Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Eur Heart J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976370

ABSTRACT

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.

2.
Exp Cell Res ; 430(1): 113692, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37392962

ABSTRACT

Scleroderma, the chronic autoimmune disease is a consequence of inflammation in the connective tissue. Prolonged duration affects formation of compact connective tissue strands (scarring) within the target organ. Endothelial cells undergoing endothelial-to-mesenchymal transition (EndMT) are the source of fibroblast phenotype-resembling cells. EndMT contributes to reorganization of the focal adhesion proteins (FA), including integrins, and intensive extracellular matrix (ECM) remodelling. However, in endothelial cells, the relationship between EndMT and the interaction of integrin receptors with lumican - a component of ECM, is still unclear. Our findings indicate that at the early stages of EndMT caused by Snail-1 transcription factor overexpression, the level of the ß1 integrin subunit and its phosphorylation are elevated. Simultaneously, the changes in the level of proteins that build FAs and promote activation of integrin receptors as well as a decrease in lumican quantity were observed. These modulations contributed to increased migration of human microvascular endothelial cells, HMEC-1. Our findings were achieved by WB, ELISA and wound healing assay. Taken altogether, transfection of HMEC-1 cells with Snail-1 plasmids inducing the early stages of EndMT results in the increase of total FAK and integrin ß1 phosphorylation as well as cell migration: phenomena which are modulated by interaction with lumican.


Subject(s)
Endothelial Cells , Focal Adhesions , Humans , Endothelial Cells/metabolism , Lumican/metabolism , Cell Line , Integrins/metabolism , Epithelial-Mesenchymal Transition/physiology
3.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34215697

ABSTRACT

Infections and inflammation are profoundly influenced by the extracellular matrix (ECM), but their molecular underpinnings are ill defined. Here, we demonstrate that lumican, an ECM protein normally associated with collagens, is elevated in sepsis patients' blood, while lumican-null mice resolve polymicrobial sepsis poorly, with reduced bacterial clearance and greater body weight loss. Secreted by activated fibroblasts, lumican promotes Toll-like receptor (TLR) 4 response to bacterial lipopolysaccharides (LPS) but restricts nucleic acid-specific TLR9 in macrophages and dendritic cells. The underlying mechanism involves lumican attachment to the common TLR coreceptor CD14 and caveolin 1 (Cav1) in lipid rafts on immune cell surfaces via two epitopes, which may be cryptic in collagen-associated lumican. The Cav1 binding epitope alone is sufficient for cell surface enrichment of Cav1, while both are required for lumican to increase cell surface TLR4, CD14, and proinflammatory cytokines in response to LPS. Endocytosed lumican colocalizes with TLR4 and LPS and promotes endosomal induction of type I interferons. Lumican-null macrophages show elevated TLR9 in signal-permissive endolysosomes and increased response, while wild types show lumican colocalization with CpG DNA but not TLR9, consistent with a ligand sequestering, restrictive role for lumican in TLR9 signaling. In vitro, lumican competes with CD14 to bind CpG DNA; biglycan, a lumican paralog, also binds CpG DNA and suppresses TLR9 response. Thus, lumican and other ECM proteins, synthesized de novo or released from collagen association during ECM remodeling, may be internalized by immune cells to regulate their transcriptional programs and effector responses that may be harnessed in future therapeutics.


Subject(s)
Endocytosis , Extracellular Matrix/metabolism , Leukocytes/metabolism , Lumican/metabolism , Sepsis/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 9/metabolism , Adult , Animals , Caveolin 1/metabolism , Cell Membrane/metabolism , Disease Models, Animal , Endosomes/metabolism , Fibroblasts/metabolism , HEK293 Cells , Humans , Ligands , Lipopolysaccharide Receptors/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Models, Biological , Myeloid Differentiation Factor 88/metabolism , Oligodeoxyribonucleotides/metabolism , Omentum/pathology , Paracrine Communication , Peritoneum/pathology , Protein Binding , Protein Transport , Sepsis/microbiology
4.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474072

ABSTRACT

This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.


Subject(s)
COVID-19 , Proteoglycans , Humans , Lumican , Post-Acute COVID-19 Syndrome , Chondroitin Sulfate Proteoglycans/metabolism , Biomarkers
5.
Clin Proteomics ; 20(1): 52, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990292

ABSTRACT

BACKGROUND: Prostate Cancer (PCa) represents the second leading cause of cancer-related death in men. Prostate-specific antigen (PSA) serum testing, currently used for PCa screening, lacks the necessary sensitivity and specificity. New non-invasive diagnostic tools able to discriminate tumoral from benign conditions and aggressive (AG-PCa) from indolent forms of PCa (NAG-PCa) are required to avoid unnecessary biopsies. METHODS: In this work, 32 formerly N-glycosylated peptides were quantified by PRM (parallel reaction monitoring) in 163 serum samples (79 from PCa patients and 84 from individuals affected by benign prostatic hyperplasia (BPH)) in two technical replicates. These potential biomarker candidates were prioritized through a multi-stage biomarker discovery pipeline articulated in: discovery, LC-PRM assay development and verification phases. Because of the well-established involvement of glycoproteins in cancer development and progression, the proteomic analysis was focused on glycoproteins enriched by TiO2 (titanium dioxide) strategy. RESULTS: Machine learning algorithms have been applied to the combined matrix comprising proteomic and clinical variables, resulting in a predictive model based on six proteomic variables (RNASE1, LAMP2, LUM, MASP1, NCAM1, GPLD1) and five clinical variables (prostate dimension, proPSA, free-PSA, total-PSA, free/total-PSA) able to distinguish PCa from BPH with an area under the Receiver Operating Characteristic (ROC) curve of 0.93. This model outperformed PSA alone which, on the same sample set, was able to discriminate PCa from BPH with an AUC of 0.79. To improve the clinical managing of PCa patients, an explorative small-scale analysis (79 samples) aimed at distinguishing AG-PCa from NAG-PCa was conducted. A predictor of PCa aggressiveness based on the combination of 7 proteomic variables (FCN3, LGALS3BP, AZU1, C6, LAMB1, CHL1, POSTN) and proPSA was developed (AUC of 0.69). CONCLUSIONS: To address the impelling need of more sensitive and specific serum diagnostic tests, a predictive model combining proteomic and clinical variables was developed. A preliminary evaluation to build a new tool able to discriminate aggressive presentations of PCa from tumors with benign behavior was exploited. This predictor displayed moderate performances, but no conclusions can be drawn due to the limited number of the sample cohort. Data are available via ProteomeXchange with identifier PXD035935.

6.
Exp Eye Res ; 235: 109612, 2023 10.
Article in English | MEDLINE | ID: mdl-37580001

ABSTRACT

The harderian gland (HG) is a gland located at the base of the nictating membrane and fills the inferomedial aspect of the orbit in rodents. It is under the influence of the hypothalamic-pituitary-gonadal axis and, because of its hormone receptors, it is a target tissue for prolactin (PRL) and sex steroid hormones (estrogen and progesterone). In humans and murine, the anterior surface of the eyes is protected by a tear film synthesized by glands associated with the eye. In order to understand the endocrine changes caused by hyperprolactinemia in the glands responsible for the formation of the tear film, we used an animal model with metoclopramide-induced hyperprolactinemia (HPRL). Given the evidences that HPRL can lead to a process of cell death and tissue fibrosis, the protein expression of small leucine-rich proteoglycans (SLRPs) was analyzed through immunohistochemistry in the HG of the non- and the pregnant female mice with hyperprolactinemia. The SRLPs are related to collagen fibrillogenesis and they participate in pro-apoptotic signals. Our data revealed that high prolactin levels and changes in steroid hormones (estrogen and progesterone) can lead to an alteration in the amount of collagen, and in the structure of type I and III collagen fibers through changes in the amounts of lumican and decorin, which are responsible for collagen fibrillogenesis. This fact can lead to the impaired functioning of the HG by excessive apoptosis in the HG of the non- and the pregnant female mice with HPRL and especially in the HG of pregnancy-associated hyperprolactinemia.


Subject(s)
Harderian Gland , Hyperprolactinemia , Pregnancy , Humans , Mice , Female , Animals , Proteoglycans/metabolism , Extracellular Matrix Proteins/metabolism , Hyperprolactinemia/chemically induced , Hyperprolactinemia/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Decorin/metabolism , Prolactin/adverse effects , Prolactin/analysis , Prolactin/metabolism , Progesterone , Harderian Gland/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism , Estrogens/adverse effects , Estrogens/analysis , Estrogens/metabolism
7.
Ultrastruct Pathol ; 47(6): 484-494, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37840262

ABSTRACT

Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.


Subject(s)
Small Leucine-Rich Proteoglycans , Telocytes , Female , Humans , Biglycan/metabolism , Small Leucine-Rich Proteoglycans/metabolism , Lumican/metabolism , Decorin/metabolism , Fibromodulin/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Extracellular Matrix Proteins/metabolism , Endometrium , Telocytes/metabolism
8.
Int J Mol Sci ; 24(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37834438

ABSTRACT

Lumican is an extracellular matrix proteoglycan known to regulate toll-like receptor (TLR) signaling in innate immune cells. In experimental settings, lumican suppresses TLR9 signaling by binding to and sequestering its synthetic ligand, CpG-DNA, in non-signal permissive endosomes. However, the molecular details of lumican interactions with CpG-DNA are obscure. Here, the 3-D structure of the 22 base-long CpG-DNA (CpG ODN_2395) bound to lumican or TLR9 were modeled using homology modeling and docking methods. Some of the TLR9-CpG ODN_2395 features predicted by our model are consistent with the previously reported TLR9-CpG DNA crystal structure, substantiating our current analysis. Our modeling indicated a smaller buried surface area for lumican-CpG ODN_2395 (1803 Å2) compared to that of TLR9-CpG ODN_2395 (2094 Å2), implying a potentially lower binding strength for lumican and CpG-DNA than TLR9 and CpG-DNA. The docking analysis identified 32 amino acids in lumican LRR1-11 interacting with CpG ODN_2395, primarily through hydrogen bonding, salt-bridges, and hydrophobic interactions. Our study provides molecular insights into lumican and CpG-DNA interactions that may lead to molecular targets for modulating TLR9-mediated inflammation and autoimmunity.


Subject(s)
Signal Transduction , Toll-Like Receptor 9 , Toll-Like Receptor 9/genetics , Leucine , Lumican , Oligodeoxyribonucleotides/genetics , DNA
9.
J Cell Physiol ; 237(1): 617-636, 2022 01.
Article in English | MEDLINE | ID: mdl-34270095

ABSTRACT

Beta 1,4-galactosyltransferase (B4GALT)-family glycosyltransferases are involved in multiple biological processes promoting cancer progression, regulating the dynamic network of cancer cell proliferation and apoptosis, and are associated with metastasis. However, their roles in the dysregulation of expressions and functions in hepatocellular carcinoma (HCC) remain unclear. Herein, bioinformatic approaches have been applied to investigate their expression profiles, and to obtain correlations between gene expressions and clinicopathological parameters as well as downstream target genes in HCC. Multiple databases were used to screen the expressions of B4GALT family members in tumor tissues, and to evaluate their prognostic value among HCC patients in different aspects. Results indicated an overall upregulation of B4GALTs' transcription levels in tumor tissues and a strong correlation with poor prognosis. Through Gene Ontology analysis, gene set enrichment analysis, and verification of single-cell RNA sequencing data, we established a connection between the B4GALT family and microtubule spindle assembly, which particularly highlighted the role of B4GALT4 in this phenomenon. B4GALT4 knockdown downregulated the production of lumican, and repressed the expressions of polo-like kinase 1 and RHAMM by regulating the transforming growth factor-beta pathway, thus suggesting that B4GALT4 is a critical promotor for HCC. We believe that these studies will provide valuable insight into the role of B4GALT family members in HCC and lead to the development of new strategies to improve the outcomes for patients with HCC.


Subject(s)
Biological Phenomena , Carcinoma, Hepatocellular , Galactosyltransferases , Liver Neoplasms , Humans , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/genetics , Galactosyltransferases/metabolism , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/pathology , Microtubules/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Polo-Like Kinase 1
10.
J Transl Med ; 20(1): 392, 2022 09 04.
Article in English | MEDLINE | ID: mdl-36059026

ABSTRACT

BACKGROUND: Fibroproliferative repair starts early in the inflammatory phase of acute respiratory distress syndrome (ARDS) and indicates a poor prognosis. Lumican, a small leucine-rich proteoglycan, is implicated in homeostasis and fibrogenesis, but its role in ARDS is unclear. METHODS: Bronchoalveolar lavage fluid (BALF) samples were obtained from ARDS patients (n = 55) enrolled within 24 h of diagnosis and mechanically ventilated (n = 20) and spontaneously breathing (n = 29) control subjects. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse models were intratracheally administered an adeno-associated virus (AAV) vector expressing lumican shRNA. Primary human lung fibroblasts (HLF) and small airway epithelial cells (SAECs) were cultured with tumour necrosis factor (TNF)-α or lumican. Luminex/ELISA, histochemistry/immunohistochemistry, immunofluorescence microscopy, quantitative real-time PCR, and western blotting were performed. RESULTS: Lumican levels were significantly higher in the BALF of ARDS patients than in that of ventilated or spontaneously breathing controls (both p < 0.0001); they were correlated with the PaO2/FiO2 ratio and levels of proinflammatory cytokines (interleukin-6, interleukin-8, and TNF-α) and profibrotic factors (fibronectin, alpha-1 type I collagen [COL1A1], and alpha-1 type III collagen [COL3A1]). Lumican expression was enhanced in the alveolar walls and airway epithelium in the ALI mouse model. Murine lumican levels were also linked to proinflammatory and profibrotic cytokine levels in the BALF. In vitro, TNF-α induced the synthesis and secretion of lumican in HLF. In turn, lumican increased the expression of alpha-smooth muscle actin (α-SMA), COL1A1, and COL3A1 in HLF, upregulated α-SMA and COL3A1, downregulated E-cadherin, and caused spindle-shaped morphological changes in SAECs. Moreover, increased ERK phosphorylation and Slug were noted in both HLF and SAECs treated with lumican. In vivo, AAV-mediated knockdown of lumican inhibited the pulmonary production of fibronectin and COL3A1 and alleviated lung fibrotic lesions in LPS-challenged mice. CONCLUSIONS: Pulmonary lumican levels were increased early in human and experimental ARDS and linked to disease severity and inflammatory fibrotic processes. Lumican triggers the transdifferentiation of lung fibroblasts into myofibroblasts and epithelial-mesenchymal transition in SAECs, possibly via the ERK/Slug pathway. Knockdown of pulmonary lumican attenuated extracellular matrix deposition in ALI mice. Overall, lumican promotes fibrotic responses in the early phase of ARDS, suggesting its potential as a therapeutic target.


Subject(s)
Acute Lung Injury , Lumican/metabolism , Respiratory Distress Syndrome , Acute Lung Injury/chemically induced , Animals , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Models, Animal , Fibronectins , Fibrosis , Humans , Lipopolysaccharides/metabolism , Lung/pathology , Mice , Respiratory Distress Syndrome/pathology , Tumor Necrosis Factor-alpha/metabolism
11.
Cell Mol Neurobiol ; 42(6): 1921-1932, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33712885

ABSTRACT

The brain extracellular matrix (ECM) is involved in crucial processes of neural support, neuronal and synaptic plasticity, extrasynaptic transmission, and neurotransmission. ECM is a tridimensional fibrillary meshwork composed of macromolecules that determine its bioactivity and give it unique characteristics. The characterization of the brain ECM is critical to understand its dynamic in SZ. Thus, a comparative study was developed with 71 patients with schizophrenia (SZ) and 70 healthy controls. Plasma of participants was analysed by label-free liquid chromatography-tandem mass spectrometry, and the results were validated using the classical western blot method. Lastly, immunostaining of post-mortem human brain tissue was performed to analyse the distribution of the brain ECM proteins by confocal microscopy. The analysis identified four proteins: fibronectin, lumican, nidogen-1, and secreted protein acidic and rich in cysteine (SPARC) as components of the brain ECM. Statistical significance was found for fibronectin (P = 0.0166), SPARC (P = 0.0003), lumican (P = 0.0012), and nidogen-1 (P < 0.0001) that were decreased in the SZ group. Fluorescence imaging of prefrontal cortex (PFC) sections revealed a lower expression of ECM proteins in SZ. Our study proposes a pathophysiological dysregulation of proteins of the brain ECM, whose abnormal composition leads to a progressive neuronal impairment and consequently to neurodegenerative processes due to lack of neurophysiological support and dysregulation of neuronal homeostasis. Moreover, the brain ECM and its components are potential pharmacological targets to develop new therapeutic approaches to treat SZ.


Subject(s)
Fibronectins , Schizophrenia , Brain/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Fibronectins/metabolism , Humans , Lumican/metabolism , Osteonectin/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism
12.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361971

ABSTRACT

Quinoline derivatives have been reported to possess a wide range of pharmaceutical activities. Our group previously synthesized a series of quinoline compounds, in which compound 91b1 showed a significant anticancer effect. The purpose of this study was to evaluate the anticancer activity of compound 91b1 in vitro and in vivo, and screen out its regulated target. A series of cancer cell lines and nontumor cell lines were treated with compound 91b1 by MTS cytotoxicity assay and cell-cycle assay. In vivo anticancer activity was evaluated by a xenografted model on nude mice. Target prediction of 91b1 was assessed by microarray assay and confirmed by pancancer analysis. Relative expression of the target gene Lumican was measured by qRT-PCR. 91b1 significantly reduced tumor size in the nude mice xenograft model. Lumican was downregulated after 91b1 treatment. Lumican was proven to increase tumorigenesis in vivo, as well as cancer cell migration, invasion, and proliferation in vitro. The results of this study suggest that the anticancer activity of compound 91b1 probably works through downregulating the gene Lumican.


Subject(s)
Antineoplastic Agents , Quinolines , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Lumican/drug effects , Lumican/metabolism , Mice, Nude , Quinolines/pharmacology
13.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077426

ABSTRACT

Exerkines are soluble factors secreted by exercised muscles, mimicking the effects of exercise in various organs, including the muscle itself. Lumican is reportedly secreted from muscles; however, its roles in skeletal muscle remain unknown. Herein, we found that lumican mRNA expression in the extensor digitorum longus was significantly higher in exercised mice than in unloading mice, and lumican stimulated myogenesis in vitro. Additionally, lumican knockdown significantly decreased muscle mass and cross-sectional area (CSA) of the muscle fiber in the gastrocnemius muscle of exercised mice. Lumican upregulated phosphorylation of p38 mitogen-activated protein kinase (MAPK) and a p38 inhibitor near completely blocked lumican-stimulated myogenesis. Inhibitors for integrin α2ß1 and integrin ανß3 also prevented lumican-stimulated myogenesis. Systemic lumican treatment, administered via the tail vein for 4 weeks, significantly increased relative muscle masses by 36.1% in ovariectomized mice. In addition, intramuscular lumican injection into unloaded muscles for 2 weeks significantly increased muscle mass by 8.5%. Both intravenous and intramuscular lumican treatment significantly increased muscle CSA. Our in vitro and in vivo experiments indicate that lumican is a muscle-secreted exerkine that affords protection against muscle loss by activating p38 MAPK via integrin receptors.


Subject(s)
Lumican/metabolism , Muscle, Skeletal , Muscular Diseases , Animals , Integrins/metabolism , Mice , Muscle Development , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Phosphorylation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Semin Cancer Biol ; 62: 125-133, 2020 05.
Article in English | MEDLINE | ID: mdl-31401293

ABSTRACT

A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERß, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERß in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Podosomes/metabolism , Animals , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Epithelial-Mesenchymal Transition/genetics , Extracellular Matrix/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Lumican/genetics , Lumican/metabolism , Molecular Targeted Therapy , Signal Transduction
15.
Arch Biochem Biophys ; 697: 108676, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33188736

ABSTRACT

Keloids are characterized by fibroblast activation and altered architecture of extracellular matrix (ECM). Excessive deposition of ECM molecules and irregular organization of collagen fibers have been observed in keloids. However, the ultrastructural alteration of collagen has not been fully investigated. In this study, the differences in tissue structure, collagen ultrastructure, matrix components, mechanical properties and collagen assembling molecules between keloids and their extra-lesional skins (ELSs) were explored using histology, transmission electron microscope (TEM), qPCR, Western blot, immunohistochemistry and bioinformatics. Histological evaluation showed thinner fibers in keloids with increased contents of collagen III and proteoglycans, which were supported by TEM findings of thinner collagen fibrils and less developed D-band periodicity in keloids than in ELSs (p < 0.05). In addition, total collagen and water contents were significantly increased (p < 0.05) along with richer proteoglycan production in keloids vs ELSs, which also led to increased stiffness and decreased maximal load in keloids compared with ELSs. Mechanism study showed that multiple molecules related to matrix assembly were significantly upregulated in keloids (p < 0.05). In particular, lumican and collagen V showed high degrees in co-expression analysis and their upregulation levels were revealed from microarray data, which were also verified in keloids at both gene and protein levels (p < 0.05). Nevertheless, siRNA knockdown of lumican failed to affect in vitro collagen assembly, but caused upregulated collagen V expression along with the upregulation of focal adhesion kinase, TGF-ß1, TGF-ß3 and PDGF, among which some are known for capable of enhancing collagen V expression. In conclusion, this study demonstrates impaired collagen assembly along with enhanced expression of lumican and collagen V, both are known for interfering with collagen fibril assembly.


Subject(s)
Collagen Type V/genetics , Collagen Type V/metabolism , Gene Expression Regulation , Keloid/genetics , Keloid/metabolism , Lumican/genetics , Adult , Collagen Type V/chemistry , Female , Humans , Male , Middle Aged , Young Adult
16.
Adv Exp Med Biol ; 1348: 127-138, 2021.
Article in English | MEDLINE | ID: mdl-34807417

ABSTRACT

Proteoglycans consist of protein cores to which at least one glycosaminoglycan chain is attached. They play important roles in the physiology and biomechanical function of tendons, ligaments, cardiovascular system, and other systems through their involvement in regulation of assembly and maintenance of extracellular matrix, and through their participation in cell proliferation together with growth factors. They can be divided into two main groups, small and large proteoglycans. The small proteoglycans are also known as small leucine-rich proteoglycans (SLRPs) which are encoded by 18 genes and are further subclassified into Classes I-V. Several members of Class I and II, such as decorin and biglycan from Class I, and Class II fibromodulin and lumican, are known to regulate collagen fibrillogenesis. Decorin limits the diameter of collagen fibrils during fibrillogenesis. The function of biglycan in fibrillogenesis is similar to that of decorin. Though biomechanical function of tendon is compromised in decorin-deficient mice, decorin can substitute for lack of biglycan in biglycan-deficient mice. New data also indicate an important role for biglycan in disorders of the cardiovascular system, including aortic valve stenosis and aortic dissection. Two members of the Class II of SLRPs, fibromodulin and lumican bind to the same site within the collagen molecule and can substitute for each other in fibromodulin- or lumican-deficient mice.Aggrecan and versican are the major representatives of the large proteoglycans. Though they are mainly found in the cartilage where they provide resilience and toughness, they are present also in tensile portions of tendons and, in slightly different biochemical form in fibrocartilage. Degradation by aggrecanase is responsible for the appearance of different forms of aggrecan and versican in different parts of the tendon where these cleaved forms play different roles. In addition, they are important components of the ventricularis of cardiac valves. Mutations in the gene for versican or in the gene for elastin (which binds to versican ) lead to severe disruptions of normal developmental of the heart at least in mice.


Subject(s)
Extracellular Matrix , Keratan Sulfate , Animals , Collagen , Decorin/genetics , Mice , Versicans/genetics
17.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946862

ABSTRACT

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


Subject(s)
Bone Resorption/physiopathology , Lumican/pharmacology , Osteoclasts/metabolism , Osteogenesis/physiology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Fusion , Cell Movement/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Lumican/physiology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Mice , Mice, Inbred ICR , Osteogenesis/drug effects , Osteoprotegerin/biosynthesis , RANK Ligand/biosynthesis , RANK Ligand/pharmacology , Recombinant Proteins/pharmacology
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298915

ABSTRACT

Retinal diseases such as age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and diabetic retinopathy (DR) are the leading causes of visual impairment worldwide. There is a critical need to understand the structural and cellular components that play a vital role in the pathophysiology of retinal diseases. One potential component is the family of structural proteins called small leucine-rich proteoglycans (SLRPs). SLRPs are crucial in many fundamental biological processes involved in the maintenance of retinal homeostasis. They are present within the extracellular matrix (ECM) of connective and vascular tissues and contribute to tissue organization and modulation of cell growth. They play a vital role in cell-matrix interactions in many upstream signaling pathways involved in fibrillogenesis and angiogenesis. In this comprehensive review, we describe the expression patterns and function of SLRPs in the retina, including Biglycan and Decorin from class I; Fibromodulin, Lumican, and a Proline/arginine-rich end leucine-rich repeat protein (PRELP) from class II; Opticin and Osteoglycin/Mimecan from class III; and Chondroadherin (CHAD), Tsukushi and Nyctalopin from class IV.


Subject(s)
Leucine/metabolism , Retina/metabolism , Small Leucine-Rich Proteoglycans/metabolism , Animals , Chondroitin Sulfate Proteoglycans/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Humans
19.
Osteoarthritis Cartilage ; 28(1): 92-101, 2020 01.
Article in English | MEDLINE | ID: mdl-31715293

ABSTRACT

OBJECTIVE: Lumican (LUM) is a major extracellular matrix glycoprotein in adult articular cartilage and its expression is known to be upregulated upon cartilage degeneration. LUM is associated with the pathogen-associated molecular pattern (PAMP) activation of the TLR4 signalling cascade, with TLR4 being highly associated with inflammation in rheumatic diseases. However, the main role of the LUM structural molecule in osteoarthritis (OA) remains elusive. The aim of this study was, therefore, to understand the role of LUM during TLR4-mediated activation in OA. METHODS: After measuring LUM levels in synovial fluid (SF) of OA patients and lipopolysaccharide (LPS)-induced TLR4 activation, the role of LUM in the expression of pro-inflammatory molecules and cartilage degradation was assessed in vitro and ex vivo in a cartilage explant model. Primary macrophage activation and polarization were studied upon LUM co-stimulation with LPS. RESULTS: We demonstrate that LUM is not only significantly upregulated in SF from OA patients compared to healthy controls, but also that LUM increases lipopolysaccharide (LPS)-induced TLR4 activation. Furthermore, we show that a pathophysiological level of LUM augments the LPS-induced TLR4 activation and expression of downstream pro-inflammatory molecules, resulting in extensive cartilage degradation. LUM co-stimulation with LPS also provided a pro-inflammatory stimulus, upregulating primary macrophage activation and polarization towards the M1-like phenotype. CONCLUSIONS: These findings strongly support the role of LUM as a mediator of PAMP-induced TLR4 activation of inflammation, cartilage degradation, and macrophage polarization in the OA joint and potentially other rheumatic diseases.


Subject(s)
Cartilage/metabolism , Lumican/physiology , Macrophages/physiology , Osteoarthritis/metabolism , Toll-Like Receptor 4/physiology , Adult , Aged , Aged, 80 and over , Cell Differentiation , Chondrocytes/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Lumican/analysis , Lumican/metabolism , Macrophage Activation , Male , Middle Aged , NF-kappa B/metabolism , Synovial Fluid/chemistry , Synovial Fluid/metabolism , Toll-Like Receptor 4/metabolism , Up-Regulation
20.
Cardiology ; 145(3): 187-198, 2020.
Article in English | MEDLINE | ID: mdl-31968347

ABSTRACT

INTRODUCTION: The heart undergoes myocardial remodeling during progression to heart failure following pressure overload. Myocardial remodeling is associated with structural and functional changes in cardiac myocytes, fibroblasts, and the extracellular matrix (ECM) and is accompanied by inflammation. Cardiac fibrosis, the accumulation of ECM molecules including collagens and collagen cross-linking, contributes both to impaired systolic and diastolic function. Insufficient mechanistic insight into what regulates cardiac fibrosis during pathological conditions has hampered therapeutic so-lutions. Lumican (LUM) is an ECM-secreted proteoglycan known to regulate collagen fibrillogenesis. Its expression in the heart is increased in clinical and experimental heart failure. Furthermore, LUM is important for survival and cardiac remodeling following pressure overload. We have recently reported that total lack of LUM increased mortality and left ventricular dilatation, and reduced collagen expression and cross-linking in LUM knockout mice after aortic banding (AB). Here, we examined the effect of LUM on myocardial remodeling and function following pressure overload in a less extreme mouse model, where cardiac LUM level was reduced to 50% (i.e., moderate loss of LUM). METHODS AND RESULTS: mRNA and protein levels of LUM were reduced to 50% in heterozygous LUM (LUM+/-) hearts compared to wild-type (WT) controls. LUM+/- mice were subjected to AB. There was no difference in survival between LUM+/- and WT mice post-AB. Echocardiography revealed no striking differences in cardiac geometry between LUM+/- and WT mice 2, 4, and 6 weeks post-AB, although markers of diastolic dysfunction indicated better function in LUM+/- mice. LUM+/- hearts revealed reduced cardiac fibrosis assessed by histology. In accordance, the expression of collagen I and III, the main fibrillar collagens in the heart, and other ECM molecules central to fibrosis, i.e. including periostin and fibronectin, was reduced in the hearts of LUM+/- compared to WT 6 weeks post-AB. We found no differences in collagen cross-linking between LUM+/- and WT mice post-AB, as assessed by histology and qPCR. CONCLUSIONS: Moderate lack of LUM attenuated cardiac fibrosis and improved diastolic dysfunction following pressure overload in mice, adding to the growing body of evidence suggesting that LUM is a central profibrotic molecule in the heart that could serve as a potential therapeutic target.


Subject(s)
Heart Failure/metabolism , Heart Ventricles/metabolism , Hypertrophy, Left Ventricular/metabolism , Lumican/physiology , Myofibroblasts/metabolism , Animals , Collagen/metabolism , Disease Models, Animal , Echocardiography , Extracellular Matrix/metabolism , Heart Ventricles/pathology , Lumican/genetics , Male , Mice , Mice, Knockout , Myofibroblasts/pathology , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL