Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.189
Filter
Add more filters

Publication year range
1.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38134876

ABSTRACT

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Trinucleotide Repeat Expansion , DNA Methylation , Mutation , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
2.
Cell ; 182(6): 1641-1659.e26, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32822575

ABSTRACT

The 3D organization of chromatin regulates many genome functions. Our understanding of 3D genome organization requires tools to directly visualize chromatin conformation in its native context. Here we report an imaging technology for visualizing chromatin organization across multiple scales in single cells with high genomic throughput. First we demonstrate multiplexed imaging of hundreds of genomic loci by sequential hybridization, which allows high-resolution conformation tracing of whole chromosomes. Next we report a multiplexed error-robust fluorescence in situ hybridization (MERFISH)-based method for genome-scale chromatin tracing and demonstrate simultaneous imaging of more than 1,000 genomic loci and nascent transcripts of more than 1,000 genes together with landmark nuclear structures. Using this technology, we characterize chromatin domains, compartments, and trans-chromosomal interactions and their relationship to transcription in single cells. We envision broad application of this high-throughput, multi-scale, and multi-modal imaging technology, which provides an integrated view of chromatin organization in its native structural and functional context.


Subject(s)
Cell Nucleus/metabolism , Chromatin/metabolism , Chromosomes, Human/metabolism , High-Throughput Screening Assays/methods , In Situ Hybridization, Fluorescence/methods , Single-Cell Analysis/methods , Algorithms , Cell Line , Cell Nucleus/genetics , Chromatin/genetics , Chromosomes, Human/genetics , DNA/genetics , DNA/metabolism , Genomics , Humans , Image Processing, Computer-Assisted , Molecular Conformation , Multimodal Imaging , Nucleolus Organizer Region/genetics , Nucleolus Organizer Region/metabolism , RNA/genetics , RNA/metabolism , Software
3.
Annu Rev Cell Dev Biol ; 37: 441-468, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34351785

ABSTRACT

Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive to the ultraviolet to red spectrum of light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection.


Subject(s)
Opsins , Rod Opsins , Animals , Fishes/genetics , Mammals , Opsins/genetics , Phylogeny , Retinal Pigments/genetics , Rod Opsins/genetics , Vertebrates/genetics
4.
Cell ; 179(6): 1382-1392.e10, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31735497

ABSTRACT

Distributing learning across multiple layers has proven extremely powerful in artificial neural networks. However, little is known about how multi-layer learning is implemented in the brain. Here, we provide an account of learning across multiple processing layers in the electrosensory lobe (ELL) of mormyrid fish and report how it solves problems well known from machine learning. Because the ELL operates and learns continuously, it must reconcile learning and signaling functions without switching its mode of operation. We show that this is accomplished through a functional compartmentalization within intermediate layer neurons in which inputs driving learning differentially affect dendritic and axonal spikes. We also find that connectivity based on learning rather than sensory response selectivity assures that plasticity at synapses onto intermediate-layer neurons is matched to the requirements of output neurons. The mechanisms we uncover have relevance to learning in the cerebellum, hippocampus, and cerebral cortex, as well as in artificial systems.


Subject(s)
Electric Fish/physiology , Learning , Nerve Net/physiology , Action Potentials/physiology , Animal Structures/cytology , Animal Structures/physiology , Animals , Axons/metabolism , Biophysical Phenomena , Electric Fish/anatomy & histology , Female , Male , Models, Neurological , Neuronal Plasticity , Predatory Behavior , Sensation , Time Factors
5.
Annu Rev Biochem ; 85: 349-73, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27294440

ABSTRACT

The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.


Subject(s)
Biosensing Techniques , DNA-Directed RNA Polymerases/ultrastructure , DNA/ultrastructure , Molecular Imaging/methods , Nanotechnology/methods , RNA/ultrastructure , Aptamers, Nucleotide/chemistry , Base Pairing , DNA/chemistry , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , In Situ Hybridization, Fluorescence , Microscopy, Atomic Force , Nanostructures/chemistry , Nanotechnology/instrumentation , Nucleic Acid Conformation , RNA/chemistry , Spinacia oleracea/chemistry
6.
Annu Rev Genet ; 57: 87-115, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37384733

ABSTRACT

Coral reefs are both exceptionally biodiverse and threatened by climate change and other human activities. Here, we review population genomic processes in coral reef taxa and their importance for understanding responses to global change. Many taxa on coral reefs are characterized by weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic environments, which together present a fascinating test of microevolutionary theory. Selection, gene flow, and hybridization have played and will continue to play an important role in the adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research remains exceptionally limited compared to the urgent needs. Critical areas for future investigation include understanding evolutionary potential and the mechanisms of local adaptation, developing historical baselines, and building greater research capacity in the countries where most reef diversity is concentrated.


Subject(s)
Anthozoa , Coral Reefs , Animals , Humans , Anthozoa/genetics , Metagenomics , Genome/genetics , Biological Evolution , Climate Change , Ecosystem
7.
Mol Cell ; 82(20): 3826-3839.e9, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36113481

ABSTRACT

Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.


Subject(s)
RNA Polymerase I , Transcription Factors , Humans , Mice , Animals , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Ribosomal/genetics , Transcription, Genetic , DNA, Ribosomal/genetics , RNA , Chromatin
8.
Mol Cell ; 81(7): 1566-1577.e8, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33657402

ABSTRACT

Cas9 in complex with a programmable guide RNA targets specific double-stranded DNA for cleavage. By harnessing Cas9 as a programmable loader of superhelicase to genomic DNA, we report a physiological-temperature DNA fluorescence in situ hybridization (FISH) method termed genome oligopaint via local denaturation (GOLD) FISH. Instead of global denaturation as in conventional DNA FISH, loading a superhelicase at a Cas9-generated nick allows for local DNA denaturation, reducing nonspecific binding of probes and avoiding harsh treatments such as heat denaturation. GOLD FISH relies on Cas9 cleaving target DNA sequences and avoids the high nuclear background associated with other genome labeling methods that rely on Cas9 binding. The excellent signal brightness and specificity enable us to image nonrepetitive genomic DNA loci and analyze the conformational differences between active and inactive X chromosomes. Finally, GOLD FISH could be used for rapid identification of HER2 gene amplification in patient tissue.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems , Hot Temperature , In Situ Hybridization, Fluorescence , Nucleic Acid Denaturation , RNA, Guide, Kinetoplastida/chemistry , Cell Line , Female , Fibroblasts/chemistry , Fibroblasts/metabolism , Humans
9.
Mol Cell ; 78(1): 96-111.e6, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32105612

ABSTRACT

Current models suggest that chromosome domains segregate into either an active (A) or inactive (B) compartment. B-compartment chromatin is physically separated from the A compartment and compacted by the nuclear lamina. To examine these models in the developmental context of C. elegans embryogenesis, we undertook chromosome tracing to map the trajectories of entire autosomes. Early embryonic chromosomes organized into an unconventional barbell-like configuration, with two densely folded B compartments separated by a central A compartment. Upon gastrulation, this conformation matured into conventional A/B compartments. We used unsupervised clustering to uncover subpopulations with differing folding properties and variable positioning of compartment boundaries. These conformations relied on tethering to the lamina to stretch the chromosome; detachment from the lamina compacted, and allowed intermingling between, A/B compartments. These findings reveal the diverse conformations of early embryonic chromosomes and uncover a previously unappreciated role for the lamina in systemic chromosome stretching.


Subject(s)
Caenorhabditis elegans/genetics , Chromosomes/chemistry , Nuclear Lamina/physiology , Animals , Caenorhabditis elegans/embryology , Chromosomes/ultrastructure , Embryo, Nonmammalian/ultrastructure , Gastrulation/genetics , In Situ Hybridization, Fluorescence , Molecular Conformation
10.
Development ; 151(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38415752

ABSTRACT

Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets owing to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples, including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of ten RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of the ten channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples.


Subject(s)
Diagnostic Imaging , Zebrafish , Animals , Mice , Nucleic Acid Hybridization , Embryo, Mammalian , RNA
11.
Proc Natl Acad Sci U S A ; 121(18): e2309733121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38662546

ABSTRACT

Animals moving together in groups are believed to interact among each other with effective social forces, such as attraction, repulsion, and alignment. Such forces can be inferred using "force maps," i.e., by analyzing the dependency of the acceleration of a focal individual on relevant variables. Here, we introduce a force map technique suitable for the analysis of the alignment forces experienced by individuals. After validating it using an agent-based model, we apply the force map to experimental data of schooling fish. We observe signatures of an effective alignment force with faster neighbors and an unexpected antialignment with slower neighbors. Instead of an explicit antialignment behavior, we suggest that the observed pattern is the result of a selective attention mechanism, where fish pay less attention to slower neighbors. This mechanism implies the existence of temporal leadership interactions based on relative speeds between neighbors. We present support for this hypothesis both from agent-based modeling as well as from exploring leader-follower relationships in the experimental data.


Subject(s)
Social Behavior , Animals , Behavior, Animal/physiology , Leadership , Fishes/physiology , Models, Biological , Social Interaction , Swimming
12.
Annu Rev Pharmacol Toxicol ; 63: 383-406, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662586

ABSTRACT

The long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood, supplements, and concentrated pharmaceutical preparations. Prospective cohort studies demonstrate an association between higher intakes of EPA+DHA or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease and myocardial infarction, and of cardiovascular mortality in the general population. The cardioprotective effect of EPA and DHA is due to the beneficial modulation of a number of risk factors for CVD. Some large trials support the use of EPA+DHA (or EPA alone) in high-risk patients, although the evidence is inconsistent. This review presents key studies of EPA and DHA in the primary and secondary prevention of CVD, briefly describes potential mechanisms of action, and discusses recently published RCTs and meta-analyses. Potential adverse aspects of long-chain omega-3 fatty acids in relation to CVD are discussed.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Fatty Acids, Omega-3 , Humans , Prospective Studies , Fatty Acids, Omega-3/adverse effects , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control
13.
Development ; 150(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36971372

ABSTRACT

Computational analysis of bio-images by deep learning (DL) algorithms has made exceptional progress in recent years and has become much more accessible to non-specialists with the development of ready-to-use tools. The study of oogenesis mechanisms and female reproductive success has also recently benefited from the development of efficient protocols for three-dimensional (3D) imaging of ovaries. Such datasets have a great potential for generating new quantitative data but are, however, complex to analyze due to the lack of efficient workflows for 3D image analysis. Here, we have integrated two existing open-source DL tools, Noise2Void and Cellpose, into an analysis pipeline dedicated to 3D follicular content analysis, which is available on Fiji. Our pipeline was developed on larvae and adult medaka ovaries but was also successfully applied to different types of ovaries (trout, zebrafish and mouse). Image enhancement, Cellpose segmentation and post-processing of labels enabled automatic and accurate quantification of these 3D images, which exhibited irregular fluorescent staining, low autofluorescence signal or heterogeneous follicles sizes. In the future, this pipeline will be useful for extensive cellular phenotyping in fish or mammals for developmental or toxicology studies.


Subject(s)
Deep Learning , Female , Animals , Mice , Ovary/diagnostic imaging , Zebrafish , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods , Mammals
14.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38349058

ABSTRACT

The assembly of complete and circularized mitochondrial genomes (mitogenomes) is essential for population genetics, phylogenetics and evolution studies. Recently, Song et al. developed a seed-free tool called MEANGS for de novo mitochondrial assembly from whole genome sequencing (WGS) data in animals, achieving highly accurate and intact assemblies. However, the suitability of this tool for marine fish remains unexplored. Additionally, we have concerns regarding the overlap sequences in their original results, which may impact downstream analyses. In this Letter to the Editor, the effectiveness of MEANGS in assembling mitogenomes of cartilaginous and ray-finned fish species was assessed. Moreover, we also discussed the appropriate utilization of MEANGS in mitogenome assembly, including the implementation of the data-cut function and circular detection module. Our observations indicated that with the utilization of these modules, MEANGS efficiently assembled complete and circularized mitogenomes, even when handling large WGS datasets. Therefore, we strongly recommend users employ the data-cut function and circular detection module when using MEANGS, as the former significantly reduces runtime and the latter aids in the removal of overlapped sequences for improved circularization. Furthermore, our findings suggested that approximately 2× coverage of clean WGS data was sufficient for MEANGS to assemble mitogenomes in marine fish species. Moreover, due to its seed-free nature, MEANGS can be deemed one of the most efficient software tools for assembling mitogenomes from animal WGS data, particularly in studies with limited species or genetic background information.


Subject(s)
Genome, Mitochondrial , Animals , Whole Genome Sequencing/methods , Software , Phylogeny
15.
Mol Cell ; 72(4): 786-797.e11, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30344096

ABSTRACT

Chromatin folded into 3D macromolecular structures is often analyzed by chromosome conformation capture (3C) and fluorescence in situ hybridization (FISH) techniques, but these frequently provide contradictory results. Chromatin can be modeled as a simple polymer composed of a connected chain of units. By embedding data for epigenetic marks (H3K27ac), chromatin accessibility (assay for transposase-accessible chromatin using sequencing [ATAC-seq]), and structural anchors (CCCTC-binding factor [CTCF]), we developed a highly predictive heteromorphic polymer (HiP-HoP) model, where the chromatin fiber varied along its length; combined with diffusing protein bridges and loop extrusion, this model predicted the 3D organization of genomic loci at a population and single-cell level. The model was validated at several gene loci, including the complex Pax6 gene, and was able to determine locus conformations across cell types with varying levels of transcriptional activity and explain different mechanisms of enhancer use. Minimal a priori knowledge of epigenetic marks is sufficient to recapitulate complex genomic loci in 3D and enable predictions of chromatin folding paths.


Subject(s)
Chromatin/physiology , Chromosomes/physiology , In Situ Hybridization, Fluorescence/methods , Animals , CCCTC-Binding Factor , Cell Line , Chromatin/genetics , Chromosomes/genetics , Computer Simulation , DNA-Binding Proteins , Genome , Genomics/methods , Humans , Mice , Molecular Conformation , Polymers , Regulatory Sequences, Nucleic Acid
16.
Proc Natl Acad Sci U S A ; 120(12): e2219300120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913569

ABSTRACT

Despite the elaborate varieties of iridescent colors in biological species, most of them are reflective. Here we show the rainbow-like structural colors found in the ghost catfish (Kryptopterus vitreolus), which exist only in transmission. The fish shows flickering iridescence throughout the transparent body. The iridescence originates from the collective diffraction of light after passing through the periodic band structures of the sarcomeres inside the tightly stacked myofibril sheets, and the muscle fibers thus work as transmission gratings. The length of the sarcomeres varies from ~1 µm from the body neutral plane near the skeleton to ~2 µm next to the skin, and the iridescence of a live fish mainly results from the longer sarcomeres. The length of the sarcomere changes by ~80 nm as it relaxes and contracts, and the fish shows a quickly blinking dynamic diffraction pattern as it swims. While similar diffraction colors are also observed in thin slices of muscles from non-transparent species such as the white crucian carps, a transparent skin is required indeed to have such iridescence in live species. The ghost catfish skin is of a plywood structure of collagen fibrils, which allows more than 90% of the incident light to pass directly into the muscles and the diffracted light to exit the body. Our findings could also potentially explain the iridescence in other transparent aquatic species, including the eel larvae (Leptocephalus) and the icefishes (Salangidae).


Subject(s)
Catfishes , Sarcomeres , Animals , Iridescence , Myofibrils , Swimming
17.
Proc Natl Acad Sci U S A ; 120(4): e2120869120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656855

ABSTRACT

Observed range shifts of numerous species support predictions of climate change models that species will shift their distribution northward into the Arctic and sub-Arctic seas due to ocean warming. However, how this is affecting overall species richness is unclear. Here we analyze 20,670 scientific research trawls from the North Sea to the Arctic Ocean collected from 1994 to 2020, including 193 fish species. We found that demersal fish species richness at the local scale has doubled in some Arctic regions, including the Barents Sea, and increased at a lower rate at adjacent regions in the last three decades, followed by an increase in species richness and turnover at a regional scale. These changes in biodiversity correlated with an increase in sea bottom temperature. Within the study area, Arctic species' probability of occurrence generally declined over time. However, the increase in species from southern latitudes, together with an increase in some Arctic species, ultimately led to an enrichment of the Arctic and sub-Arctic marine fauna due to increasing water temperature consistent with climate change.


Subject(s)
Biodiversity , Fishes , Animals , Arctic Regions , Oceans and Seas , Temperature , Climate Change , Ecosystem , Atlantic Ocean
18.
Proc Natl Acad Sci U S A ; 120(7): e2218909120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36757892

ABSTRACT

An effective evasion strategy allows prey to survive encounters with predators. Prey are generally thought to escape in a direction that is either random or serves to maximize the minimum distance from the predator. Here, we introduce a comprehensive approach to determine the most likely evasion strategy among multiple hypotheses and the role of biomechanical constraints on the escape response of prey fish. Through a consideration of six strategies with sensorimotor noise and previous kinematic measurements, our analysis shows that zebrafish larvae generally escape in a direction orthogonal to the predator's heading. By sensing only the predator's heading, this orthogonal strategy maximizes the distance from fast-moving predators, and, when operating within the biomechanical constraints of the escape response, it provides the best predictions of prey behavior among all alternatives. This work demonstrates a framework for resolving the strategic basis of evasion in predator-prey interactions, which could be applied to a broad diversity of animals.


Subject(s)
Predatory Behavior , Zebrafish , Animals , Zebrafish/physiology , Larva/physiology , Predatory Behavior/physiology , Escape Reaction , Biomechanical Phenomena
19.
Proc Natl Acad Sci U S A ; 120(48): e2310347120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956436

ABSTRACT

Many animal and plant species synthesize toxic compounds as deterrent; thus, detection of these compounds is of vital importance to avoid their ingestion. Often, such compounds are recognized by taste 2 receptors that mediate bitter taste in humans. Until now, bitter taste receptors have only been found in bony vertebrates, where they occur as a large family already in coelacanth, a "living fossil" and the earliest-diverging extant lobe-finned fish. Here, we have revisited the evolutionary origin of taste 2 receptors (T2Rs) making use of a multitude of recently available cartilaginous fish genomes. We have identified a singular T2R in 12 cartilaginous fish species (9 sharks, 1 sawfish, and 2 skates), which represents a sister clade to all bony fish T2Rs. We have examined its ligands for two shark species, a catshark and a bamboo shark. The ligand repertoire of bamboo shark represents a subset of that of the catshark, with roughly similar thresholds. Amarogentin, one of the most bitter natural substances for humans, also elicited the highest signal amplitudes with both shark receptors. Other subsets of ligands are shared with basal bony fish T2Rs indicating an astonishing degree of functional conservation over nearly 500 mya of separate evolution. Both shark receptors respond to endogenous steroids as well as xenobiotic compounds, whereas separate receptors exist for xenobiotics both in early- and late-derived bony vertebrates (coelacanth, zebrafish, and human), consistent with the shark T2R reflecting the original ligand repertoire of the ancestral bitter taste receptor at the evolutionary origin of this family.


Subject(s)
Sharks , Taste , Animals , Humans , Taste/physiology , Receptors, G-Protein-Coupled/genetics , Taste Perception/genetics , Ligands , Zebrafish , Sharks/genetics
20.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306314

ABSTRACT

Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.


Subject(s)
Evolution, Molecular , Smegmamorpha , Humans , Animals , Y Chromosome/genetics , Sex Chromosomes , Chromosomes, Human, Y , Chromosomes, Human, X , Smegmamorpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL