days post artery occlusion, dipeptidyl peptidase IV immunoreactivity was found in the perikarya of surviving cortical neurons of the ipsilateral hemisphere, whereas their nuclei were dipeptidyl peptidase 8- and amino peptidase N-positive. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were targeted in astroglial cells. Total dipeptidyl peptidase IV, 8 and 9 activities remained constant in both hemispheres until day 3 post experimental ischemia, but were increased (+165%) in the ipsilateral cortex at day 7. In parallel, aminopeptidase N and cytosolic alanyl-aminopeptidase activities remained unchanged. CONCLUSIONS: Distinct expression, localization and activity patterns of proline- and alanine-specific proteases indicate their involvement in ischemia-triggered inflammation and neurodegeneration. Consistently, IPC1755, a non-selective protease inhibitor, revealed a significant reduction of cortical lesions after transient cerebral ischemia and may suggest dipeptidyl peptidase IV, aminopeptidase N and proteases with similar substrate specificity as potentially therapy-relevant targets.


Subject(s)
Brain Ischemia/enzymology , CD13 Antigens/metabolism , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation, Enzymologic/physiology , Animals , Brain Ischemia/complications , Brain Ischemia/drug therapy , CD13 Antigens/genetics , Cerebral Infarction/enzymology , Cerebral Infarction/etiology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Disease Models, Animal , Enzyme Inhibitors/therapeutic use , Functional Laterality , Glial Fibrillary Acidic Protein/metabolism , Glycosphingolipids/therapeutic use , Male , Phosphopyruvate Hydratase/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Time Factors
17.
Cytokine ; 58(1): 1-5, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22239948

ABSTRACT

Quantitation of interleukin-16 (IL-16) in clinical blood samples has strongly increased, since IL-16 appears to be involved in the pathogenesis of several inflammatory diseases. IL-16 is synthesized in the cell cytoplasm as precursor protein (pro-IL-16), which can be processed by caspase-3 into N-terminal (N-IL-16) and C-terminal (C-IL-16) fragments. C-IL-16 is described to be subsequently secreted. Using commercially available IL-16 ELISA, a pro-IL-16 ELISA and immunoprecipitation analysis, we investigated, whether type and handling of blood samples influence IL-16 quantitation and whether existing IL-16 ELISA are specific for C-IL-16. We observed that cell-rich plasma samples reflect falsely-elevated IL-16 concentrations due to cell contaminations. Interestingly, not C-IL-16, but pro-IL-16 represents the major IL-16 form in cell-rich plasma samples. Notably, commercially IL-16 ELISA could not distinguish between C-IL-16 and pro-IL-16. Thus, cell-rich plasma samples should not be used for IL-16 measurements and new methods are necessary for quantitation of C-IL-16 and pro-IL-16 uniquely.


Subject(s)
Interleukin-16/blood , Blood Cells/chemistry , Enzyme-Linked Immunosorbent Assay/methods , False Positive Reactions , Humans , Plasma/cytology , Protein Precursors/blood
18.
Int J Oncol ; 60(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-35211754

ABSTRACT

Transmembrane serine protease 2 (TMPRSS2) has been intensively investigated during the current Sars­CoV­2 pandemic as a virus activating protease. Furthermore, TMPRSS2 is an oncogenic gene associated with several cancer entities. Co­expression of TMPRSS2 and serpin family A member 1 (SERPINA1) (encoding alpha­1­antitrypsin; AAT) has been reported in the human lung. Recently, AAT was identified as a novel TMPRSS2 inhibitor. We previously reported that lower SERPINA1 expression in tumor tissues and higher levels of plasma AAT are associated with worse survival of patients with non­small cell lung cancer (NSCLC). In the present study, we sought to examine TMPRSS2 and SERPINA1/AAT expression in tumor and adjacent lung tissues from 347 NSCLC patients. Based on clinical data and gene expression analysis, we performed Cox regression for the survival analysis, and correlated TMPRSS2 and AAT protein levels in tissue samples by immunohistochemical and western blot analyses. We found that lower TMPRSS2 expression in tumor compared to adjacent non­tumor tissues is linked to a poor overall survival in patients with adenocarcinoma (ADC) and those who are current smokers. IHC staining of TMPRSS2 validated our findings in regard to overall survival while we did not observe a correlation with AAT staining. Based on western blot analyses, we found only a slight negative correlation between full­length TMPRSS2 and AAT in non­tumor tissues, which seems to be related to smoking status. Taken together, we demonstrated that TMPRSS2 is a prognostic factor in patients with lung ADC; however, a link between AAT and TMPRSS2 proteins warrants further investigation.


Subject(s)
Adenocarcinoma of Lung/diagnosis , Prognosis , Serine Endopeptidases/analysis , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Cell Line, Tumor , Humans , Serine Endopeptidases/blood
19.
Front Oncol ; 12: 772076, 2022.
Article in English | MEDLINE | ID: mdl-35174082

ABSTRACT

In the last decade, targeting the immune system became a promising therapy in advanced lung cancer stages. However, in a clinical follow-up, patient responses to immune checkpoint inhibitors widely differ. Peripheral blood is a minimally invasive source of potential biomarkers to explain these differences. We blindly analyzed serum samples from 139 patients with non-small cell lung cancer prior to anti-PD-1 or anti-PD-L1 therapies to assess whether baseline levels of albumin (ALB), alpha-1 acid glycoprotein (AGP), alpha1-antitrypsin (AAT), alpha2-macroglobulin (A2M), ceruloplasmin (CP), haptoglobin (HP), alpha1-antichymotrypsin (ACT), serum amyloid A (SAA), and high-sensitivity C-reactive protein (hs-CRP), have a predictive value for immunotherapy success. Disease progression-free survival (PFS) was calculated based on RECIST 1.1 criteria. A multivariate Cox regression analysis, including serum levels of acute-phase proteins and clinical parameters, revealed that higher pre-therapeutic levels of HP and CP are independent predictors of a worse PFS. Moreover, a combined panel of HP and CP stratified patients into subgroups. We propose to test this panel as a putative biomarker for assessing the success of immunotherapy in patients with NSCLC.

20.
Cancers (Basel) ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36139614

ABSTRACT

To explore the relationship between cancer cell SREBF1 expression, lipid droplets (LDs) formation, and the sensitivity to chemotherapies, we cultured lung adenocarcinoma cells H1299 (with LD) and H1563 (without LD) in a serum-free basal medium (BM) or neutrophil degranulation products containing medium (NDM), and tested cell responses to cisplatin and etoposide. By using the DESeq2 Bioconductor package, we detected 674 differentially expressed genes (DEGs) associated with NDM/BM differences between two cell lines, many of these genes were associated with the regulation of sterol and cholesterol biosynthesis processes. Specifically, SREBF1 markedly declined in both cell lines cultured in NDM or when treated with chemotherapeutics. Despite the latter, H1563 exhibited LD formation and resistance to etoposide, but not to cisplatin. Although H1299 cells preserved LDs, these cells were similarly sensitive to both drugs. In a cohort of 292 patients with non-small-cell lung cancer, a lower SREBF1 expression in tumors than in adjacent nontumor tissue correlated with overall better survival, specifically in patients with adenocarcinoma at stage I. Our findings imply that a direct correlation between SREBF1 and LD accumulation can be lost due to the changes in cancer cell environment and/or chemotherapy. The role of LDs in lung cancer development and response to therapies remains to be examined in more detail.

SELECTION OF CITATIONS
SEARCH DETAIL