Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Anal Bioanal Chem ; 416(7): 1667-1677, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342787

ABSTRACT

The harm and impact of the COVID-19 pandemic have highlighted the importance of fast, sensitive, and cost-effective virus detection methods. In this study, we developed a DNA aptamer sensor using nanoparticle-enhanced surface plasmon resonance imaging (SPRi) technology to achieve efficient labeling-free detection of SARS-CoV-2 S protein. We used the same DNA aptamer to modify the surface of the SPRi sensor chip and gold nanoparticles (AuNPs), respectively, for capturing target analytes and amplifying signals, achieving ideal results while greatly reducing costs and simplifying the preparation process. The SPRi sensing method exhibits a good linear relationship (R2 = 0.9926) in the concentration range of 1-20 nM before adding AuNPs to amplify the signal, with a limit of detection (LOD) of 0.32 nM. After amplifying the signal, there is a good linear relationship (R2 = 0.9829) between the concentration range of 25-1000 pM, with a LOD of 5.99 pM. The simulation results also verified the effectiveness of AuNPs in improving SPRi signal response. The SPRi sensor has the advantage of short detection time and can complete the detection within 10 min. In addition, the specificity and repeatability of this method can achieve excellent results. This is the first study to simultaneously capture a viral marker protein and amplify the signal using polyadenylic acid (polyA)-modified DNA aptamers on the SPR platform. This scheme can be used as a fast and inexpensive detection method for diagnosis at the point of care (POC) to combat current and future epidemics caused by the virus.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Surface Plasmon Resonance/methods , Spike Glycoprotein, Coronavirus , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Gold/chemistry , Pandemics , Metal Nanoparticles/chemistry , COVID-19/diagnosis , SARS-CoV-2 , DNA , Viral Proteins
2.
Nano Lett ; 23(1): 353-362, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36394269

ABSTRACT

Growing evidence indicates that the tumor microenvironment (TME) can be combined with other therapeutic modalities, including cytotoxic chemotherapy and targeted therapies, to produce unanticipated results in oncology treatment. Here, we proposed a novel bacterial nanomaterial capable of targeting peritumoral biofilm and modulating TME. It was based on tetrahedral framework nucleic acids (T) that were chemically attached to aptamer AS1411 and 5-fluorouracil (AT5). Additionally, the oral pathogenic bacterium Streptococcus mutans (S.m) was employed as a biocarrier for synergetic biofilm targeting and immunomodulation. In this article, the effect of AT5-coupled S.m-derived nanocells (S.m-AT5) was investigated in vitro and in vivo. Due to bacteria aggregation in the tumor-specific biofilm, these nanocells released greater medication concentrations. Furthermore, they exerted an immunomodulatory effect by stimulating the maturation of dendritic cells (DCs) and regulation of T cells. This chemo-immunostimulation combination has a powerful antitumor impact. It may also be an advanced approach for boosting the survival rate of cancer patients.


Subject(s)
Immunomodulation , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Biofilms , Streptococcus mutans/metabolism , Tumor Microenvironment
3.
Chemistry ; 27(26): 7351-7355, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33772916

ABSTRACT

We report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids. In this latter context, South sugar pucker favors the formation of a 2'F⋅⋅H8 attractive interaction with a neighboring purine, which compensates the destabilizing effect of base pair distortions. These interactions share some features with pseudohydrogen bonds described previously in other nucleic acids structures with fluorine modified sugars.


Subject(s)
DNA , RNA , Deoxycytidine/analogs & derivatives , Nucleic Acid Conformation , Gemcitabine
4.
Bioorg Chem ; 99: 103829, 2020 06.
Article in English | MEDLINE | ID: mdl-32299018

ABSTRACT

Deoxyuridine triphosphate derivatives (dUTPs) modified at the C5 position of the pyrimidine ring with various aromatic hydrocarbon substituents of different hydrophilicities have been synthesized. The aromatic hydrocarbon substituents were attached to dUTPs via a CHCHCH2NHCOCH2 linker. The efficiency of the PCR incorporation of modified dUMPs using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases and a model DNA template containing one, two and three adjacent adenine nucleotides at three different sites within the sequence was investigated. For all the polymerases used, the yield of the modified PCR product was significantly increased with increasing hydrophilicity of the aromatic hydrocarbon substituent. In particular, for the above polymerases, the efficiency of the incorporation of dUMPs modified with the most hydrophilic of the studied aromatic hydrocarbon substituents, a 4-hydroxyphenyl residue, was 60-85% of the efficiency of dTMP incorporation. At the same time, the relative efficiencies of the incorporation of dUMPs modified with 2-, 4-methoxyphenyl, phenyl and 4-nitrophenyl substituents ranged from 20 to 50% and were 2-18% for the 1-naphthalene and 4-biphenyl groups, which were the most hydrophobic of the studied aromatic hydrocarbon substituents.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Deoxyuracil Nucleotides/biosynthesis , Deoxyuracil Nucleotides/genetics , Hydrocarbons, Aromatic/metabolism , Polymerase Chain Reaction , DNA-Directed DNA Polymerase/chemistry , Deoxyuracil Nucleotides/chemistry , Hydrocarbons, Aromatic/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Structure
5.
Molecules ; 25(21)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114568

ABSTRACT

Quantum mechanical (QM) and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of a recently reported dinuclear mercury(II)-mediated base pair were performed aiming to analyse its intramolecular bonding pattern, its stability, and to obtain clues on the mechanism of the incorporation of mercury(II) into the DNA. The dynamic distance constraint was employed to find initial structures, control the dissociation process in an unbiased fashion and to determine the free energy required. A strong influence of the exocyclic carbonyl or amino groups of neighbouring base pairs on both the bonding pattern and the mechanism of incorporation was observed. During the dissociation simulation, an amino group of an adenine moiety of the adjacent base pair acts as a turnstile to rotate the mercury(II) ion out of the DNA core region. The calculations provide an important insight into the mechanism of formation of this dinuclear metal-mediated base pair and indicate that the exact location of a transition metal ion in a metal-mediated base pair may be more ambiguous than derived from simple model building.


Subject(s)
Base Pairing , DNA/chemistry , Mercury/chemistry , DNA/metabolism , Molecular Dynamics Simulation , Thermodynamics
6.
Mol Biol (Mosk) ; 53(3): 513-523, 2019.
Article in Russian | MEDLINE | ID: mdl-31184617

ABSTRACT

The effects of modified deoxyuridine triphosphates (mod-dUTPs) with different substituents at the C5 position of the pyrimidine cycle on the kinetics of PCR with Taq and Vent (exo-) DNA polymerases are studied. Substituents in mod-dUTP include carboxamide group and groups that are part of the side chains of alanine, valine, leucine, phenylalanine, tryptophan, or tyrosine. For each mod-dUTP, the yields of the target product are measured with the full substitution of dTTP. A fragment of bacterial DNA with a certain nucleotide sequence and a synthetic combinatorial DNA library of random nucleotide sequences are used as templates for amplification. For each mod-dUTP-template-polymerase combination, the correlation between the amplification efficiencies and yields of the target product are investigated. PCR product accumulation curves are influenced by both the template used and the presence of a modified substrate. The catalytic activity of Taq polymerase is higher when mod-dUTPs with short aliphatic substituents are used and decreases when the derivatives with long aliphatic, phenyl, and indole substituents are utilized. Vent (exo-) polymerase is less sensitive to the chemical structure of mod-dUTP. The dynamic measuring of DNA accumulation may be useful for optimizing the temperature-time PCR profiles individually for each of the mod-dUTP. The derivatives may be used in combination with Vent (exo-) polymerase to obtain modified DNA sequences for the method of selection of modified aptamers (mod-SELEX).


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , DNA/chemistry , Real-Time Polymerase Chain Reaction , Gene Library , Kinetics , SELEX Aptamer Technique
7.
Int J Legal Med ; 132(6): 1515-1526, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29423711

ABSTRACT

Soil is often collected from a suspect's tire, vehicle, or shoes during a criminal investigation and subsequently submitted to a forensic laboratory for analysis. Plant and insect material recovered in such samples is rarely analyzed, as morphological identification is difficult. In this study, DNA barcoding was used for taxonomic identifications by targeting the gene regions known to permit discrimination in plants [maturase K (matK) and ribulose 1,5-biphosphate carboxylase (rbcL)] and insects [cytochrome oxidase subunit I (COI)]. A DNA barcode protocol suitable for processing forensic-type biological fragments was developed and its utility broadly tested with forensic-type fragments (e.g., seeds, leaves, bark, head, legs; n, 213) isolated from soils collected within Virginia, USA (n, 11). Difficulties with PCR inhibitors in plant extracts and obtaining clean Sanger sequence data from insect amplicons were encountered during protocol development; however, the final protocol produced sequences specific to the expected locus and taxa. The overall quantity and quality of DNA extracted from the 213 forensic-type biological fragments was low (< 15 ng/µL). For plant fragments, only the rbcL sequence data was deemed reliable; thus, taxonomic identifications were limited to the family level. The majority of insect sequences matched COI in both GenBank and Barcode of Life DataSystems; however, they were identified as an undescribed environmental contaminant. Although limited taxonomic information was gleaned from the forensic-type fragments processed in this study, the new protocol shows promise for obtaining reliable and specific identifications through DNA barcoding, which could ultimately enhance the information gleaned from soil examinations.


Subject(s)
DNA Barcoding, Taxonomic/methods , Insecta/genetics , Plants/genetics , Soil , Animals , DNA/analysis , DNA, Plant/analysis , Electron Transport Complex IV/genetics , Polymerase Chain Reaction , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Analysis, DNA
8.
Bioorg Med Chem Lett ; 28(1): 35-39, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29162456

ABSTRACT

We found for the first time that a thrombin-binding DNA aptamer (TBA) is selectively entrapped in fibrin gels during the gel growth reaction catalyzed by thrombin. Furthermore, using this phenomenon, we successfully demonstrated multiple incorporation of amphiphilic aliphatic groups into fibrin gels via chemically modified TBA.


Subject(s)
Aptamers, Nucleotide/chemistry , Fibrin/chemistry , Aptamers, Nucleotide/metabolism , Base Sequence , Cell Proliferation/drug effects , Fibrin/metabolism , Fibrin/pharmacology , Fibrinogen/metabolism , Gels/chemistry , HeLa Cells , Humans , Microscopy, Fluorescence , Thrombin/metabolism
9.
Bioessays ; 38(1): 27-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26660621

ABSTRACT

While N(6) -methyladenosine (m(6) A) is a well-known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well-studied 5-methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction-modification and counter-restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m(6) A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m(6) A-binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m(6) A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m(6) A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract.


Subject(s)
DNA Methylation/genetics , Eukaryota/genetics , Evolution, Molecular , Transcription, Genetic , 5-Methylcytosine/metabolism , Adenine/metabolism , Amino Acid Sequence/genetics , Chromatin/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
10.
Int J Mol Sci ; 19(8)2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30081520

ABSTRACT

Due to the addressability and programmability, DNA has been applied not merely in constructing static elegant nanostructures such as two dimensional and three dimensional DNA nanostructures but also in designing dynamic nanodevices. Moreover, DNA could combine with hydrophobic organic molecules to be a new amphiphilic building block and then self-assemble into nanomaterials. Of particular note, a recent state-of-the-art research has turned our attention to the amphiphilic DNA organic hybrids including small molecule modified DNA (lipid-DNA, fluorescent molecule-DNA, etc.), DNA block copolymers, and DNA-dendron hybrids. This review focuses mainly on the development of their self-assembly behavior and their potential application in nanomaterial and biomedicine. The potential challenges regarding of the amphiphilic DNA organic hybrids are also briefly discussed, aiming to advance their practical applications in nanoscience and biomedicine.


Subject(s)
DNA/blood , Polymers/chemistry , Animals , Humans , Hydrophobic and Hydrophilic Interactions , Nucleic Acid Hybridization
11.
Chembiochem ; 18(8): 755-763, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28150905

ABSTRACT

The thrombin-binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G-quadruplex-forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three-carbon spacer (spacer-C3 ), unlocked nucleic acid (UNA) and 3'-amino-modified UNA (amino-UNA) on the structural dynamics and stability of TBA. All three modifications were incorporated at three different loop positions (T3, T7, T12) of the TBA G-quadruplex structure to result in a series of TBA variants and their stability was studied by thermal denaturation; folding was studied by circular dichroism spectroscopy and thrombin clotting time. The results showed that spacer-C3 introduction at the T7 loop position (TBA-SP7) significantly improved stability and thrombin clotting time while maintaining a similar binding affinity as TBA to thrombin. Detailed molecular modelling experiments provided novel insights into the experimental observations, further supporting the efficacy of TBA-SP7. The results of this study could provide valuable information for future designs of TBA analogues with superior thrombin inhibition properties.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/chemical synthesis , G-Quadruplexes , Blood Coagulation , Models, Chemical , Molecular Dynamics Simulation , Molecular Structure , Stochastic Processes
12.
Chembiochem ; 18(8): 816-823, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28160372

ABSTRACT

Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.


Subject(s)
DNA Polymerase I/chemistry , DNA/chemical synthesis , Taq Polymerase/chemistry , DNA/chemistry , DNA Polymerase I/genetics , Manganese/chemistry , Mutation , Protein Engineering , RNA/chemical synthesis , Reverse Transcription , Taq Polymerase/genetics
13.
Chemistry ; 23(39): 9391-9396, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28513997

ABSTRACT

Anchoring DNA via hydrophobic units into the membrane of vesicles allows tagging of these nanocontainers with sequence information. Moreover, the hybridization of DNA on the surface of liposomes enables sequence specific functionalization, vesicle aggregation, and vesicle fusion. Specifically, DNA-hybridization-based approaches for fusion employing oligonucleotides terminally modified with one or two anchoring units were hindered by a limited degree of full fusion or by significant leakage during fusion. The current work deals with a new strategy for anchoring oligonucleotides on a membrane by lipid-modified nucleobases rather than by attaching hydrophobic units to the 3'- or 5'-termini. The lipid anchors were incorporated into the DNA sequence via phosphoramidite nucleotide building blocks during automated solid-phase synthesis allowing variation of the number and position of hydrophobic units along the DNA backbone. Single-stranded DNA functionalized with four lipid-modified nucleobases was stably grafted onto the membrane of lipid vesicles. It was found that the orientation of DNA hybridization and the number of anchoring units play a crucial role in liposomal fusion, which in the most efficient system reached remarkable 29 % content mixing without notable leakage.


Subject(s)
DNA, Single-Stranded/chemistry , Liposomes/chemistry , Cryoelectron Microscopy , Dynamic Light Scattering , Fluorescence Resonance Energy Transfer , Hydrophobic and Hydrophilic Interactions , Nucleic Acid Hybridization
14.
Angew Chem Int Ed Engl ; 55(42): 13164-13168, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27633832

ABSTRACT

The development and in-depth analysis of T4 DNA ligase-catalyzed DNA templated oligonucleotide polymerization toward the generation of diversely functionalized nucleic acid polymers is described. The NNNNT codon set enables low codon bias, high fidelity, and high efficiency for the polymerization of ANNNN libraries comprising various functional groups. The robustness of the method was highlighted in the copolymerization of a 256-membered ANNNN library comprising 16 sub-libraries modified with different functional groups. This enabled the generation of diversely functionalized synthetic nucleic acid polymer libraries with 93.8 % fidelity. This process should find ready application in DNA nanotechnology, DNA computing, and in vitro evolution of functional nucleic acid polymers.


Subject(s)
DNA Ligases/metabolism , DNA/biosynthesis , Polymers/metabolism , DNA/chemistry , Polymers/chemistry
15.
Electrophoresis ; 35(23): 3290-301, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25142019

ABSTRACT

DNA nanotechnology is a rapidly growing research area, where DNA may be used for wide range of applications such as construction of nanodevices serving for large scale of diverse purposes. Likewise a panel of various purified fluorescent proteins is investigated for their ability to emit their typical fluorescence spectra under influence of particular excitation. Hence these proteins may form ideal donor molecules for assembly of fluorescence resonance emission transfer (FRET) constructions. To extend the application possibilities of fluorescent proteins, while using DNA nanotechnology, we developed nanoconstruction comprising green fluorescent protein (GFP) bound onto surface of surface active nanomaghemite and functionalized with gold nanoparticles. We took advantage of natural affinity between gold and thiol moieties, which were modified to bind DNA fragment. Finally we enclosed doxorubicin into fullerene cages. Doxorubicin intercalated in DNA fragment bound on the particles and thus we were able to connect these parts together. Because GFP behaved as a donor and doxorubicin as an acceptor using excitation wavelength for GFP (395 nm) in emission wavelength of doxorubicin (590 nm) FRET was observed. This nanoconstruction may serve as a double-labeled transporter of doxorubicin guided by force of external magnetic force owing to the presence of nanomaghemite. Further nanomaghemite offers the possibility of using this technology for thermotherapy.


Subject(s)
DNA/chemistry , Doxorubicin/chemistry , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins/chemistry , Luminescent Proteins/chemistry , Magnetite Nanoparticles/chemistry , Nanotechnology/methods , Fullerenes
16.
Methods Mol Biol ; 2570: 39-44, 2023.
Article in English | MEDLINE | ID: mdl-36156772

ABSTRACT

Biased amplification of enriched DNA libraries is a limitation in the SELEX process and reduces the chances for successful enrichment of target-binding sequences. Implementation of emulsion PCR into click-SELEX protocols for targeting proteins or cells prevents the formation of by-products and increases the probability of successful enrichment of binding sequences. Through compartmentalization even poorly amplifiable sequences can be enriched, and by-products formed by product-product or product-primer hybridization are reduced to a minimum. In this chapter, we describe a protocol for emulsion PCR and subsequent DNA recovery for implementation into click-SELEX protocols using click-modified DNA. Our emulsion PCR protocol is easily integrated into existing SELEX protocols, requires no special laboratory equipment, and can be performed with easily commercially available reagents.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique , Aptamers, Nucleotide/genetics , DNA/genetics , Emulsions , Polymerase Chain Reaction/methods , SELEX Aptamer Technique/methods
17.
Biochimie ; 214(Pt A): 156-166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37437684

ABSTRACT

Oxidative stress unleashes reactive species capable of oxidizing 2'-deoxyguanosine (G) nucleotides in G-rich sequences of the genome, such as the potential G-quadruplex forming sequencing (PQS) in the NEIL3 gene promoter. Oxidative modification of G yields 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) that can be further oxidized to hydantoin products. Herein, OG was synthesized into the NEIL3 PQS that was allowed to fold to a G-quadruplex (G4) in K+ ion solutions with varying amounts of Mg2+ in the physiological range. The Mg2+ dependency in the oxidatively modified NEIL3 G4 to stall a replicative DNA polymerase was evaluated. The polymerase was found to stall at the G4 or OG, as well as continue to full-length extension with dependency on the location of the modification and the concentration of Mg2+. To provide some clarity on these findings, OG or the hydantoins were synthesized in model NEIL3 G4 folding sequences at the positions of the polymerase study. The model G4 sequences were allowed to fold in K+ ion solutions with varying levels of Mg2+ to identify how the presence of the divalent metal impacted G4 folding depending on the location of the modification. The presence of Mg2+ either caused the transition of the NEIL3 G4 folds from an antiparallel to parallel orientation of the strands or had no impact. Structural models are proposed to understand the findings using the literature as a guide. The biological significance of the results is discussed.


Subject(s)
G-Quadruplexes , Magnesium , Oxidative Stress/genetics , Oxidation-Reduction , Genome
18.
Front Chem ; 11: 1148699, 2023.
Article in English | MEDLINE | ID: mdl-36926382

ABSTRACT

Transmembrane transport, mostly relying on biological channels, is crucial for the metabolic processes of live cells including sensing, signaling, cellular communicating and molecular transport. Artificial biomimetic channels offer excellent opportunities for studying the mechanisms of the metabolic processes of live cells and promote the applications of gene transfection, drug delivery, and regulations of cellular communications. DNA nanopores can be designed flexibly and operated easily while maintaining good biocompatibility, offering a good candidate for applications in basic research. However, because of the small size and good biocompatibility of DNA nanopores, it is still difficult to form stable channels on the plasma membrane of live cells by DNA nanopores. As a result, it significantly limits the applications of DNA nanopores in vivo. Thus, in this work, we have constructed ethane-phosphorothioate (PPT) groups modified DNA nanopores (E-DNA nanopores) to simulate biological channels for the transmembrane transport of small molecules. The E-DNA nanopores were found to be more hydrophobic and stable to anchor at the plasma membrane of live cells for a longer time window for subsequent transmembrane transport after the modification of ethane-PPT groups. The membrane-spanning E-DNA nanopores with a longer dwell time window could inspire the design of new DNA nanostructures and expand their biological applications including biosensing and sequencing, construction of artificial cells and regulation of transmembrane transport.

19.
Mol Ther Nucleic Acids ; 31: 370-382, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36714461

ABSTRACT

Since its discovery, COVID-19 has rapidly spread across the globe and has had a massive toll on human health, with infection mortality rates as high as 10%, and a crippling impact on the world economy. Despite numerous advances, there remains an urgent need for accurate and rapid point-of-care diagnostic tests and better therapeutic treatment options. To contribute chemically distinct, non-protein-based affinity reagents, we report here the identification of modified DNA-based aptamers that selectively bind to the S1, S2, or receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Several aptamers inhibit the binding of the spike protein to its cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and neutralize authentic SARS-CoV-2 virus in vitro, including all variants of concern. With a high degree of nuclease resistance imparted by the base modifications, these reagents represent a new class of molecules with potential for further development as diagnostics or therapeutics.

20.
ACS Synth Biol ; 12(9): 2616-2631, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37646406

ABSTRACT

In the past decades, various xenobiotic nucleic acids (XNAs), including 2'-modified nucleic acids, have been developed as novel genetic materials and demonstrated great potential in synthetic biology and biotechnology. Enzymatic polymerization and replication of these artificial polymers are obviously the prerequisite to make full use of them, and DNA and RNA polymerases from different families have thus been extensively engineered for these purposes. However, the performance of engineered XNA polymerases is still far from satisfactory, especially in terms of the efficiency of synthesizing XNA with bigger lengths and the capability of directly replicating XNAs or transcribing one XNA to another. In this work, we tailored a mutant of Stoffel fragment of Taq DNA polymerase, SFM4-3, by engineering a key residue pair on the surfaces of fingers and thumb domains, and successfully obtained mutants with significantly enhanced efficiency for the synthesis of fully 2'-OMe-modified DNA with bigger lengths. Remarkably, we also found that these polymerase mutants are capable of synthesizing, reverse transcribing, and even replicating RNA and different fully 2'-modified XNAs, as well as transcribing one of these nucleic acids to another, with varied efficiencies. The application of these activities for producing DNA strands end-protected by XNA duplexes was then demonstrated. These results clearly suggest that the genetic information can be stored in and transmitted among DNA, RNA, and different 2'-modified XNAs with the assistance of polymerase mutants, and the central dogma of life can be expanded to higher dimensions via the development of XNAs together with engineering their polymerases.


Subject(s)
Nucleic Acids , Humans , Nucleic Acids/genetics , Reverse Transcription , RNA/genetics , Biotechnology , DNA Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL