Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Immunol ; 206(10): 2338-2352, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33941654

ABSTRACT

Macrophage polarization is a dynamic and integral process in tissue inflammation and remodeling. In this study, we describe that lipoprotein-associated phospholipase A2 (Lp-PLA2) plays an important role in controlling inflammatory macrophage (M1) polarization in rodent experimental autoimmune encephalomyelitis (EAE) and in monocytes from multiple sclerosis (MS) patients. Specific inhibition of Lp-PLA2 led to an ameliorated EAE via markedly decreased inflammatory and demyelinating property of M1. The effects of Lp-PLA2 on M1 function were mediated by lysophosphatidylcholine, a bioactive product of oxidized lipids hydrolyzed by Lp-PLA2 through JAK2-independent activation of STAT5 and upregulation of IRF5. This process was directed by the G2A receptor, which was only found in differentiated M1 or monocytes from MS patients. M1 polarization could be inhibited by a G2A neutralizing Ab, which led to an inhibited disease in rat EAE. In addition, G2A-deficient rats showed an ameliorated EAE and an inhibited autoimmune response. This study has revealed a mechanism by which lipid metabolites control macrophage activation and function, modification of which could lead to a new therapeutic approach for MS and other inflammatory disorders.


Subject(s)
Cell Cycle Proteins/deficiency , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Macrophage Activation/genetics , Macrophages/immunology , Monocytes/metabolism , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Receptors, G-Protein-Coupled/deficiency , Signal Transduction/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Abietanes/administration & dosage , Animals , Antibodies, Neutralizing/administration & dosage , Benzaldehydes/administration & dosage , Case-Control Studies , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Cell Polarity/drug effects , Cell Polarity/genetics , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Knockout Techniques , Humans , Inflammation/immunology , Macrophage Activation/drug effects , Macrophages/drug effects , Male , Oximes/administration & dosage , Phospholipases A2, Secretory/antagonists & inhibitors , Phospholipases A2, Secretory/metabolism , Rats , Rats, Transgenic , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Treatment Outcome
2.
Acta Pharmacol Sin ; 42(12): 2016-2032, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34226664

ABSTRACT

Macrophage-mediated inflammation plays an important role in hypertensive cardiac remodeling, whereas effective pharmacological treatments targeting cardiac inflammation remain unclear. Lipoprotein-associated phospholipase A2 (Lp-PLA2) contributes to vascular inflammation-related diseases by mediating macrophage migration and activation. Darapladib, the most advanced Lp-PLA2 inhibitor, has been evaluated in phase III trials in atherosclerosis patients. However, the role of darapladib in inhibiting hypertensive cardiac fibrosis remains unknown. Using a murine angiotensin II (Ang II) infusion-induced hypertension model, we found that Pla2g7 (the gene of Lp-PLA2) was the only upregulated PLA2 gene detected in hypertensive cardiac tissue, and it was primarily localized in heart-infiltrating macrophages. As expected, darapladib significantly prevented Ang II-induced cardiac fibrosis, ventricular hypertrophy, and cardiac dysfunction, with potent abatement of macrophage infiltration and inflammatory response. RNA sequencing revealed that darapladib strongly downregulated the expression of genes and signaling pathways related to inflammation, extracellular matrix, and proliferation. Moreover, darapladib substantially reduced the Ang II infusion-induced expression of nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) and interleukin (IL)-1ß and markedly attenuated caspase-1 activation in cardiac tissues. Furthermore, darapladib ameliorated Ang II-stimulated macrophage migration and IL-1ß secretion in macrophages by blocking NLRP3 inflammasome activation. Darapladib also effectively blocked macrophage-mediated transformation of fibroblasts into myofibroblasts by inhibiting the activation of the NLRP3 inflammasome in macrophages. Overall, our study identifies a novel anti-inflammatory and anti-cardiac fibrosis role of darapladib in Lp-PLA2 inhibition, elucidating the protective effects of suppressing NLRP3 inflammasome activation. Lp-PLA2 inhibition by darapladib represents a novel therapeutic strategy for hypertensive cardiac damage treatment.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Benzaldehydes/therapeutic use , Cardiotonic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Fibrosis/prevention & control , Inflammation/prevention & control , Oximes/therapeutic use , Angiotensin II , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Benzaldehydes/pharmacology , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Cardiotonic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fibrosis/chemically induced , Fibrosis/metabolism , Heart/drug effects , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Macrophages/drug effects , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oximes/pharmacology
3.
Proc Natl Acad Sci U S A ; 113(26): 7213-8, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27298369

ABSTRACT

Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Blood-Retinal Barrier/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/blood , Animals , Biphenyl Compounds/blood , Biphenyl Compounds/pharmacokinetics , Biphenyl Compounds/pharmacology , Male , Permeability , Pyrimidinones/blood , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Rabbits , Rats, Inbred BN , Vascular Endothelial Growth Factor A/metabolism
4.
Bioorg Med Chem Lett ; 28(4): 787-792, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29336874

ABSTRACT

Darapladib is one of the most potent Lp-PLA2 (Lipoprotein-associated phospholipase A2) inhibitor with an IC50 of 0.25 nM. We demonstrate that a crucial step of Darapladib synthesis was not correctly described in the literature, leading to the production of wrong regioisomers. Moreover we show that the inhibitory activity is directly linked to the position on N1 since compounds bearing alkylation on different sites have potentially less interaction within the active site of Lp-PLA2.


Subject(s)
Benzaldehydes/chemistry , Oximes/chemistry , Phospholipase A2 Inhibitors/chemistry , Thiouracil/chemistry , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , Alkylation , Benzaldehydes/chemical synthesis , Benzaldehydes/pharmacology , Catalytic Domain , Humans , Isomerism , Oximes/chemical synthesis , Oximes/pharmacology , Phospholipase A2 Inhibitors/chemical synthesis , Phospholipase A2 Inhibitors/pharmacology
5.
Reprod Fertil Dev ; 30(12): 1739-1750, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30008286

ABSTRACT

Platelet-activating factor (PAF) is a well-described autocrine growth factor involved in several reproductive processes and is tightly regulated by its hydrolysing enzyme, PAF acetylhydrolase 1B (PAFAH1B). This intracellular enzyme consists of three subunits: one regulatory, 1B1, and two catalytic, 1B2 and 1B3. PAFAH1B3 has remained uncharacterised until now. Here, we report that PAFAH1B3 is present during the different stages of the first meiotic division in bovine, murine and human oocytes. In these species, the PAFAH1B3 subunit was clearly present in the germinal vesicle, while at metaphase I and II, it localised primarily at the meiotic spindle structure. In cattle, manipulation of the microtubules of the spindle by nocodazole, taxol or cryopreservation revealed a close association with PAFAH1B3. On the other hand, disruption of the enzyme activity either by P11, a selective inhibitor of PAFAH1B3, or by PAFAH1B3 antibody microinjection, caused arrest at the MI stage with defective spindle morphology and consequent failure of first polar body extrusion. In conclusion, our results show that one of the catalytic subunits of PAFAH1B, namely PAFAH1B3, is present in bovine, murine and human oocytes and that it plays a functional role in spindle formation and meiotic progression during bovine oocyte maturation.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Meiosis/physiology , Microtubules/metabolism , Oocytes/metabolism , Spindle Apparatus/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Animals , Cattle , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Female , Humans , In Vitro Oocyte Maturation Techniques , Meiosis/drug effects , Mice , Oocytes/drug effects , Oogenesis/drug effects , Spindle Apparatus/drug effects
6.
Endocr J ; 65(9): 903-913, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-29925744

ABSTRACT

This paper aims to investigate the influence of lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor, darapladib, on insulin resistance (IR) in streptozotocin (STZ)-induced diabetic pregnant rats. The rat models were divided into Control (normal pregnancy), STZ + saline (STZ-induced diabetic pregnant rats), STZ + Low-dose and STZ + High-dose darapladib (STZ-induced diabetic pregnant rats treated with low-/high-dose darapladib) groups. Pathological changes were observed by Hematoxylin-eosin (HE) and Immunohistochemistry staining. Lp-PLA2 levels were determined by enzyme-linked immunosorbent assay (ELISA). An automatic biochemical analyzer was used to measure the serum levels of biochemical indicators, and homeostatic model assessment for insulin resistance (HOMA-IR) and insulin sensitivity index (ISI) were calculated. Western blot was applied to determine levels of inflammatory cytokines. Compared with Control group, rats in the STZ + saline group were significantly decreased in body weight, the number of embryo implantation, the number of insulin positive cells and pancreatic islet size as well as the islet endocrine cells, and high-density lipoprotein (HDL-C) level, but substantially increased in Lp-PLA2, low-density lipoprotein (LDL-C), fatty acids (FFA), serum total cholesterol (TC), triglyceride (TG) levels. Moreover, the increased fasting plasma glucose (FPG) and HOMA-IR and inflammatory cytokines but decreased fasting insulin (FINS) and ISI were also found in diabetic pregnant rats. On the contrary, rats in the darapladib-treated groups were just opposite to the STZ + saline group, and STZ + High-dose group improved better than STZ + Low-dose group. Thus, darapladib can improve lipid metabolism, and enhance insulin sensitivity of diabetic pregnant rats by regulating inflammatory cytokines.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Benzaldehydes/pharmacology , Diabetes Mellitus, Experimental/metabolism , Enzyme Inhibitors/pharmacology , Insulin Resistance , Oximes/pharmacology , Pregnancy in Diabetics/metabolism , Animals , Benzaldehydes/therapeutic use , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Female , Insulin/blood , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Oximes/therapeutic use , Pregnancy , Pregnancy in Diabetics/drug therapy , Pregnancy in Diabetics/pathology , Rats , Rats, Sprague-Dawley , Streptozocin
7.
Molecules ; 22(1)2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28098805

ABSTRACT

Anti-inflammatory compounds were investigated from the ethanol extract of the roots and rhizomes of Asarum heterotropoides var. mandshuricum, a traditional Chinese medicine called Xixin and used for pain and inflammatory. Nine new compounds were isolated, including six new lignans, neoasarinin A-C (1-3), neoasarininoside A and B (4 and 5), and asarinin B (7), and one new monoterpene, asarincin A (8), two new amides, asaramid II and III (10 and 11), and one new natural monoterpene, asaricin B (9), along with 37 known compounds (6, 12-47). Their structures and absolute configurations were elucidated on the basis of spectroscopic methods and chemical analyses. This is the first report of the absolute configuration of asarinin A (6). The 8-O-4' neolignans (1-5) were reported in the genus Asarum for the first time. The 15 compounds 17, 19, 22-25, 28, 31, 36, 40, 42, 43, 45-47 were isolated from the genus Asarum, and compounds 16, 32, 33, 37 and 39 were isolated from A. heterotropoides var. mandshuricum for the first time. Thirty-seven of the isolates were evaluated for anti-inflammatory activity against the release of ß-glucuronidase in polymorphonuclear leukocytes (PMNs) induced by the platelet-activating factor (PAF), and compounds 1, 4, 7, 8, 14, 17-19, 22, 24, 25, 29, 30, 32, 33, 40-43, 45, and 46 showed potent anti-inflammatory activities in vitro, with 27.9%-72.6% inhibitions at 10-5 mol/L. The results of anti-inflammatory assay suggested that lignans obtained from the CHCl3 extract might be the main active components of Xixin.


Subject(s)
Amides/chemistry , Anti-Inflammatory Agents/chemistry , Asarum/chemistry , Drugs, Chinese Herbal/chemistry , Lignans/chemistry , Monoterpenes/chemistry , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/pharmacology , Amides/isolation & purification , Amides/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Chloroform , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Ethanol , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Humans , Lignans/isolation & purification , Lignans/pharmacology , Molecular Structure , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Neutrophils/cytology , Neutrophils/drug effects , Plant Extracts/chemistry , Plant Roots/chemistry , Primary Cell Culture , Rats , Rhizome/chemistry , Solvents/chemistry , Structure-Activity Relationship
8.
Bioorg Med Chem ; 24(17): 3953-3963, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27160052

ABSTRACT

A potent and selective inhibitor of platelet-activating factor acetylhydrolase 1B2 (PAFAH1B2) is described. The compound was derived by improvement of a modest affinity primary hit isolated from the screening of a bead-displayed peptoid-azapeptoid hybrid library tethered to an oxadiazolone 'warhead'. The oxadiazolone moiety of the inhibitors was found to react covalently with the active site serine residue of PAFAH1B2. This screening strategy may be useful for the identification of many selective, covalent inhibitors of serine hydrolases.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Aza Compounds/chemistry , Enzyme Inhibitors/chemistry , Oxadiazoles/chemistry , Peptoids/chemistry , Aza Compounds/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Models, Chemical , Oxadiazoles/chemical synthesis , Peptide Library , Peptoids/chemical synthesis
9.
Int J Clin Pharmacol Ther ; 54(12): 935-949, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27719741

ABSTRACT

OBJECTIVE: To evaluate in healthy volunteers the safety, pharmacokinetics (PK), pharmacodynamics (PD), and drug-drug interaction (DDI) potential of GSK2647544, (a selective lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor). METHODS: Study 1 was a single-blind, randomized, placebo-controlled, crossover study with healthy male volunteers randomized to receive single escalating oral doses (0.5 - 750 mg) of GSK2647544. Study 2 was a single-blind, randomized, placebo-controlled study with healthy volunteers randomized to receive repeat doses (80 mg) of GSK2647544. The drug-drug interaction of GSK2647544 with simvastatin was also evaluated in study 2. RESULTS: Across both studies GSK2647544 doses were generally well tolerated with no GSK2647544-related clinically significant findings. GSK2647544 was readily absorbed and its plasma concentration declined bi-exponentially with a terminal half-life ranging from 8 to 16 hours. Plasma exposure of GSK2647544 increased approximately dose-proportionally. There was GSK2647544 dose-dependent inhibition of plasma Lp-PLA2 activity, with a trough inhibition (12 hours after dose) of 85.6% after 7-day twice daily dosing. The administration of simvastatin concomitantly with GSK2647544 increased the overall exposure (area under the plasma concentration-time curve and maximum plasma concentration) of simvastatin and simvastatin acid by 3.6- to 4.3-fold and 1.5- to 3.1-fold, respectively. CONCLUSIONS: GSK2647544 was generally well tolerated and had a reasonable PK-PD profile. The clinically significant drug-drug interaction led to an early termination of study 2.
.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Phenyl Ethers/adverse effects , Pyrimidinones/adverse effects , Adult , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Female , Healthy Volunteers , Humans , Male , Phenyl Ethers/pharmacokinetics , Phenyl Ethers/pharmacology , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Simvastatin/pharmacology , Single-Blind Method
10.
Int J Mol Sci ; 17(4): 482, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27043546

ABSTRACT

A recently proposed paradigm suggests that, like their dietary counterparts, digestion of gastrointestinal endogenous proteins (GEP) may also produce bioactive peptides. With an aim to test this hypothesis, in vitro digests of four GEP namely; trypsin (TRYP), lysozyme (LYS), mucin (MUC), serum albumin (SA) and a dietary protein chicken albumin (CA) were screened for their angiotensin-I converting (ACE-I), renin, platelet-activating factor-acetylhydrolase (PAF-AH) and dipeptidyl peptidase-IV inhibitory (DPP-IV) and antioxidant potential following simulated in vitro gastrointestinal digestion. Further, the resultant small intestinal digests were enriched to obtain peptides between 3-10 kDa in size. All in vitro digests of the four GEP were found to inhibit ACE-I compared to the positive control captopril when assayed at a concentration of 1 mg/mL, while the LYS < 3-kDa permeate fraction inhibited renin by 40% (±1.79%). The LYS < 10-kDa fraction inhibited PAF-AH by 39% (±4.34%), and the SA < 3-kDa fraction inhibited DPP-IV by 45% (±1.24%). The MUC < 3-kDa fraction had an ABTS-inhibition antioxidant activity of 150 (±24.79) µM trolox equivalent and the LYS < 10-kDa fraction inhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) by 54% (±1.62%). Moreover, over 190 peptide-sequences were identified from the bioactive GEP fractions. The findings of the present study indicate that GEP are a significant source of bioactive peptides which may influence gut function.


Subject(s)
Antioxidants/metabolism , Intestinal Mucosa/metabolism , Peptides/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Albumins/chemistry , Albumins/metabolism , Amino Acid Sequence , Animals , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Biphenyl Compounds/metabolism , Chickens , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Humans , Mucins/antagonists & inhibitors , Mucins/metabolism , Muramidase/antagonists & inhibitors , Muramidase/metabolism , Peptides/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Picrates/chemistry , Picrates/metabolism , Renin/antagonists & inhibitors , Renin/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Swine
11.
Infect Immun ; 83(7): 2796-805, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25916987

ABSTRACT

Group A Streptococcus (GAS) can cause life-threatening invasive infections, including necrotizing fasciitis. There are no effective treatments for severe invasive GAS infections. The platelet-activating factor (PAF) acetylhydrolase SsE produced by GAS is required for invasive GAS to evade innate immune responses and to invade soft tissues. This study determined whether the enzymatic activity of SsE is critical for its function in GAS skin invasion and inhibition of neutrophil recruitment and whether SsE is a viable target for immunotherapy for severe invasive GAS infections. An isogenic derivative of M1T1 strain MGAS5005 producing SsE with an S178A substitution (SsE(S178A)), an enzymatically inactive SsE mutant protein, was generated. This strain induced higher levels of neutrophil infiltration and caused smaller lesions than MGAS5005 in subcutaneous infections of mice. This phenotype is similar to that of MGAS5005 sse deletion mutants, indicating that the enzymatic activity of SsE is critical for its function. An anti-SsE IgG1 monoclonal antibody (MAb), 2B11, neutralized the PAF acetylhydrolase activity of SsE. Passive immunization with 2B11 increased neutrophil infiltration, reduced skin invasion, and protected mice against MGAS5005 infection. However, 2B11 did not protect mice when it was administered after MGAS5005 inoculation. MGAS5005 induced vascular effusion at infection sites at early hours after GAS inoculation, suggesting that 2B11 did not always have access to infection sites. Thus, the enzymatic activity of SsE mediates its function, and SsE has the potential to be included in a vaccine but is not a therapeutic target. An effective MAb-based immunotherapy for severe invasive GAS infections may need to target virulence factors that are critical for systemic survival of GAS.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Enzyme Inhibitors/administration & dosage , Immunization, Passive , Streptococcal Infections/pathology , Streptococcus pyogenes/enzymology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Animals , Female , Gene Deletion , Immunoglobulin G/administration & dosage , Mice, Inbred BALB C , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Survival Analysis , Treatment Outcome
12.
Prostaglandins Other Lipid Mediat ; 121(Pt B): 176-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26358846

ABSTRACT

Interleukin 1 beta (IL-1ß) induced platelet activating factor (PAF) synthesis in U-937 cells through stimulation of acetyl-CoA:lysoPAF-acetyltransferase (lyso PAF-AT) at 3 h and DTT-independentCDP-choline-1-alkyl-2-acetyl-sn-glycerol cholinophosphotransferase (PAF-CPT) at 0.5 h. The aim of this study was to investigate the effect of tyrosol (T), resveratrol (R) and their acetylated derivatives(AcDs) which exhibit enhanced bioavailability, on PAF synthesis in U-937 after IL-1ß stimulation. The specific activity of PAF enzymes and intracellular levels were measured in cell homogenates. T and R concentration capable of inducing 50% inhibition in IL-1ß effect on lyso PAF-AT was 48 µΜ ± 11 and 157 µΜ ± 77, for PAF-CPT 246 µΜ ± 61 and 294 µΜ ± 102, respectively. The same order of concentration was also observed on inhibiting PAF levels produced by IL-1ß. T was more potent inhibitor than R (p<0.05). AcDs of T retain parent compound inhibitory activity, while in the case of R only two AcDs retain the activity. The observed inhibitory effect by T,R and their AcDs, may partly explain their already reported beneficial role.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Down-Regulation/drug effects , Monocytes/drug effects , Phenylethyl Alcohol/analogs & derivatives , Platelet Activating Factor/antagonists & inhibitors , Stilbenes/pharmacology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Acetylation , Acetyltransferases/antagonists & inhibitors , Acetyltransferases/chemistry , Acetyltransferases/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Line , Diacylglycerol Cholinephosphotransferase/antagonists & inhibitors , Diacylglycerol Cholinephosphotransferase/chemistry , Diacylglycerol Cholinephosphotransferase/metabolism , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Monocytes/immunology , Monocytes/metabolism , Osmolar Concentration , Phenylethyl Alcohol/pharmacology , Platelet Activating Factor/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Resveratrol , Stilbenes/chemistry
13.
Am J Physiol Cell Physiol ; 307(10): C951-6, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25186013

ABSTRACT

Cancer deaths are primarily caused by distant metastases, rather than by primary tumor growth; however, the role of smoking in metastasis remains unclear. We demonstrated previously that endothelial cell platelet-activating factor (PAF) production results in enhanced inflammatory cell recruitment to the lung. We propose that endothelial cell PAF accumulation plays a role in cancer cell migration to distal locations. We used cigarette smoke extract (CSE) to inhibit the activity of endothelial cell PAF acetylhydrolase (PAF-AH), which hydrolyzes and inactivates PAF, and determined whether this results in increased endothelial cell PAF accumulation and breast cancer adherence. Incubation of human lung microvascular endothelial cells (HMVEC-L) with CSE resulted in a significant inhibition of PAF-AH activity that was accompanied by increased PAF production and adherence of highly invasive MDA-MB-231 breast cancer cells. Pretreatment of HMVEC-L with (S)-bromoenol lactone to inhibit calcium-independent phospholipase A2ß (iPLA2ß, which initiates endothelial cell PAF production) prior to CSE exposure resulted in complete inhibition of MDA-MB-231 cell adherence. Similarly, pretreatment of MDA-MB-231 cells with the PAF receptor antagonist Ginkgo biloba resulted in inhibition of adherence to the endothelium. Immunoblot analysis indicated an increase in MDA-MB-231 cell PAF receptor expression with CSE exposure. Taken together, our data indicate that CSE exposure increases endothelial cell PAF production, resulting in enhanced adherence of tumor cells to the endothelium. Our in vitro data indicate that increased tumor cell adherence would lead to enhanced metastasis formation in smokers. Potential therapeutic targets include endothelial cell iPLA2ß or the tumor cell PAF receptor.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Breast Neoplasms/enzymology , Cell Adhesion/physiology , Endothelial Cells/enzymology , Lung/enzymology , Smoking/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Endothelial Cells/drug effects , Endothelial Cells/pathology , Enzyme Inhibitors/pharmacology , Female , Humans , Lung/drug effects , Lung/pathology , MCF-7 Cells , Smoke/adverse effects , Smoking/pathology
14.
Biochim Biophys Acta ; 1831(3): 595-601, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23262398

ABSTRACT

Recent studies showed that the phospholipase subunits of Platelet Activating Factor Acetylhydrolase (PAFAH) Ib, α1 and α2 partially localize to the Golgi complex and regulate its structure and function. Using siRNA knockdown of individual subunits, we find that α1 and α2 perform overlapping and unique roles in regulating Golgi morphology, assembly, and secretory cargo trafficking. Knockdown of either α1 or α2 reduced secretion of soluble proteins, but neither single knockdown reduced secretion to the same degree as knockdown of both. Knockdown of α1 or α2 inhibited reassembly of an intact Golgi complex to the same extent as knockdown of both. Transport of VSV-G was slowed but at different steps in the secretory pathway: reduction of α1 slowed trans Golgi network to plasma membrane transport, whereas α2 loss reduced endoplasmic reticulum to Golgi trafficking. Similarly, knockdown of either subunit alone disrupted the Golgi complex but with markedly different morphologies. Finally, knockdown of α1, or double knockdown of α1 and α2, resulted in a significant redistribution of kinase dead protein kinase D from the Golgi to the plasma membrane, whereas loss of α2 alone had no such effect. These studies reveal an unexpected complexity in the regulation of Golgi structure and function by PAFAH Ib. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Subunits/metabolism , Secretory Pathway/physiology , Testis/enzymology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Animals , Cattle , Cell Membrane/metabolism , Cells, Cultured , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/ultrastructure , Gene Knockdown Techniques , Golgi Apparatus/genetics , Golgi Apparatus/ultrastructure , Male , Microscopy, Electron , Microscopy, Fluorescence , Protein Kinase C/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Transport , RNA, Small Interfering/genetics , Testis/cytology
15.
Drug Metab Dispos ; 42(3): 415-30, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24378325

ABSTRACT

The absorption, metabolism, and excretion of darapladib, a novel inhibitor of lipoprotein-associated phospholipase A2, was investigated in healthy male subjects using [(14)C]-radiolabeled material in a bespoke study design. Disposition of darapladib was compared following single i.v. and both single and repeated oral administrations. The anticipated presence of low circulating concentrations of drug-related material required the use of accelerator mass spectrometry as a sensitive radiodetector. Blood, urine, and feces were collected up to 21 days post radioactive dose, and analyzed for drug-related material. The principal circulating drug-related component was unchanged darapladib. No notable metabolites were observed in plasma post-i.v. dosing; however, metabolites resulting from hydroxylation (M3) and N-deethylation (M4) were observed (at 4%-6% of plasma radioactivity) following oral dosing, indicative of some first-pass metabolism. In addition, an acid-catalyzed degradant (M10) resulting from presystemic hydrolysis was also detected in plasma at similar levels of ∼5% of radioactivity post oral dosing. Systemic exposure to radioactive material was reduced within the repeat dose regimen, consistent with the notion of time-dependent pharmacokinetics resulting from enhanced clearance or reduced absorption. Elimination of drug-related material occurred predominantly via the feces, with unchanged darapladib representing 43%-53% of the radioactive dose, and metabolites M3 and M4 also notably accounting for ∼9% and 19% of the dose, respectively. The enhanced study design has provided an increased understanding of the absorption, distribution, metabolism and excretion (ADME) properties of darapladib in humans, and substantially influenced future work on the compound.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Benzaldehydes/metabolism , Oximes/metabolism , Phospholipase A2 Inhibitors/metabolism , Administration, Oral , Adult , Benzaldehydes/administration & dosage , Benzaldehydes/blood , Benzaldehydes/pharmacokinetics , Biotransformation , Carbon Isotopes , Carbon Radioisotopes , Feces/chemistry , Humans , Injections, Intravenous , Male , Metabolic Clearance Rate , Molecular Structure , Oximes/administration & dosage , Oximes/blood , Oximes/pharmacokinetics , Phospholipase A2 Inhibitors/administration & dosage , Phospholipase A2 Inhibitors/blood , Phospholipase A2 Inhibitors/pharmacokinetics , Tissue Distribution
16.
Lipids Health Dis ; 13: 48, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24625108

ABSTRACT

BACKGROUND: Oxidized phosphatidylcholines (oxPC) and lysophosphatidylcholine (lysoPC) generated during the formation of oxidized low-density lipoprotein (oxLDL) are involved in atherosclerotic lesion development. We investigated the time course-changes in phosphatidylcholine (PC) molecular species during oxidation of LDL to determine how those atherogenic PCs are produced. METHODS: Human and rabbit LDLs were pretreated with or without a selective platelet-activating factor acetylhydrolase (PAF-AH) inhibitor. LDL was oxidized by incubation with copper sulfate, and PC profiles were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: When human LDL was oxidized, the peak areas for polyunsaturated fatty acid (PUFA)-containing PC species dramatically decreased after a short lag period, concomitantly lysoPC species increased sharply. Although a variety of oxPC species containing oxidized fatty acyl groups or cleaved acyl chains are formed during LDL oxidation, only a few oxPC products accumulated in oxLDL: 1-palmitoyl-2-(9-oxo-nonanoyl) PC and long-chain oxPC with two double bonds. Pretreatment of LDL with the PAF-AH inhibitor greatly reduced lysoPC production while it had no effect on lipid peroxidation reactions and oxPC profiles. Rabbit LDL, which has a different composition of PC molecular species and needs a longer time to reach achieve full oxidation than human LDL, also accumulated lysoPC during oxidation. The increase in lysoPC in rabbit oxLDL was suppressed by pretreatment with the PAF-AH inhibitor. The major oxPC species formed in rabbit oxLDL were almost the same as human oxLDL. CONCLUSIONS: These results suggest that lysoPC species are the major products and PAF-AH activity is crucial for lysoPC generation during oxidation of LDL. The oxPC species accumulated are limited when LDL is oxidized with copper ion in vitro.


Subject(s)
Lipoproteins, LDL/chemistry , Phosphatidylcholines/chemistry , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , Animals , Apolipoproteins B/chemistry , Copper Sulfate/chemistry , Humans , Kinetics , Oxidants/chemistry , Oxidation-Reduction , Rabbits , Serine Proteinase Inhibitors/chemistry , Sulfones/chemistry , Tandem Mass Spectrometry
17.
Chembiochem ; 14(4): 431-5, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23401283

ABSTRACT

EXPANDING OUR KNOWLEDGE: Natural lipocyclocarbamate natural products have provided the inspiration for the first-in-class synthetic phospholipase inhibitor darapladib, currently in phase III clinical trials for the treatment of atherosclerosis. Here, we discuss their biosynthesis by a nonribosomal peptide synthetase.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Biological Products/metabolism , Carbamates/metabolism , Enzyme Inhibitors/metabolism , Peptide Synthases/metabolism , Pseudomonas fluorescens/enzymology , Atherosclerosis/drug therapy , Benzaldehydes/chemistry , Biological Products/chemistry , Carbamates/chemistry , Enzyme Inhibitors/chemistry , Models, Molecular , Oximes/chemistry , Pseudomonas fluorescens/chemistry , Pseudomonas fluorescens/metabolism
18.
Cytokine ; 63(2): 97-104, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23673285

ABSTRACT

Interleukin-1beta (IL-1ß) is a potent agonist of platelet-activating factor (PAF) synthesis. The monocyte-derived PAF may amplify the inflammatory and thrombotic processes. The IL-1ß-induced enzymatic alterations leading to increased PAF synthesis are ill-defined. In the present study the last enzymatic activities of the remodeling (acetyl-CoA:lyso-PAF acetyltransferase) and de novo (DTT-insensitive CDP-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase) biosynthetic routes of PAF and its main catabolic enzyme, PAF acetylhydrolase, along with the intracellular and extracellular PAF levels were determined in homogenates and medium of U-937 after their stimulation with recombinant IL-1ß. IL-1ß at 2.5ng/mL induced an early (0.5-3h) and a late (12h) elevation of intracellular PAF levels (2-fold). Only a small portion of intracellular PAF (∼10%) was released to the extracellular medium. IL-1ß increased lyso-PAF acetyltrasnferase activity which was peaked at 3h and kept elevated till 12h. A rapid 1.5-fold increase of cholinephosphotransferase activity was observed in IL-1ß stimulated cells. Finally, a transient stimulation of intracellular PAF-AH was induced by IL-1ß at 3h while incubation of U-937 with the PAF acetylhydrolase inhibitor pefabloc in the presence or absence of IL-1ß led to a strong sustained increase of intracellular PAF levels. In conclusion, both biosynthetic routes of PAF, along with its degradation can be modulated by IL-1ß in a time-specific manner. The inhibition of PAF acetylhydrolase strongly augments PAF's intracellular levels implying its crucial role for the regulation of cellular PAF. The regulation of PAF's enzymatic machinery under inflammatory conditions is more complicated than we thought to be.


Subject(s)
Interleukin-1beta/metabolism , Platelet Activating Factor/biosynthesis , Platelet Activating Factor/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Acetyltransferases/metabolism , Blood Platelets/metabolism , Cell Line, Tumor , Diacylglycerol Cholinephosphotransferase/metabolism , Humans , Serine Proteinase Inhibitors/metabolism , Sulfones/metabolism
19.
Bioorg Med Chem Lett ; 23(5): 1553-6, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23333209

ABSTRACT

AX10479, the phenyl amide of 4-hydroxy-8-methanesulfonylamino-quinoline-2-carboxylic acid, was identified as a Zn(2+)-dependent, 27nM inhibitor of human plasma Lp-PLA(2). Structure-activity relationship studies focused on the AX10479 2-phenylamide group identified equipotent cycloaliphatic amides, an enantioselective preference for chiral amides, and phenyl substitution patterns (e.g., 2-methyl-3-fluoro) that increased potency.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Amides/pharmacology , Quinolines/pharmacology , Amides/chemical synthesis , Amides/chemistry , Humans , Quinolines/chemical synthesis , Quinolines/chemistry , Stereoisomerism , Structure-Activity Relationship , Zinc/chemistry
20.
Bioorg Med Chem Lett ; 23(5): 1187-92, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23385210

ABSTRACT

New Lp-PLA(2) inhibitors were synthesized by the bioisosteric replacement of the amide group of Darapladib with an imidazole or a triazole. Unfortunately, the inhibitory activities of these derivatives were lower than that of Darapladib. But interestingly, a series of quaternary ammonium salts that were isolated as by-products during this synthetic work were found with high potency. Of these by-products, compound 22c showed a similar profile to Darapladib both in vitro and in vivo.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Imidazoles/chemistry , Imidazoles/pharmacology , Phospholipase A2 Inhibitors/chemistry , Phospholipase A2 Inhibitors/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Animals , Humans , Imidazoles/chemical synthesis , Mice , Phospholipase A2 Inhibitors/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Triazoles/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL