Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Toxicol Rep ; 10: 357-366, 2023.
Article in English | MEDLINE | ID: mdl-36923444

ABSTRACT

Mucopolysaccharidosis Type IIIB (MPS IIIB) is an ultrarare, fatal pediatric disease with no approved therapy. It is caused by mutations in the gene encoding for lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). Tralesinidase alfa (TA) is a fusion protein comprised of recombinant NAGLU and a modified human insulin-like growth factor 2 that is being developed as an enzyme replacement therapy for MPS IIIB. Since MPS IIIB is a pediatric disease the safety/toxicity, pharmacokinetics and biodistribution of TA were evaluated in juvenile non-human primates that were administered up to 5 weekly intracerebroventricular (ICV) or single intravenous (IV) infusions of TA. TA administered by ICV slow-, ICV isovolumetric bolus- or IV-infusion was well-tolerated, and no effects were observed on clinical observations, electrocardiographic or ophthalmologic parameters, or respiratory rates. The drug-related changes observed were limited to increased cell infiltrates in the CSF and along the ICV catheter track after ICV administration. These findings were not associated with functional changes and are associated with the use of ICV catheters. The CSF PK profiles were consistent across all conditions tested and TA distributed widely in the CNS after ICV administration. Anti-drug antibodies were observed but did not appear to significantly affect the exposure to TA. Correlations between TA concentrations in plasma and brain regions in direct contact with the cisterna magna suggest glymphatic drainage may be responsible for clearance of TA from the CNS. The data support the administration of TA by isovolumetric bolus ICV infusion to pediatric patients with MPS IIIB.

2.
Matrix Biol Plus ; 13: 100100, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35106474

ABSTRACT

Mammalian cells, including cancer cells, are covered by a surface layer containing cell bound proteoglycans, glycoproteins, associated glycosaminoglycans and bound proteins that is commonly referred to as the glycocalyx. Solid tumors also have a dynamic fluid microenvironment with elevated interstitial flow. In the present work we further investigate the hypothesis that interstitial flow is sensed by the tumor glycocalyx leading to activation of cell motility and metastasis. Using a highly metastatic renal carcinoma cell line (SN12L1) and its low metastatic counterpart (SN12C) we demonstrate in vitro that the small molecule Suberoylanilide Hydroxamic Acid (SAHA) inhibits the heparan sulfate synthesis enzyme N-deacetylase-N-sulfotransferase-1, reduces heparan sulfate in the glycocalyx and suppresses SN12L1 motility in response to interstitial flow. SN12L1 cells implanted in the kidney capsule of SCID mice formed large primary tumors and metastasized to distant organs, but when treated with SAHA metastases were not detected. In another set of experiments, the role of hyaluronic acid was investigated. Hyaluronan synthase 1, a critical enzyme in the synthetic pathway for hyaluronic acid, was knocked down in SN12L1 cells and in vitro experiments revealed inhibition of interstitial flow induced migration. Subsequently these cells were implanted in mouse kidneys and no distant metastases were detected. These findings suggest new therapeutic approaches to the treatment of kidney carcinoma metastasis.

3.
Mol Genet Metab Rep ; 31: 100878, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782619

ABSTRACT

Mucopolysaccharidosis type II (MPS II) is a multisystemic lysosomal storage disorder caused by deficiency of the iduronate 2-sulfatase enzyme. Currently, enzyme replacement therapy (ERT) with recombinant idursulfase is the main treatment available to decrease morbidity and improve quality of life. However, infusion-associated reactions (IARs) are reported and may limit access to treatment. When premedication or infusion rate reductions are ineffective for preventing IARs, desensitization can be applied. To date, only two MPS II patients are reported to have undergone desensitization. We report a pediatric patient with recurrent IARs during infusion successfully managed with gradual desensitization. Our protocol started at 50% of the standard dosage infused at concentrations from 0.0006 to 0.06 mg/ml on weeks 1 and 2, followed by 75% of the standard dosage infused at concentrations from 0.0009 to 0.09 mg/ml on weeks 3 and 4, and full standard dosage thereafter, infused at progressively increasing concentrations until the standard infusion conditions were reached at 3 months. Our experience can be used in the management of MPS II patients presenting IARs to idursulfase infusion, even when general preventive measures are already administered.

4.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36160687

ABSTRACT

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

5.
Mol Genet Metab Rep ; 25: 100692, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33335838

ABSTRACT

We previously showed that the genotype-phenotype correlation in MPS II is well-conserved in Japan (Kosuga et al., 2016). Almost all of our patients with attenuated MPS II have missense variants, which is expected to result in residual activity of iduronate-2-sulfatase. In contrast, our patients with severe MPS II have so-called null-type disease-associated variants, such as nonsense variants, frame-shifts, gene insertions, gene deletions and rearrangement with pseudogene (IDS2), none of which are expected to result in residual activity. However, we recently encountered a patient with attenuated MPS II who had a presumable null-type disease-associated variant and 76-base deletion located in exon 1 that extended into intron 1. To investigate this discordance, we extracted RNA from the leukocytes of the patient and performed reverse transcription polymerase chain reaction. One of the bands of the cDNA analysis was found to include a nucleotide sequence whose transcript was expected to generate an almost full-length IDS mature peptide lacking only part of its signal peptide as well as only one amino acid at the end of the N-terminus. This suggests that an alternative splicing donor site is generated in exon 1 upstream of the deleted region. Based on these observations, we concluded that the phenotype-genotype discordance in this patient with MPS II was due to the decreased amount of IDS protein induced by the low level of the alternatively spliced mRNA, lacking part of the region coding for the signal peptide but including the region coding almost the full mature IDS protein. The first 25 amino acids at the N-terminus of IDS protein are a signal peptide. The alternative splice transcript has only 13 (1 M-13 L) of those 25 amino acids; 14G-25G are missing, suggesting that the exclusively hydrophobic 1 M-13 L of the signal peptide of IDS might have a crucial role in the signal peptide.

6.
Matrix Biol Plus ; 6-7: 100023, 2020 May.
Article in English | MEDLINE | ID: mdl-33543021

ABSTRACT

Type XV collagen is a non-fibrillar collagen that is associated with basement membranes and belongs to the multiplexin subset of the collagen superfamily. Collagen XV was initially studied because of its sequence homology with collagen XVIII/endostatin whose anti-angiogenic and anti-tumorigenic properties were subjects of wide interest in the past years. But during the last fifteen years, collagen XV has gained growing attention with increasing number of studies that have attributed new functions to this widely distributed collagen/proteoglycan hybrid molecule. Despite the cumulative evidence of its functional pleiotropy and its evolutionary conserved function, no review compiling the current state of the art about collagen XV is currently available. Here, we thus provide the first comprehensive view of the knowledge gathered so far on the molecular structure, tissue distribution and functions of collagen XV in development, tissue homeostasis and disease with an evolutionary perspective. We hope that our review will open new roads for promising research on collagen XV in the coming years.

7.
Mol Genet Metab Rep ; 22: 100554, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31908953

ABSTRACT

Mucopolysaccharidosis III A (MPS IIIA) is an autosomal recessive lysosomal storage disorder caused by deficiency of the enzyme sulfamidase. The disorder results in accumulation of heparan sulfate, lysosomal enlargement and cellular and organ dysfunction. Patients exhibit progressive neurodegeneration and behavioral problems and no treatment is currently available. Enzyme replacement therapy is explored as potential treatment strategy for MPS IIIA patients and to modify the disease, sulfamidase must reach the brain. The glycans of recombinant human sulfamidase (rhSulfamidase) can be chemically modified to generate CM-rhSulfamidase. The chemical modification reduced the affinity to the cation-independent mannose-6-phosphate receptor with the aim a prolonged higher concentration in circulation and thus at the blood brain barrier. The pharmacokinetic properties in serum and the distribution to brain and to cerebrospinal fluid (CSF) of chemically modified recombinant human sulfamidase (CM-rhSulfamidase) were studied and compared to those of rhSulfamidase, after a single intravenous (i.v.) 30 mg/kg dose in awake, freely-moving male Sprague Dawley rats. Distribution to brain was studied by microdialysis of the interstitial fluid in prefrontal cortex and by repeated intra-individual CSF sampling from the cisterna magna. Push-pull microdialysis facilitated sampling of brain interstitial fluid to determine large molecule concentrations in awake, freely-moving male Sprague Dawley rats. Together with repeated serum and CSF sampling, push-pull microdialysis facilitated determination of CM-rhSulfamidase and rhSulfamidase kinetics after i.v. administration by non-compartments analysis and by a population modelling approach. Chemical modification increased the area under the concentration versus time in serum, CSF and brain interstitial fluid at least 7-fold. The results and the outcome of a population modelling approach of the concentration versus time data indicated that both compounds pass the BBB with an equilibrium established fairly rapid after administration. We suggest that prolonged high serum concentrations facilitated high brain interstitial fluid concentrations, which could be favorable to reach various target cells in the brain.

8.
Mol Genet Metab Rep ; 21: 100510, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31528541

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) characterized by severe central nervous system (CNS) degeneration. The disease is caused by mutations in the SGSH gene coding for the lysosomal enzyme sulfamidase. Sulfamidase deficiency leads to accumulation of heparan sulfate (HS), which triggers aberrant cellular function, inflammation and eventually cell death. There is currently no available treatment against MPS IIIA. In the present study, a chemically modified recombinant human sulfamidase (CM-rhSulfamidase) with disrupted glycans showed reduced glycan receptor mediated endocytosis, indicating a non-receptor mediated uptake in MPS IIIA patient fibroblasts. Intracellular enzymatic activity and stability was not affected by chemical modification. After intravenous (i.v.) administration in mice, CM-rhSulfamidase showed a prolonged exposure in plasma and distributed to the brain, present both in vascular profiles and in brain parenchyma. Repeated weekly i.v. administration resulted in a dose- and time-dependent reduction of HS in CNS compartments in a mouse model of MPS IIIA. The reduction in HS was paralleled by improvements in lysosomal pathology and neuroinflammation. Behavioral deficits in the MPS IIIA mouse model were apparent in the domains of exploratory behavior, neuromuscular function, social- and learning abilities. CM-rhSulfamidase treatment improved activity in the open field test, endurance in the wire hanging test, sociability in the three-chamber test, whereas other test parameters trended towards improvements. The unique properties of CM-rhSulfamidase described here strongly support the normalization of clinical symptoms, and this candidate drug is therefore currently undergoing clinical studies evaluating safety and efficacy in patients with MPS IIIA.

9.
Cell Adh Migr ; 9(1-2): 96-104, 2015.
Article in English | MEDLINE | ID: mdl-25793576

ABSTRACT

Tenascin-C (TNC) is highly expressed in cancer tissues. Its cellular sources are cancer and stromal cells, including fibroblasts/myofibroblasts, and also vascular cells. TNC expressed in cancer tissues dominantly contains large splice variants. Deposition of the stroma promotes the epithelial-mesenchymal transition, proliferation, and migration of cancer cells. It also facilitates the formation of cancer stroma including desmoplasia and angiogenesis. Integrin receptors that mediate the signals of TNC have also been discussed.


Subject(s)
Cell Adhesion/physiology , Integrins/metabolism , Neoplasms/metabolism , Protein Splicing/physiology , Tenascin/metabolism , Animals , Cell Proliferation/physiology , Humans , Protein Splicing/genetics
10.
Mol Genet Metab Rep ; 2: 1-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-28649518

ABSTRACT

Mutations in B3GALT6, encoding the galactosyltransferase II (GalT-II) involved in the synthesis of the glycosaminoglycan (GAG) linkage region of proteoglycans (PGs), have recently been associated with a spectrum of connective tissue disorders, including spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1) and Ehlers-Danlos-like syndrome. Here, we report on two sisters compound heterozygous for two novel B3GALT6 mutations that presented with severe short stature and progressive kyphoscoliosis, joint hypermobility and laxity, hyperextensible skin, platyspondyly, short ilia, and elbow malalignment. Microarray-based transcriptome analysis revealed the differential expression of several genes encoding extracellular matrix (ECM) structural components, including COMP, SPP1, COL5A1, and COL15A1, enzymes involved in GAG synthesis and in ECM remodeling, such as CSGALNACT1, CHPF, LOXL3, and STEAP4, signaling transduction molecules of the TGFß/BMP pathway, i.e., GDF6, GDF15, and BMPER, and transcription factors of the HOX and LIM families implicated in skeletal and limb development. Immunofluorescence analyses confirmed the down-regulated expression of some of these genes, in particular of the cartilage oligomeric matrix protein and osteopontin, encoded by COMP and SPP1, respectively, and showed the predominant reduction and disassembly of the heparan sulfate specific GAGs, as well as of the PG perlecan and type III and V collagens. The key role of GalT-II in GAG synthesis and the crucial biological functions of PGs are consistent with the perturbation of many physiological functions that are critical for the correct architecture and homeostasis of various connective tissues, including skin, bone, cartilage, tendons, and ligaments, and generates the wide phenotypic spectrum of GalT-II-deficient patients.

11.
Hum Vaccin Immunother ; 10(12): 3711-21, 2014.
Article in English | MEDLINE | ID: mdl-25668674

ABSTRACT

The traditional vaccine adjuvant research is mainly based on the trial and error method, and the mechanisms underlying the immune system stimulation remaining largely unknown. We previously demonstrated that heparan sulfate (HS), a TLR-4 ligand and endogenous danger signal, effectively enhanced humoral and cellular immune responses in mice immunized by HBsAg. This study aimed to evaluate whether HS induces better humoral immune responses against inactivated Hepatitis A or Rabies Vaccines, respectively, compared with traditional adjuvants (e.g. Alum and complete Freund's adjuvant). In order to investigate the molecular mechanisms of its adjuvanticity, the gene expression pattern of peripheral blood monocytes derived DCs (dendritic cells) stimulated with HS was analyzed at different times points. Total RNA was hybridized to Agilent SurePrint G3 Human Gene Expression 8×60 K one-color oligo-microarray. Through intersection analysis of the microarray results, we found that the Toll-like receptor signaling pathway was significantly activated, and NF-kB, TRAF3 and IRF7 were activated as early as 12 h, and MyD88 was activated at 48 h post-stimulation. Furthermore, the expression of the surface marker CD83 and the co-stimulatory molecules CD80 and CD86 was up-regulated as early as 24 h. Therefore, we speculated that HS-induced human monocyte-derived DC maturation may occur through both MyD88-independent and dependent pathways, but primarily through the former (TRIF pathway). These data provide an important basis for understanding the mechanisms underlying HS enhancement of the immune response.


Subject(s)
Adjuvants, Immunologic/pharmacology , Dendritic Cells/physiology , Heparitin Sulfate/pharmacology , Myeloid Differentiation Factor 88/physiology , Transcriptome , Animals , Female , Gene Expression Regulation/drug effects , Mice , Mice, Inbred ICR , Oligonucleotide Array Sequence Analysis , Rabies Vaccines/immunology , Toll-Like Receptors/physiology
12.
FEBS Open Bio ; 3: 346-51, 2013.
Article in English | MEDLINE | ID: mdl-24251094

ABSTRACT

The tetrasaccharide heparan sulfate (HS) mimetic PG545, a clinical anti-cancer candidate, is an inhibitor of the HS-degrading enzyme heparanase. The kinetics of heparanase inhibition by PG545 and three structural analogues were investigated to understand their modes of inhibition. The cholestanol aglycon of PG545 significantly increased affinity for heparanase and also modified the inhibition mode. For the tetrasaccharides, competitive inhibition was modified to parabolic competition by the addition of the cholestanol aglycon. For the trisaccharides, partial competitive inhibition was modified to parabolic competition. A schematic model to explain these findings is presented.

13.
FEBS Open Bio ; 3: 352-6, 2013.
Article in English | MEDLINE | ID: mdl-24251095

ABSTRACT

Recently, we have disclosed that human KIAA1199 (hKIAA1199) is a hyaluronan (HA) binding protein implicated in HA depolymerization. Although a murine homologue (mKiaa1199) was previously cloned, no information about the function of the molecule was available. Here, we show that cells transfected with mKiaa1199 cDNA selectively catabolized HA via the clathrin-coated pit pathway. A glycosaminoglycan-binding assay demonstrated the specific binding of mKiaa1199 to HA. These results were similar to our observations with hKIAA1199, although slight differences were found in the peak sizes of the minimum degradates of HA. We conclude that like hKIAA1199, mKiaa1199 is a hyaladherin, leading to HA depolymerization.

SELECTION OF CITATIONS
SEARCH DETAIL