Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 20(11)2019 Jun 08.
Article in English | MEDLINE | ID: mdl-31181717

ABSTRACT

Small-molecule compounds that have promising activity against macromolecular targets from Trypanosoma cruzi occasionally fail when tested in whole-cell phenotypic assays. This outcome can be attributed to many factors, including inadequate physicochemical and pharmacokinetic properties. Unsuitable physicochemical profiles usually result in molecules with a poor ability to cross cell membranes. Quantitative structure-activity relationship (QSAR) analysis is a valuable approach to the investigation of how physicochemical characteristics affect biological activity. In this study, artificial neural networks (ANNs) and kernel-based partial least squares regression (KPLS) were developed using anti-T. cruzi activity data for broadly diverse chemotypes. The models exhibited a good predictive ability for the test set compounds, yielding q2 values of 0.81 and 0.84 for the ANN and KPLS models, respectively. The results of this investigation highlighted privileged molecular scaffolds and the optimum physicochemical space associated with high anti-T. cruzi activity, which provided important guidelines for the design of novel trypanocidal agents having drug-like properties.


Subject(s)
Machine Learning , Quantitative Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology
2.
Org Biomol Chem ; 12(21): 3470-7, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24752799

ABSTRACT

In this paper we report the design, synthesis and evaluation of a series of seleno-dihydropyrimidinones as potential multi-targeted therapeutics for Alzheimer's disease. The compounds show excellent results as acetylcholinesterase inhibitors, being as active as the standard drug. All these compounds also show very good antioxidant activity through different mechanisms of action.


Subject(s)
Alzheimer Disease/drug therapy , Drug Design , Molecular Targeted Therapy , Pyrimidinones/chemical synthesis , Pyrimidinones/therapeutic use , Selenium/therapeutic use , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Humans , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics
3.
Curr Med Chem ; 30(6): 689-700, 2023.
Article in English | MEDLINE | ID: mdl-35209817

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is one of the most prevalent types of dementia, affecting millions of older people worldwide. AD is stimulating efforts to develop novel molecules targeting its main features associated with a decrease in acetylcholine levels, an increase in oxidative stress and depositions of amyloid-ß (Aß) and tau protein. In this regard, selenium-containing compounds have been demonstrated as potential multi-targeted compounds in the treatment of AD. These compounds are known for their antioxidant and anticholinesterase properties, causing a decrease in Aß aggregation. OBJECTIVE: In this review, we approach structure-activity relationships of each compound, associating the decrease of ROS activity, an increase of tau-like activity and inhibition of AChE with a decrease in the self-aggregation of Aß. METHODS: We also verify that the molecular descriptors apol, nHBAcc and MlogP may be related to optimized pharmacokinetic properties for anti-AD drugs. RESULTS: In our analysis, few selenium-derived compounds presented similar molecular features to FDA-approved drugs. CONCLUSION: We suggest that unknown selenium-derived molecules with apol, nHBAcc and MlogP like FDA-approved drugs may be better successes with optimized pharmacokinetic properties in future studies in AD.


Subject(s)
Alzheimer Disease , Selenium Compounds , Selenium , Humans , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Selenium/therapeutic use , Selenium Compounds/therapeutic use , Amyloid beta-Peptides/metabolism , Oxidative Stress
4.
Future Med Chem ; 14(11): 795-808, 2022 06.
Article in English | MEDLINE | ID: mdl-35543430

ABSTRACT

Background: Chagas disease is a neglected tropical disease that affects millions of people worldwide and for which no effective treatment is available. Materials & methods: 17 chalcones were synthesized, for which the inhibition of cruzain and trypanocidal activity were investigated. Results: Chalcone C8 showed the highest cruzain inhibitory (IC50 = 0.536 µm) and trypanocidal activity (IC50 = 0.990 µm). Molecular docking studies showed interactions involving Asp161 and the thiophen group interacting with the S2 subsite. Furthermore, quantitative structure-activity relationship (q2 = 0.786; r2 = 0.953) and density functional theory studies were carried out, and a correlation between the lowest unoccupied molecular orbital surface and trypanocidal activity was observed. Conclusion: These results demonstrate that these chalcones are worthwhile hits to be further optimized in Chagas disease drug discovery programs.


Subject(s)
Chagas Disease , Chalcone , Chalcones , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Chalcone/pharmacology , Chalcones/pharmacology , Cysteine Endopeptidases , Humans , Ligands , Molecular Docking Simulation , Protozoan Proteins , Structure-Activity Relationship , Thiophenes/pharmacology , Trypanocidal Agents/pharmacology
5.
RSC Med Chem ; 13(12): 1644-1656, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36561075

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that is characterized as the main dementia in the elderly. Eighteen pyrazolines were synthesized and evaluated for their inhibitory effects against acetylcholinesterase (AChE) in vitro. Possible interactions between pyrazolines and the enzyme were explored by in silico experiments. Compound 2B of the series was the most active pyrazoline with an IC50 value of 58 nM. Molecular docking studies revealed two important π-π interactions with residues Trp 286 and Tyr 341. A correlation between the HOMO-1 surface and AChE inhibition was observed. ADMET assays demonstrated a good profile for compound 2B. From the abovementioned findings, a new avenue of compound 2B analogues could be explored to develop anti-AD agents.

6.
Eur J Med Chem ; 243: 114687, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36057237

ABSTRACT

Chagas Disease is caused by the protozoan Trypanosoma cruzi and is considered a tropical neglected disease by the World Health Organization (WHO). The main drugs used in the therapy of the disease are obsolete and, as a result, it still kills millions of people every year. Therefore, the development of new drugs is urgent, as is the research reported in this article, in which new triazole selenides were synthesized through a simple methodology and to evaluate their potential against T. cruzi, through a combination of in vitro and in silico assays. With the combination of two molecular scaffolds already known for this activity, sixteen new hybrid compounds were obtained, showing yields ranging from 40 to 90%, and their biological potentials were tested. Two of the evaluated hybrids showed potent trypanocidal activity (11m and 11n), comparable to the positive control benznidazole. Density functional theory (DFT) studies were correlated with cyclic voltammetry assays to investigate the LUMO energy, which demonstrated a correlation with the observed trypanocidal activity. These results are promising, considering 11m and 11n as hit compounds in the development of new antichagasic drugs.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Triazoles/pharmacology , Triazoles/therapeutic use , Chagas Disease/drug therapy
7.
Future Med Chem ; 13(24): 2167-2183, 2021 12.
Article in English | MEDLINE | ID: mdl-34708659

ABSTRACT

Background: Schiff bases are synthetically accessible compounds that have been used in medicinal chemistry. Methods & results: In this work, 27 Schiff bases derived from diaminomaleonitrile were synthesized in high yields (80-98%). Molecular docking studies suggested that the Schiff bases interact with the catalytic site of cruzain. The most active cruzain inhibitor, analog 13 (IC50 = 263 nM), was predicted to form an additional hydrophobic contact with Met68 in the binding site of the enzyme. A strong correlation between the IC50 values and ChemScore binding energies was observed (R = 0.99). Kernel-based 2D quantitative structure-activity relationship models for the whole dataset yielded sound correlation coefficients (R2 = 0.844; Q2 = 0.719). Conclusion: These novel and potent cruzain inhibitors are worthwhile starting points in further Chagas disease drug discovery programs.


Subject(s)
Chagas Disease/drug therapy , Diamines/pharmacology , Nitriles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Diamines/chemical synthesis , Diamines/chemistry , Molecular Docking Simulation , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Quantitative Structure-Activity Relationship , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
8.
Curr Top Med Chem ; 21(13): 1167-1185, 2021.
Article in English | MEDLINE | ID: mdl-34218788

ABSTRACT

BACKGROUND: Chalcones and dihydrochalcones present potent inhibition of acetylcholinesterase, currently considered the most efficient approach for symptomatic treatment of Alzheimer's disease. OBJECTIVE: The present study aimed to explore the potential benefits of 2',6'-dihydroxy-4'-methoxy dihydrochalcone on the cognitive deficits of animals submitted to the streptozotocin-induced Alzheimer's model, as well as evaluating the possible mechanisms of action. METHODS: Learning and memory functions of different groups of animals were submitted to the streptozotocin-induced Alzheimer's model (STZ 2.5 mg/mL, i.c.v.) and subsequently treated with 2',6'-dihydroxy-4'-methoxy dihydrochalcone (DHMDC) administered at doses of 5, 15, and 30 mg/kg (p.o.), respectively. Rivastigmine (0,6 mg/kg, i.p.) and vehicle were evaluated in aversive memory test (inhibitory avoidance test) and spatial memory test (object recognition test). Molecular docking simulations were performed to predict the binding mode of DHMDC at the peripheral site of AChE, to analyze noncovalent enzyme-ligand interactions. DFT calculations were carried out to study well-known acetylcholinesterase inhibitors and DHMDC. RESULTS: DHMDC markedly increased the learning and memory of mice. STZ caused a significant decline of spatial and aversive memories in mice, attenuated by DHMDC (15 and 30 mg/kg). Furthermore, STZ conspicuously increased lipid peroxidation and compromised the antioxidant levels in mice brains. DHMDC pretreatment significantly increased GSH activity and other oxidative stress markers and decreased TBARS level in the brain of STZ administered mice. AChE activity was significantly decreased by DHMDC in the brain of mice. CONCLUSION: The results together point out that DHMDC may be a useful drug in the management of dementia.


Subject(s)
Alzheimer Disease/drug therapy , Chalcones/pharmacology , Cholinesterase Inhibitors/pharmacology , Cognition Disorders/drug therapy , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/chemically induced , Animals , Chalcones/chemistry , Cholinesterase Inhibitors/chemistry , Cognition Disorders/chemically induced , Density Functional Theory , Male , Mice , Molecular Docking Simulation , Neuroprotective Agents/chemistry , Streptozocin , Structure-Activity Relationship
9.
Front Pharmacol ; 12: 788850, 2021.
Article in English | MEDLINE | ID: mdl-34887769

ABSTRACT

The synthesis and antioxidant, antinociceptive and antiedematogenic activities of sulfonamides derived from carvacrol-a druglike natural product-are reported. The compounds showed promising antioxidant activity, and sulfonamide derived from morpholine (S1) demonstrated excellent antinociceptive and antiedematogenic activities, with no sedation or motor impairment. The mechanism that underlies the carvacrol and derived sulfonamides' relieving effects on pain has not yet been fully elucidated, however, this study shows that the antinociceptive activity can be partially mediated by the antagonism of glutamatergic signaling. Compound S1 presented promising efficacy and was predicted to have an appropriate medicinal chemistry profile. Thus, derivative S1 is an interesting starting point for the design of new leads for the treatment of pain and associated inflammation and prooxidative conditions.

10.
Biomed Pharmacother ; 141: 111910, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34323692

ABSTRACT

Leishmaniasis is a group of neglected tropical diseases whose treatment with antimonials bears limitations and has changed little in over 80 years. Medicinal plants have been evaluated as a therapeutic alternative for leishmaniasis. Arrabidaea chica is popularly used as a wound healing and antiparasitic agent, especially as leishmanicidal agent. This study examined the leishmanicidal activity of a crude extract (ACCE), an anthocyanidin-rich fraction (ACAF), and three isolated anthocyanidins from A. chica: carajurin, 3'-hydroxy-carajurone, and carajurone. We evaluated the antileishmanial activity against promastigote and intracellular amastigote forms of Leishmania amazonensis and determined cytotoxicity in BALB/c peritoneal macrophages, as well as nitrite quantification, using the Griess method. Molecular docking was carried out to evaluate interactions of carajurin at the nitric oxide synthase enzyme. All compounds were active against promastigotes after 72 h, with IC50 values of 101.5 ± 0.06 µg/mL for ACCE and 4.976 ± 1.09 µg/mL for ACAF. Anthocyanidins carajurin, 3'-hydroxy-carajurone, and carajurone had IC50 values of 3.66 ± 1.16, 22.70 ± 1.20, and 28.28 ± 0.07 µg/mL, respectively. The cytotoxicity assay after 72 h showed results ranging from 9.640 to 66.74 µg/mL for anthocyanidins. ACAF and carajurin showed selectivity against intracellular amastigote forms (SI> 10), with low cytotoxicity within 24 h, a statistically significant reduction in all infection parameters, and induced nitrite production. Molecular docking studies were developed to understand a possible mechanism of activation of the nitric oxide synthase enzyme, which leads to an increase in the production of nitric oxide observed in the other experiments reported. These results encourage us to suggest carajurin as a biological marker of A. chica.


Subject(s)
Anthocyanins/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Animals , Leishmaniasis, Cutaneous/drug therapy , Macrophages, Peritoneal/drug effects , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Nitric Oxide Synthase/antagonists & inhibitors , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plants, Medicinal
11.
Curr Top Med Chem ; 20(3): 173-181, 2020.
Article in English | MEDLINE | ID: mdl-31775599

ABSTRACT

BACKGROUND: Bacterial resistance to antibiotics is a growing problem in all countries and has been discussed worldwide. In this sense, the development of new drugs with antibiotic properties is highly desirable in the context of medicinal chemistry. METHODOLOGY: In this paper we investigate the antioxidant and antibacterial potential of sulfonamides derived from carvacrol, a small molecule with drug-like properties. Most sulfonamides had antioxidant and antibacterial potential, especially compound S-6, derived from beta-naphthylamine. RESULTS: To understand the possible mechanisms of action involved in biological activity, the experimental results were compared with molecular docking data. CONCLUSION: This research allows appropriate discussion on the identified structure activity relationships.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Cymenes/pharmacology , Molybdenum/chemistry , Sulfonamides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cymenes/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Oxidation-Reduction , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
12.
Curr Top Med Chem ; 20(3): 182-191, 2020.
Article in English | MEDLINE | ID: mdl-31868147

ABSTRACT

BACKGROUND: In general, fungal species are characterized by their opportunistic character and can trigger various infections in immunocompromised hosts. The emergence of infections associated with high mortality rates is due to the resistance mechanisms that these species develop. METHODS: This phenomenon of resistance denotes the need for the development of new and effective therapeutic approaches. In this paper, we report the investigation of the antioxidant and antifungal behavior of dimeric naphthoquinones derived from lawsone whose antimicrobial and antioxidant potential has been reported in the literature. RESULTS: Seven fungal strains were tested, and the antioxidant potential was tested using the combination of the methodologies: reducing power, total antioxidant capacity and cyclic voltammetry. Molecular docking studies (PDB ID 5V5Z and 1EA1) were conducted which allowed the derivation of structureactivity relationships (SAR). Compound 1-i, derived from 3-methylfuran-2-carbaldehyde showed the highest antifungal potential with an emphasis on the inhibition of Candida albicans species (MIC = 0.5 µg/mL) and the highest antioxidant potential. CONCLUSION: A combination of molecular modeling data and in vitro assays can help to find new solutions to this major public health problem.


Subject(s)
Antifungal Agents/pharmacology , Antioxidants/pharmacology , Candida albicans/drug effects , Molecular Docking Simulation , Naphthoquinones/pharmacology , Quantum Theory , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , DNA Repair , Dimerization , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL