Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 120(43): e2311282120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37847732

ABSTRACT

Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neoplasms , Sequestosome-1 Protein/genetics , Lysosomes , Autophagy , Neoplasms/drug therapy , Neoplasms/genetics
2.
Biochem Soc Trans ; 52(3): 1149-1158, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38813870

ABSTRACT

The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Tryptophan-tRNA Ligase , Tryptophan , Humans , Tryptophan/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Tryptophan-tRNA Ligase/metabolism , Biological Transport , Tryptophan Oxygenase/metabolism , Interferon-gamma/metabolism
3.
Int J Mol Sci ; 24(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37895133

ABSTRACT

Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.


Subject(s)
Tryptophan-tRNA Ligase , Tryptophan , Humans , Tryptophan/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism
4.
J Biol Chem ; 293(22): 8428-8438, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29666190

ABSTRACT

The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells.


Subject(s)
Leukemia, Monocytic, Acute/metabolism , Tryptophan-tRNA Ligase/metabolism , Tryptophan/metabolism , Binding Sites , Crystallography, X-Ray , HeLa Cells , Humans , Interferon-gamma/metabolism , Leukemia, Monocytic, Acute/pathology , Protein Binding , Protein Conformation , Tryptophan-tRNA Ligase/chemistry , Tumor Cells, Cultured
5.
Cells ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667302

ABSTRACT

Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.


Subject(s)
Dual Specificity Phosphatase 1 , Signal Transduction , Toll-Like Receptors , Ubiquitin-Protein Ligases , Ubiquitination , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Mice , Proteolysis , Immunity, Innate , p38 Mitogen-Activated Protein Kinases/metabolism , HEK293 Cells , Cytokines/metabolism
6.
Enzymes ; 48: 207-242, 2020.
Article in English | MEDLINE | ID: mdl-33837705

ABSTRACT

Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.


Subject(s)
Tryptophan-tRNA Ligase , Tyrosine-tRNA Ligase , Catalytic Domain , Cytokines , Cytoplasm , Humans , Tryptophan-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/genetics
7.
Genes (Basel) ; 11(12)2020 11 27.
Article in English | MEDLINE | ID: mdl-33261077

ABSTRACT

The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.


Subject(s)
Tryptophan-tRNA Ligase/physiology , Tryptophan/deficiency , Biological Transport/drug effects , Buffers , Culture Media , HeLa Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology , Interferon-gamma/pharmacology , Interferon-gamma/physiology , Mutation, Missense , Point Mutation , Recombinant Proteins/metabolism , Transfer RNA Aminoacylation , Tryptophan/metabolism , Tryptophan Oxygenase/metabolism , Tryptophan-tRNA Ligase/pharmacology , Up-Regulation
8.
J Toxicol Sci ; 45(4): 219-226, 2020.
Article in English | MEDLINE | ID: mdl-32238696

ABSTRACT

Tumor necrosis factor receptor-associated factor 2 (TRAF2) is an essential component of tumor necrosis factor-α (TNF-α) signaling that regulates nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, and compelling evidence has demonstrated that TRAF2 suppresses TNF-α-induced cytotoxicity. On the other hand, it has been reported that oxidative stress-induced cytotoxicity is potentiated by TRAF2, indicating that TRAF2 both positively and negatively regulates stress-induced cytotoxicity in a context-specific manner. However, the causal role of TRAF2 in DNA damage response (DDR) remains to be explored. In this study, we assessed the function of TRAF2 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that TRAF2 exerts pro-apoptotic activity through p53-dependent mechanisms at least in human fibrosarcoma cell line HT1080. TRAF2 deficient cells exhibit significant resistance to cell death induced by cisplatin, accompanied by the reduction of both p53 protein level and caspase-3 activation. Moreover, cisplatin-induced JNK activation was attenuated in TRAF2-deficient cells, and pharmacological inhibition of JNK signaling suppressed p53 stabilization. These results suggest that TRAF2 promotes p53-dependent apoptosis by activating the JNK signaling cascade in HT1080 cells. Thus, our data demonstrate a novel function of TRAF2 in cisplatin-induced DDR as a pro-apoptotic protein.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/genetics , Cisplatin/pharmacology , TNF Receptor-Associated Factor 2/physiology , Tumor Suppressor Protein p53/physiology , Apoptosis/drug effects , Cell Line, Tumor , DNA Damage , Fibrosarcoma/genetics , Fibrosarcoma/pathology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Oxidative Stress/genetics , Signal Transduction/genetics , TNF Receptor-Associated Factor 2/deficiency , TNF Receptor-Associated Factor 2/genetics , Tumor Necrosis Factor-alpha
9.
J Antibiot (Tokyo) ; 72(11): 848-852, 2019 11.
Article in English | MEDLINE | ID: mdl-31371783

ABSTRACT

Polymyxin B (PMB), a last-line antibiotic used against antibiotic-resistant superbugs, causes undesirable cytotoxic side effects. However, its mechanisms remain unknown. In this study, we unexpectedly found that caspase-3, a main executor of apoptosis, plays a protective role in PMB-induced cytotoxicity. Caspase-3 knockout (KO) cells exhibited higher susceptibility to PMB-induced cytotoxicity compared with wild-type (WT) cells, accompanied by increased levels of reactive oxygen species (ROS). Interestingly, co-treatment with the antioxidant N-acetylcysteine (NAC) rescued cell viability to a similar extent as WT cells. Furthermore, PMB failed to facilitate the processing of inactive caspase-3 (pro-caspase-3) into active forms, suggesting that pro-caspase-3 nonenzymatically suppresses PMB-driven ROS accumulation and its cytotoxicity. Thus, our findings that demonstrate the potential ability of PMB to stimulate ROS generation, but which is normally masked by pro-caspase-3-dependent mechanisms, may provide novel insights into the mechanisms of PMB-induced side effects.


Subject(s)
Anti-Bacterial Agents/toxicity , Caspase 3/metabolism , Polymyxin B/toxicity , Reactive Oxygen Species/metabolism , Acetylcysteine , Animals , Anti-Bacterial Agents/pharmacology , Cell Line , Cell Survival/drug effects , Fas Ligand Protein/pharmacology , Gene Deletion , Gene Expression Regulation/drug effects , Humans , Mice , Polymyxin B/pharmacology
10.
Biosystems ; 162: 53-58, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28887177

ABSTRACT

Nucleotide polymerization occurs by the nucleophilic attack of 3'-oxygen of the 3'-terminal nucleotide on the α-phosphorus of the incoming nucleotide 5'-triphosphate. The π-stacking of mononucleotides is an important factor for prebiotic RNA polymerization in terms of attaining the proximity of two reacting moieties. Adenosine and adenosine 5'-monophosphate (AMP) are known to form hydrogel in the presence of cyanuric acid at neutral pH. However, we observed that other canonical ribonucleotides did not gel under the same condition. The π-stacking-induced hydrogel formation of AMP was destroyed at pH 2.0, suggesting that the protonation of N at position 1 of adenine abolished hydrogen bonding with the NH of cyanuric acid and resulted in the deformation of the hexad of adenine and cyanuric acid. A liquid-like gel was formed in the case of adenosine with cyanuric acid and boric acid, whereas AMP caused the formation of a solid gel, implying that the negative charge inherent to AMP prevented the formation of esters of boric acid with the cis-diols of ribose. Cyanuric acid-driven oligomerizations of AMP might have been the first crucial event in the foundation of the RNA world.


Subject(s)
Adenosine Monophosphate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , RNA/chemistry , Triazines/chemistry , Adenosine/chemistry , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Hydrogel, Polyethylene Glycol Dimethacrylate/analysis , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Chemical , Models, Molecular , Molecular Structure , Nucleic Acid Conformation , Protons , RNA/genetics , RNA/metabolism , Triazines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL