Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Nucleic Acids Res ; 52(10): 5732-5755, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38597682

ABSTRACT

Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.


Subject(s)
C9orf72 Protein , DNA Repeat Expansion , Genomic Instability , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Disease Models, Animal , DNA Breaks, Double-Stranded , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Gene Knock-In Techniques , Genomic Instability/genetics , MutS Homolog 2 Protein/genetics
2.
N Engl J Med ; 387(4): 332-344, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35939579

ABSTRACT

BACKGROUND: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS: The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS: Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).


Subject(s)
Apoptosis Regulatory Proteins , Germ-Line Mutation , Liver Diseases , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Genetic Predisposition to Disease/genetics , Genetic Predisposition to Disease/prevention & control , Humans , Liver/metabolism , Liver Diseases/genetics , Liver Diseases/metabolism , Liver Diseases/prevention & control , Transaminases/genetics , Exome Sequencing
3.
N Engl J Med ; 385(6): 493-502, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34215024

ABSTRACT

BACKGROUND: Transthyretin amyloidosis, also called ATTR amyloidosis, is a life-threatening disease characterized by progressive accumulation of misfolded transthyretin (TTR) protein in tissues, predominantly the nerves and heart. NTLA-2001 is an in vivo gene-editing therapeutic agent that is designed to treat ATTR amyloidosis by reducing the concentration of TTR in serum. It is based on the clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease (CRISPR-Cas9) system and comprises a lipid nanoparticle encapsulating messenger RNA for Cas9 protein and a single guide RNA targeting TTR. METHODS: After conducting preclinical in vitro and in vivo studies, we evaluated the safety and pharmacodynamic effects of single escalating doses of NTLA-2001 in six patients with hereditary ATTR amyloidosis with polyneuropathy, three in each of the two initial dose groups (0.1 mg per kilogram and 0.3 mg per kilogram), within an ongoing phase 1 clinical study. RESULTS: Preclinical studies showed durable knockout of TTR after a single dose. Serial assessments of safety during the first 28 days after infusion in patients revealed few adverse events, and those that did occur were mild in grade. Dose-dependent pharmacodynamic effects were observed. At day 28, the mean reduction from baseline in serum TTR protein concentration was 52% (range, 47 to 56) in the group that received a dose of 0.1 mg per kilogram and was 87% (range, 80 to 96) in the group that received a dose of 0.3 mg per kilogram. CONCLUSIONS: In a small group of patients with hereditary ATTR amyloidosis with polyneuropathy, administration of NTLA-2001 was associated with only mild adverse events and led to decreases in serum TTR protein concentrations through targeted knockout of TTR. (Funded by Intellia Therapeutics and Regeneron Pharmaceuticals; ClinicalTrials.gov number, NCT04601051.).


Subject(s)
Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/therapy , CRISPR-Cas Systems , Gene Editing , Liposomes/therapeutic use , Nanoparticles/therapeutic use , Prealbumin/genetics , RNA, Guide, Kinetoplastida/therapeutic use , Female , Gene Transfer Techniques , Humans , Infusions, Intravenous , Male , Middle Aged , Prealbumin/analysis , RNA, Messenger
4.
Hum Mol Genet ; 29(21): 3516-3531, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33105479

ABSTRACT

Neurodevelopmental disorder with microcephaly, hypotonia and variable brain anomalies (NMIHBA) is an autosomal recessive neurodevelopmental and neurodegenerative disorder characterized by global developmental delay and severe intellectual disability. Microcephaly, progressive cortical atrophy, cerebellar hypoplasia and delayed myelination are neurological hallmarks in affected individuals. NMIHBA is caused by biallelic variants in PRUNE1 encoding prune exopolyphosphatase 1. We provide in-depth clinical description of two affected siblings harboring compound heterozygous variant alleles, c.383G > A (p.Arg128Gln), c.520G > T (p.Gly174*) in PRUNE1. To gain insights into disease biology, we biochemically characterized missense variants within the conserved N-terminal aspartic acid-histidine-histidine (DHH) motif and provide evidence that they result in the destabilization of protein structure and/or loss of exopolyphosphatase activity. Genetic ablation of Prune1 results in midgestational lethality in mice, associated with perturbations to embryonic growth and vascular development. Our findings suggest that NMIHBA results from hypomorphic variant alleles in humans and underscore the potential key role of PRUNE1 exopolyphoshatase activity in neurodevelopment.


Subject(s)
Acid Anhydride Hydrolases/deficiency , Intellectual Disability/pathology , Microcephaly/pathology , Muscle Hypotonia/pathology , Mutation , Neurodevelopmental Disorders/pathology , Phosphoric Monoester Hydrolases/genetics , Alleles , Animals , Child, Preschool , Female , Humans , Infant , Intellectual Disability/etiology , Intellectual Disability/metabolism , Male , Mice , Microcephaly/etiology , Microcephaly/metabolism , Muscle Hypotonia/etiology , Muscle Hypotonia/metabolism , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism , Pedigree , Phenotype
5.
J Am Soc Nephrol ; 32(1): 99-114, 2021 01.
Article in English | MEDLINE | ID: mdl-33288630

ABSTRACT

BACKGROUND: C3 glomerulopathy (C3G) is characterized by the alternative-pathway (AP) hyperactivation induced by nephritic factors or complement gene mutations. Mice deficient in complement factor H (CFH) are a classic C3G model, with kidney disease that requires several months to progress to renal failure. Novel C3G models can further contribute to understanding the mechanism behind this disease and developing therapeutic approaches. METHODS: A novel, rapidly progressing, severe, murine model of C3G was developed by replacing the mouse C3 gene with the human C3 homolog using VelociGene technology. Functional, histologic, molecular, and pharmacologic assays characterize the presentation of renal disease and enable useful pharmacologic interventions in the humanized C3 (C3hu/hu) mice. RESULTS: The C3hu/hu mice exhibit increased morbidity early in life and die by about 5-6 months of age. The C3hu/hu mice display elevated biomarkers of kidney dysfunction, glomerulosclerosis, C3/C5b-9 deposition, and reduced circulating C3 compared with wild-type mice. Administration of a C5-blocking mAb improved survival rate and offered functional and histopathologic benefits. Blockade of AP activation by anti-C3b or CFB mAbs also extended survival and preserved kidney function. CONCLUSIONS: The C3hu/hu mice are a useful model for C3G because they share many pathologic features consistent with the human disease. The C3G phenotype in C3hu/hu mice may originate from a dysregulated interaction of human C3 protein with multiple mouse complement proteins, leading to unregulated C3 activation via AP. The accelerated disease course in C3hu/hu mice may further enable preclinical studies to assess and validate new therapeutics for C3G.


Subject(s)
Complement C3/genetics , Disease Models, Animal , Glomerulonephritis, Membranoproliferative/genetics , Kidney Diseases/genetics , Animals , Complement C3/metabolism , Complement Pathway, Alternative/genetics , Exons , Gene Expression Regulation , Glomerulonephritis, Membranoproliferative/metabolism , Humans , Kidney Diseases/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Phenotype , Polymorphism, Single Nucleotide , Renal Insufficiency/genetics , Renal Insufficiency/metabolism
6.
N Engl J Med ; 378(12): 1096-1106, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29562163

ABSTRACT

BACKGROUND: Elucidation of the genetic factors underlying chronic liver disease may reveal new therapeutic targets. METHODS: We used exome sequence data and electronic health records from 46,544 participants in the DiscovEHR human genetics study to identify genetic variants associated with serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Variants that were replicated in three additional cohorts (12,527 persons) were evaluated for association with clinical diagnoses of chronic liver disease in DiscovEHR study participants and two independent cohorts (total of 37,173 persons) and with histopathological severity of liver disease in 2391 human liver samples. RESULTS: A splice variant (rs72613567:TA) in HSD17B13, encoding the hepatic lipid droplet protein hydroxysteroid 17-beta dehydrogenase 13, was associated with reduced levels of ALT (P=4.2×10-12) and AST (P=6.2×10-10). Among DiscovEHR study participants, this variant was associated with a reduced risk of alcoholic liver disease (by 42% [95% confidence interval {CI}, 20 to 58] among heterozygotes and by 53% [95% CI, 3 to 77] among homozygotes), nonalcoholic liver disease (by 17% [95% CI, 8 to 25] among heterozygotes and by 30% [95% CI, 13 to 43] among homozygotes), alcoholic cirrhosis (by 42% [95% CI, 14 to 61] among heterozygotes and by 73% [95% CI, 15 to 91] among homozygotes), and nonalcoholic cirrhosis (by 26% [95% CI, 7 to 40] among heterozygotes and by 49% [95% CI, 15 to 69] among homozygotes). Associations were confirmed in two independent cohorts. The rs72613567:TA variant was associated with a reduced risk of nonalcoholic steatohepatitis, but not steatosis, in human liver samples. The rs72613567:TA variant mitigated liver injury associated with the risk-increasing PNPLA3 p.I148M allele and resulted in an unstable and truncated protein with reduced enzymatic activity. CONCLUSIONS: A loss-of-function variant in HSD17B13 was associated with a reduced risk of chronic liver disease and of progression from steatosis to steatohepatitis. (Funded by Regeneron Pharmaceuticals and others.).


Subject(s)
17-Hydroxysteroid Dehydrogenases/genetics , Fatty Liver/genetics , Genetic Predisposition to Disease , Liver Diseases/genetics , Loss of Function Mutation , 17-Hydroxysteroid Dehydrogenases/metabolism , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Biomarkers/blood , Chronic Disease , Disease Progression , Female , Genetic Variation , Genotype , Humans , Linear Models , Liver/pathology , Liver Diseases/pathology , Male , Sequence Analysis, RNA , Exome Sequencing
7.
Proc Natl Acad Sci U S A ; 115(32): E7642-E7649, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30038024

ABSTRACT

SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In ß-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic ß-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced ß-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of ß-cells to secrete insulin under hyperglycemic conditions.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Zinc Transporter 8/genetics , Alleles , Animals , Blood Glucose , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Gene Knock-In Techniques , Humans , Hyperglycemia/blood , Hyperglycemia/chemically induced , Hyperglycemia/metabolism , Insulin Secretion , Loss of Function Mutation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptides/pharmacology , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Zinc Transporter 8/metabolism
8.
Methods ; 164-165: 91-99, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31039396

ABSTRACT

The engineering of conditional alleles has evolved from simple floxing of regions of genes to more elaborate methods. Previously, we developed Conditional by Inversion (COIN), an allele design that utilizes an exon-splitting intron and an invertible genetrap-like module (COIN module) to create null alleles upon Cre-mediated inversion. Here we build upon COINs by generating a new Multifunctional Allele (MFA), that utilizes a single gene-targeting step and three site-specific recombination systems, to generate four allelic states: 1. The initial MFA (generated upon targeting) functions as a null with reporter (plus drug selection cassette) allele, wherein the gene of interest is inactivated by both inversion of a critical region of its coding sequence and simultaneous insertion of a reporter gene. MFAs can also be used as 'reverse-conditional' alleles as they are functionally wild type when they are converted to COIN alleles. 2. Null with reporter (minus drug selection cassette), wherein the selection cassette, the inverted critical region, and the COIN module are removed. 3. COIN-based conditional-null via removal of the selection cassette and reporter and simultaneous re-inversion of the critical region of the target. 4. Inverted COIN allele, wherein the COIN allele in turn is reconverted to a null allele by taking advantage of the COIN module's gene trap while simultaneously deleting the critical region.


Subject(s)
Alleles , Gene Targeting/methods , Genetic Engineering/methods , Animals , Cell Line , Exons/genetics , Genes, Reporter/genetics , Genetic Vectors/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Interleukin Receptor Common gamma Subunit/genetics , Introns/genetics , Mice , Mouse Embryonic Stem Cells , Primary Cell Culture/instrumentation , Primary Cell Culture/methods
9.
J Pharmacol Exp Ther ; 362(1): 85-97, 2017 07.
Article in English | MEDLINE | ID: mdl-28442582

ABSTRACT

LX2761 is a potent sodium/glucose cotransporter 1 inhibitor restricted to the intestinal lumen after oral administration. Studies presented here evaluated the effect of orally administered LX2761 on glycemic control in preclinical models. In healthy mice and rats treated with LX2761, blood glucose excursions were lower and plasma total glucagon-like peptide-1 (GLP-1) levels higher after an oral glucose challenge; these decreased glucose excursions persisted even when the glucose challenge occurred 15 hours after LX2761 dosing in ad lib-fed mice. Further, treating mice with LX2761 and the dipeptidyl-peptidase 4 inhibitor sitagliptin synergistically increased active GLP-1 levels, suggesting increased LX2761-mediated release of GLP-1 into the portal circulation. LX2761 also lowered postprandial glucose, fasting glucose, and hemoglobin A1C, and increased plasma total GLP-1, during long-term treatment of mice with either early- or late-onset streptozotocin-diabetes; in the late-onset cohort, LX2761 treatment improved survival. Mice and rats treated with LX2761 occasionally had diarrhea; this dose-dependent side effect decreased in severity and frequency over time, and LX2761 doses were identified that decreased postprandial glucose excursions without causing diarrhea. Further, the frequency of LX2761-associated diarrhea was greatly decreased in mice either by gradual dose escalation or by pretreatment with resistant starch 4, which is slowly digested to glucose in the colon, a process that primes the colon for glucose metabolism by selecting for glucose-fermenting bacterial species. These data suggest that clinical trials are warranted to determine if LX2761 doses and dosing strategies exist that provide improved glycemic control combined with adequate gastrointestinal tolerability in people living with diabetes.


Subject(s)
Benzhydryl Compounds/pharmacology , Blood Glucose/drug effects , Blood Glucose/metabolism , Glucagon-Like Peptide 1/antagonists & inhibitors , Glucagon-Like Peptide 1/blood , Hypoglycemic Agents/pharmacology , Thioglycosides/pharmacology , Animals , Benzhydryl Compounds/chemistry , Dose-Response Relationship, Drug , Glycemic Index/drug effects , Glycemic Index/physiology , Hypoglycemic Agents/chemistry , Male , Mice , Mice, Inbred C57BL , Random Allocation , Rats , Rats, Sprague-Dawley , Thioglycosides/chemistry
10.
Am J Physiol Gastrointest Liver Physiol ; 309(6): G455-65, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26206858

ABSTRACT

Mucosal inflammation is accompanied by an alteration in 5-HT. Intestinal 5-HT synthesis is catalyzed by tryptophan hydroxylase 1 (Tph1) and we have shown that mice deficient in this rate-limiting enzyme have reduced severity of intestinal inflammation in models of chemical-induced experimental colitis. Here, we investigated the effect of blocking peripheral 5-HT synthesis in generation of intestinal inflammation by a using peripheral Tph inhibitor, telotristat etiprate (LX1606), in models of intestinal inflammation. LX1606 was given orally either prophylactically or therapeutically to mice with dextran sulfate sodium (DSS)-induced colitis or with infection with Trichuris muris. Severity of intestinal inflammation was measured by assessment of disease activity scores, histological damage, and MPO and inflammatory cytokine levels. LX1606 significantly reduced intestinal 5-HT levels and delayed onset and severity of DSS-induced acute and chronic colitis. This was associated with decreased MPO and proinflammatory cytokine levels compared with vehicle-treated controls. In the infection-induced inflammation model, treatment with LX1606 enhanced worm expulsion as well as increased IL-10 production and goblet cell numbers. LX1606-treated mice had significantly lower MPO and IL-1ß levels compared with controls postinfection. Our results demonstrate that peripheral 5-HT plays an important role in intestinal inflammation and in the generation of immune responses. Pharmacological reduction of peripheral 5-HT may serve as a potential strategy for modulating various intestinal inflammatory disorders.


Subject(s)
Inflammatory Bowel Diseases/drug therapy , Phenylalanine/analogs & derivatives , Pyrimidines/pharmacology , Serotonin Antagonists/pharmacology , Serotonin/biosynthesis , Trichuriasis/complications , Animals , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate , Enterochromaffin Cells/drug effects , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/etiology , Mice , Mice, Inbred C57BL , Peroxidase/metabolism , Phenylalanine/pharmacology , Trichuriasis/parasitology , Trichuris , Tryptophan Hydroxylase/antagonists & inhibitors
11.
Gut ; 63(6): 928-37, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23749550

ABSTRACT

OBJECTIVE: Enterochromaffin cell-derived serotonin (5-HT) promotes intestinal inflammation. We tested hypotheses that peripheral tryptophan hydroxylase (TPH) inhibitors, administered orally, block 5-HT biosynthesis and deplete 5-HT from enterochromaffin cells sufficiently to ameliorate intestinal inflammation; moreover, peripheral TPH inhibitors fail to enter the murine enteric nervous system (ENS) or central nervous systems and thus do not affect constitutive gastrointestinal motility. DESIGN: Two peripheral TPH inhibitors, LP-920540 and telotristat etiprate (LX1032; LX1606) were given orally to mice. Effects were measured on 5-HT levels in the gut, blood and brain, 5-HT immunoreactivity in the ENS, gastrointestinal motility and severity of trinitrobenzene sulfonic acid (TNBS)-induced colitis. Quantitation of clinical scores, histological damage and intestinal expression of inflammation-associated cytokines and chemokines with focused microarrays and real-time reverse transcriptase PCR were employed to evaluate the severity of intestinal inflammation. RESULTS: LP-920540 and LX1032 reduced 5-HT significantly in the gut and blood but not in the brain. Neither LP-920540 nor LX1032 decreased 5-HT immunoreactive neurons or fibres in the myenteric plexus and neither altered total gastrointestinal transit time, colonic motility or gastric emptying in mice. In contrast, oral LP-920540 and LX1032 reduced the severity of TNBS-induced colitis; the expression of 24% of 84 genes encoding inflammation-related cytokines and chemokines was lowered at least fourfold and the reduced expression of 17% was statistically significant. CONCLUSIONS: Observations suggest that that peripheral TPH inhibitors uncouple the positive linkage of enterochromaffin cell-derived 5-HT to intestinal inflammation. Because peripheral TPH inhibitors evidently do not enter the murine ENS, they lack deleterious effects on constitutive intestinal motility in mice.


Subject(s)
Colitis/metabolism , Down-Regulation/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression/drug effects , Intestinal Mucosa/metabolism , Neurons/metabolism , Serotonin/biosynthesis , Animals , Brain/metabolism , Colitis/chemically induced , Colitis/pathology , Cytokines/genetics , Gastrointestinal Motility/drug effects , Male , Mice, Inbred C57BL , Myenteric Plexus/metabolism , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Pyrimidines/pharmacology , Serotonin/blood , Severity of Illness Index , Trinitrobenzenesulfonic Acid , Tryptophan Hydroxylase/antagonists & inhibitors
12.
J Pharmacol Exp Ther ; 350(2): 232-42, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24849925

ABSTRACT

Treatments that lower blood glucose levels and body weight should benefit patients with type 2 diabetes mellitus (T2DM). We developed LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], an orally available small molecule that decreases postprandial glucose excursions by inhibiting intestinal sodium/glucose cotransporter 1 (SGLT1) and increases urinary glucose excretion (UGE) by inhibiting renal SGLT2. In clinical studies of patients with T2DM, LX4211 appears to act through dual SGLT1/SGLT2 inhibition to improve glycemic control and promote weight loss. Here, we present preclinical studies that explored the ability of LX4211 to improve glycemic control and promote weight loss. We found that 1) LX4211 inhibited in vitro glucose transport mediated by mouse, rat, and dog SGLT1 and SGLT2; 2) a single daily LX4211 dose markedly increased UGE for >24 hours in mice, rats, and dogs; and 3) in the KK.Cg-Ay/J heterozygous (KKA(y)) mouse model of T2DM, LX4211 lowered A1C and postprandial glucose concentrations while increasing postprandial glucagon-like peptide 1 concentrations. Also, long-term LX4211 treatment 1) decreased oral glucose tolerance test (OGTT) glucose excursions, increased OGTT 30-minute insulin concentrations and increased pancreatic insulin content in KKA(y) mice; and 2) decreased weight gain in dogs and rats but not in KKA(y) mice while increasing food consumption in dogs, rats, and KKA(y) mice; in these KKA(y) mice, calories lost through UGE were completely offset by calories gained through hyperphagia. These findings suggest that LX4211 improves glycemic control by dual SGLT1/SGLT2 inhibition in mice as in humans, and that the LX4211-mediated weight loss observed in patients with T2DM may be attenuated by LX4211-mediated hyperphagia in some of these individuals.


Subject(s)
Body Composition/drug effects , Glucose/metabolism , Glycosides/pharmacology , Homeostasis/drug effects , Hypoglycemic Agents/pharmacology , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Animals , Dogs , Glycosides/pharmacokinetics , Glycosuria/drug therapy , Humans , Intestinal Absorption/drug effects , Mice , Rats , Rats, Sprague-Dawley
13.
Am J Physiol Endocrinol Metab ; 304(2): E117-30, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23149623

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone.


Subject(s)
Blood Glucose/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2/genetics , Animals , Blood Glucose/genetics , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/urine , Female , Glucagon-Like Peptide 1/pharmacology , Glucose Tolerance Test , Glycosuria/genetics , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sodium-Glucose Transporter 1/physiology , Sodium-Glucose Transporter 2/physiology , Streptozocin
14.
J Pharmacol Exp Ther ; 345(2): 250-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23487174

ABSTRACT

LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], a dual sodium/glucose cotransporter 1 (SGLT1) and SGLT2 inhibitor, is thought to decrease both renal glucose reabsorption by inhibiting SGLT2 and intestinal glucose absorption by inhibiting SGLT1. In clinical trials in patients with type 2 diabetes mellitus (T2DM), LX4211 treatment improved glycemic control while increasing circulating levels of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). To better understand how LX4211 increases GLP-1 and PYY levels, we challenged SGLT1 knockout (-/-) mice, SGLT2-/- mice, and LX4211-treated mice with oral glucose. LX4211-treated mice and SGLT1-/- mice had increased levels of plasma GLP-1, plasma PYY, and intestinal glucose during the 6 hours after a glucose-containing meal, as reflected by area under the curve (AUC) values, whereas SGLT2-/- mice showed no response. LX4211-treated mice and SGLT1-/- mice also had increased GLP-1 AUC values, decreased glucose-dependent insulinotropic polypeptide (GIP) AUC values, and decreased blood glucose excursions during the 6 hours after a challenge with oral glucose alone. However, GLP-1 and GIP levels were not increased in LX4211-treated mice and were decreased in SGLT1-/- mice, 5 minutes after oral glucose, consistent with studies linking decreased intestinal SGLT1 activity with reduced GLP-1 and GIP levels 5 minutes after oral glucose. These data suggest that LX4211 reduces intestinal glucose absorption by inhibiting SGLT1, resulting in net increases in GLP-1 and PYY release and decreases in GIP release and blood glucose excursions. The ability to inhibit both intestinal SGLT1 and renal SGLT2 provides LX4211 with a novel dual mechanism of action for improving glycemic control in patients with T2DM.


Subject(s)
Glucagon-Like Peptide 1/blood , Glucose/metabolism , Glycosides/pharmacology , Hypoglycemic Agents/pharmacology , Intestinal Absorption/drug effects , Peptide YY/blood , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Animals , Area Under Curve , Blood Glucose/metabolism , Diet , Gastric Inhibitory Polypeptide/metabolism , Glucose Tolerance Test , Glycosuria/metabolism , Methylglucosides/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Postprandial Period/physiology , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/physiology , Sodium-Glucose Transporter 2/genetics
15.
Nat Genet ; 36(9): 921-4, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15340423

ABSTRACT

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.


Subject(s)
Mice, Knockout , Research Embryo Creation , Alleles , Animals , Genetic Research , Mice , Phenotype , Research Embryo Creation/economics
16.
Stem Cell Reports ; 18(1): 394-409, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36525967

ABSTRACT

Rats were more frequently used than mice to model human disease before mouse embryonic stem cells (mESCs) revolutionized genetic engineering in mice. Rat ESCs (rESCs) were first reported over 10 years ago, yet they are not as frequently used as mESCs. CRISPR-based gene editing in zygotes is widely used in rats but is limited by the difficulty of inserting or replacing DNA sequences larger than about 10 kb. We report here the generation of germline-competent rESC lines from several rat strains. These rESC lines maintain their potential for germline transmission after serial targeting with bacterial artificial chromosome (BAC)-based targeting vectors, and CRISPR-Cas9 cutting can increase targeting efficiency. Using these methods, we have successfully replaced entire rat genes spanning up to 101 kb with the human ortholog.


Subject(s)
Embryonic Stem Cells , Retinal Degeneration , Humans , Rats , Animals , Mice , Gene Editing , Genetic Engineering , CRISPR-Cas Systems/genetics
17.
Sci Adv ; 9(15): eadf4490, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37058568

ABSTRACT

Liver steatosis is an increasing health issue with few therapeutic options, partly because of a paucity of experimental models. In humanized liver rodent models, abnormal lipid accumulation in transplanted human hepatocytes occurs spontaneously. Here, we demonstrate that this abnormality is associated with compromised interleukin-6 (IL-6)-glycoprotein 130 (GP130) signaling in human hepatocytes because of incompatibility between host rodent IL-6 and human IL-6 receptor (IL-6R) on donor hepatocytes. Restoration of hepatic IL-6-GP130 signaling, through ectopic expression of rodent IL-6R, constitutive activation of GP130 in human hepatocytes, or humanization of an Il6 allele in recipient mice, substantially reduced hepatosteatosis. Notably, providing human Kupffer cells via hematopoietic stem cell engraftment in humanized liver mice also corrected the abnormality. Our observations suggest an important role of IL-6-GP130 pathway in regulating lipid accumulation in hepatocytes and not only provide a method to improve humanized liver models but also suggest therapeutic potential for manipulating GP130 signaling in human liver steatosis.


Subject(s)
Fatty Liver , Interleukin-6 , Humans , Mice , Animals , Interleukin-6/metabolism , Cytokine Receptor gp130/metabolism , Lipid Droplets/metabolism , Hepatocytes/metabolism , Glycoproteins , Lipids
18.
Sci Transl Med ; 15(723): eadd4897, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37992152

ABSTRACT

Deficiency in the adipose-derived hormone leptin or leptin receptor signaling causes class 3 obesity in individuals with genetic loss-of-function mutations in leptin or its receptor LEPR and metabolic and liver disease in individuals with hypoleptinemia secondary to lipoatrophy such as in individuals with generalized lipodystrophy. Therapies that restore leptin-LEPR signaling may resolve these metabolic sequelae. We developed a fully human monoclonal antibody (mAb), REGN4461 (mibavademab), that activates the human LEPR in the absence or presence of leptin. In obese leptin knockout mice, REGN4461 normalized body weight, food intake, blood glucose, and insulin sensitivity. In a mouse model of generalized lipodystrophy, REGN4461 alleviated hyperphagia, hyperglycemia, insulin resistance, dyslipidemia, and hepatic steatosis. In a phase 1, randomized, double-blind, placebo-controlled two-part study, REGN4461 was well tolerated with an acceptable safety profile. Treatment of individuals with overweight or obesity with REGN4461 decreased body weight over 12 weeks in those with low circulating leptin concentrations (<8 ng/ml) but had no effect on body weight in individuals with higher baseline leptin. Furthermore, compassionate-use treatment of a single patient with atypical partial lipodystrophy and a history of undetectable leptin concentrations associated with neutralizing antibodies to metreleptin was associated with noteable improvements in circulating triglycerides and hepatic steatosis. Collectively, these translational data unveil an agonist LEPR mAb that may provide clinical benefit in disorders associated with relatively low leptin concentrations.


Subject(s)
Insulin Resistance , Lipodystrophy, Congenital Generalized , Animals , Mice , Humans , Leptin/therapeutic use , Compassionate Use Trials , Receptors, Leptin/metabolism , Lipodystrophy, Congenital Generalized/drug therapy , Obesity/drug therapy , Antibodies/therapeutic use , Body Weight
19.
Gastroenterology ; 141(2): 507-16, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21684281

ABSTRACT

BACKGROUND & AIMS: Serotonin (5-hydroxytryptamine [5-HT]) has an important role in gastrointestinal function. LX1031 is an oral, locally acting, small molecule inhibitor of tryptophan hydroxylase (TPH). Local inhibition of TPH in the gastrointestinal tract might reduce mucosal production of serotonin (5-HT) and be used to treat patients with nonconstipating irritable bowel syndrome (IBS). METHODS: We evaluated 2 dose levels of LX1031 (250 mg or 1000 mg, given 4 times/day) in a 28-day, multicenter, randomized, double-blind, placebo-controlled study of 155 patients with nonconstipating IBS. 5-hydroxyindoleacetic acid (5-HIAA), a biomarker of pharmacodynamic activity, was measured in urine samples at baseline (24 hours after LX1031 administration), and at weeks 4 and 6 (n = 76). RESULTS: Each dose of LX1031 was safe and well-tolerated. The primary efficacy end point, relief of IBS pain and discomfort, improved significantly in patients given 1000 mg LX1031 (25.5%), compared with those given placebo, at week 1 (P = .018); with nonsignificant improvements at weeks 2, 3, and 4 (17.9%, 16.3%, and 11.6%, respectively). Symptom improvement correlated with a dose-dependent reduction in 5-HIAA, a marker for TPH inhibition, from baseline until week 4. This suggests the efficacy of LX1031 is related to the extent of inhibition of 5-HT biosynthesis. Stool consistency significantly improved, compared with the group given placebo, at weeks 1 and 4 (P < .01) and at week 2 (P < .001). CONCLUSIONS: In a phase 2 study, LX1031 was well tolerated, relieving symptoms and increasing stool consistency in patients with nonconstipating IBS. Symptom relief was associated with reduced levels of 5-HIAA in urine samples. This marker might be used to identify patients with nonconstipating IBS who respond to inhibitors of 5-HT synthesis.


Subject(s)
Biphenyl Compounds/therapeutic use , Hydroxyindoleacetic Acid/urine , Irritable Bowel Syndrome/drug therapy , Phenylalanine/analogs & derivatives , Serotonin/biosynthesis , Tryptophan Hydroxylase/antagonists & inhibitors , Abdominal Pain/etiology , Adult , Biomarkers/urine , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/adverse effects , Constipation , Double-Blind Method , Feces , Female , Humans , Irritable Bowel Syndrome/complications , Male , Middle Aged , Pain Measurement , Phenylalanine/administration & dosage , Phenylalanine/adverse effects , Phenylalanine/therapeutic use , Severity of Illness Index
20.
Stem Cell Reports ; 17(3): 678-692, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35120624

ABSTRACT

Amyotrophic lateral sclerosis is a fatal disease pathologically typified by motor and cortical neurodegeneration as well as microgliosis. The FUS P525L mutation is highly penetrant and causes ALS cases with earlier disease onset and more aggressive progression. To date, how P525L mutations may affect microglia during ALS pathogenesis had not been explored. In this study, we engineered isogenic control and P525L mutant FUS in independent human iPSC lines and differentiated them into microglia-like cells. We report that the P525L mutation causes FUS protein to mislocalize from the nucleus to cytoplasm. Homozygous P525L mutations perturb the transcriptome profile in which many differentially expressed genes are associated with microglial functions. Specifically, the dysregulation of several chemoreceptor genes leads to altered chemoreceptor-activated calcium signaling. However, other microglial functions such as phagocytosis and cytokine release are not significantly affected. Our study underscores the cell-autonomous effects of the ALS-linked FUS P525L mutation in a human microglia model.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , RNA-Binding Protein FUS , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Microglia/metabolism , Mutation , RNA-Binding Protein FUS/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL