Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
J Immunol ; 207(11): 2856-2867, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34759015

ABSTRACT

Complement evasion is a hallmark of extracellular microbial pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. Lyme disease spirochetes express nearly a dozen outer surface lipoproteins that bind complement components and interfere with their native activities. Among these, BBK32 is unique in its selective inhibition of the classical pathway. BBK32 blocks activation of this pathway by selectively binding and inhibiting the C1r serine protease of the first component of complement, C1. To understand the structural basis for BBK32-mediated C1r inhibition, we performed crystallography and size-exclusion chromatography-coupled small angle X-ray scattering experiments, which revealed a molecular model of BBK32-C in complex with activated human C1r. Structure-guided site-directed mutagenesis was combined with surface plasmon resonance binding experiments and assays of complement function to validate the predicted molecular interface. Analysis of the structures shows that BBK32 inhibits activated forms of C1r by occluding substrate interaction subsites (i.e., S1 and S1') and reveals a surprising role for C1r B loop-interacting residues for full inhibitory activity of BBK32. The studies reported in this article provide for the first time (to our knowledge) a structural basis for classical pathway-specific inhibition by a human pathogen.


Subject(s)
Bacterial Proteins/immunology , Borrelia burgdorferi/chemistry , Complement C1r/immunology , Lyme Disease/immunology , Peptide Hydrolases/immunology , Bacterial Proteins/chemistry , Borrelia burgdorferi/immunology , Humans , Models, Molecular
2.
J Am Chem Soc ; 144(6): 2474-2478, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35129341

ABSTRACT

The human immune system detects potentially pathogenic microbes with receptors that respond to microbial metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of an α-galactopyranose to an α-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis, prevention, and treatment of LD.


Subject(s)
Antigens, Bacterial/chemistry , Borrelia burgdorferi/chemistry , Galactolipids/chemistry , Animals , Antigens, Bacterial/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Galactolipids/chemical synthesis , Galactolipids/pharmacology , Inflammation/chemically induced , Lyme Disease/immunology , Mice , Toll-Like Receptor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
J Biol Chem ; 295(2): 301-313, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31753921

ABSTRACT

Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.


Subject(s)
Antigenic Variation , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Borrelia burgdorferi/immunology , Lipoproteins/immunology , Lyme Disease/immunology , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/genetics , Borrelia burgdorferi/physiology , Genetic Loci , Host-Pathogen Interactions , Humans , Immunity , Lipoproteins/chemistry , Lipoproteins/genetics , Models, Molecular , Mutation
4.
Proteins ; 89(5): 588-594, 2021 05.
Article in English | MEDLINE | ID: mdl-32949018

ABSTRACT

Lyme disease is the most widespread vector-transmitted disease in North America and Europe, caused by infection with Borrelia burgdorferi sensu lato complex spirochetes. We report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBP28, a member of the multicopy lipoprotein (mlp) family. The structure comprises a tether peptide, five α-helices and an extended C-terminal loop. The fold is similar to that of Borrelia turicatae outer surface protein BTA121, which is known to bind lipids. These results contribute to the understanding of Lyme disease pathogenesis by revealing the molecular structure of a protein from the widely found mlp family.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Borrelia burgdorferi/metabolism , Lipoproteins/chemistry , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Borrelia/chemistry , Borrelia/metabolism , Borrelia burgdorferi/chemistry , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Lipoproteins/genetics , Lipoproteins/metabolism , Lyme Disease/microbiology , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
5.
Biochem J ; 477(2): 491-508, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31922183

ABSTRACT

Acyl carrier proteins (ACPs) are small helical proteins found in all kingdoms of life, primarily involved in fatty acid and polyketide biosynthesis. In eukaryotes, ACPs are part of the fatty acid synthase (FAS) complex, where they act as flexible tethers for the growing lipid chain, enabling access to the distinct active sites in FAS. In the type II synthesis systems found in bacteria and plastids, these proteins exist as monomers and perform various processes, from being a donor for synthesis of various products such as endotoxins, to supplying acyl chains for lipid A and lipoic acid FAS (quorum sensing), but also as signaling molecules, in bioluminescence and activation of toxins. The essential and diverse nature of their functions makes ACP an attractive target for antimicrobial drug discovery. Here, we report the structure, dynamics and evolution of ACPs from three human pathogens: Borrelia burgdorferi, Brucella melitensis and Rickettsia prowazekii, which could facilitate the discovery of new inhibitors of ACP function in pathogenic bacteria.


Subject(s)
Acyl Carrier Protein/ultrastructure , Bacterial Infections/microbiology , Fatty Acid Synthases/ultrastructure , Protein Conformation , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/genetics , Amino Acid Sequence/genetics , Bacterial Infections/drug therapy , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/pathogenicity , Borrelia burgdorferi/ultrastructure , Brucella melitensis/chemistry , Brucella melitensis/pathogenicity , Brucella melitensis/ultrastructure , Catalytic Domain , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/genetics , Host-Pathogen Interactions/genetics , Humans , Lipid A/chemistry , Lipid A/genetics , Molecular Dynamics Simulation , Multienzyme Complexes , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/genetics , Quorum Sensing/genetics , Rickettsia prowazekii/chemistry , Rickettsia prowazekii/pathogenicity , Rickettsia prowazekii/ultrastructure
6.
Biochemistry ; 59(28): 2650-2659, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32567840

ABSTRACT

The dynamic cytoskeletal network of microtubules and actin filaments can be disassembled by drugs. Cytoskeletal drugs work by perturbing the monomer-polymer equilibrium, thus changing the size and number of macromolecular crowders inside cells. Changes in both crowding and nonspecific surface interactions ("sticking") following cytoskeleton disassembly can affect the protein stability, structure, and function directly or indirectly by changing the fluidity of the cytoplasm and altering the crowding and sticking of other macromolecules in the cytoplasm. The effect of cytoskeleton disassembly on protein energy landscapes inside cells has yet to be observed. Here we have measured the effect of several cytoskeletal drugs on the folding energy landscape of two FRET-labeled proteins with different in vitro sensitivities to macromolecular crowding. Phosphoglycerate kinase (PGK) was previously shown to be more sensitive to crowding, whereas variable major protein-like sequence expressed (VlsE) was previously shown to be more sensitive to sticking. The in-cell effects of drugs that depolymerize either actin filaments (cytochalasin D and latrunculin B) or microtubules (nocodazole and vinblastine) were compared. The crowding sensor protein CrH2-FRET verified that cytoskeletal drugs decrease the extent of crowding inside cells despite also reducing the overall cell volume. The decreased compactness and folding stability of PGK could be explained by the decreased extent of crowding induced by these drugs. VlsE's opposite response to the drugs shows that depolymerization of the cytoskeleton also changes sticking in the cellular milieu. Our results demonstrate that perturbation of the monomer-polymer cytoskeletal equilibrium, for example, during natural cell migration or stresses from drug treatment, has off-target effects on the energy landscapes of proteins in the cell.


Subject(s)
Nocodazole/pharmacology , Protein Folding/drug effects , Proteins/chemistry , Tubulin Modulators/pharmacology , Vinblastine/pharmacology , Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Borrelia burgdorferi/chemistry , Cell Line , Cell Size/drug effects , Cytoskeleton/chemistry , Cytoskeleton/drug effects , Fluorescence Resonance Energy Transfer , Humans , Lipoproteins/chemistry , Models, Molecular , Phosphoglycerate Kinase/chemistry , Protein Stability/drug effects , Yeasts/enzymology
7.
Mol Microbiol ; 111(6): 1652-1670, 2019 06.
Article in English | MEDLINE | ID: mdl-30883947

ABSTRACT

Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook-associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non-motile mutant cells that are unable to assemble flagellar filaments and pentagon-shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella-deficient mutants (i.e., in the hook, rod, or MS-ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.


Subject(s)
Bacterial Proteins/chemistry , Borrelia burgdorferi/chemistry , Flagella/chemistry , Flagellin/chemistry , Periplasm/chemistry , Serine Endopeptidases/chemistry , Bacterial Proteins/genetics , Borrelia burgdorferi/genetics , Flagella/genetics , Mutation , Polymers/chemistry , Protein Folding , Serine Endopeptidases/genetics
8.
J Theor Biol ; 462: 97-108, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30419249

ABSTRACT

Bacteria of the genus Borrelia cause vector-borne infections like the most important hard tick-borne disease in the northern hemisphere, Lyme borreliosis (LB), and soft tick or louse transmitted relapsing fevers (RF), prevalent in temperate and tropical areas. Borrelia burgdorferi sensu lato (s.l.) includes several genospecies and causes LB in humans. In infected patients, Borrelia burgdorferi sensu stricto (s.s.) expresses the BmpA, BmpB, BmpC and BmpD proteins. The role of these proteins in the pathogenesis of LB remains incompletely characterized, but they are, however, closely related to Treponema pallidum PnrA (Purine nucleoside receptor A), a substrate-binding lipoprotein of the ATP-binding cassette (ABC) transporter family preferentially binding purine nucleosides. Based on 3D homology modeling, the Bmp proteins share the typical fold of the substrate-binding protein family and the ligand-binding properties of BmpA, BmpB and BmpD are highly similar, whereas those of BmpC differ markedly. Nevertheless, these residues are highly conserved within the genus Borrelia and the inferred phylogenetic tree also reveals that the RF Borrelia lack BmpB proteins but has an additional Bmp protein (BmpA2) missing in LB-causing Borrelia burgdorferi s.l. Our results indicate that the Bmp proteins could bind nucleosides, although BmpC might have a different ligand-binding specificity and, therefore, a distinct function. Furthermore, the work provides a means for classifying the Bmp proteins and supports further elucidation of the roles of these proteins.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/chemistry , Structural Homology, Protein , Borrelia/chemistry , Humans , Ligands , Lyme Disease/etiology , Nucleosides/metabolism , Protein Binding
9.
Mol Microbiol ; 99(3): 586-96, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26480895

ABSTRACT

HtrA serine proteases are highly conserved and essential ATP-independent proteases with chaperone activity. Bacteria express a variable number of HtrA homologues that contribute to the virulence and pathogenicity of bacterial pathogens. Lyme disease spirochetes possess a single HtrA protease homologue, Borrelia burgdorferi HtrA (BbHtrA). Previous studies established that, like the human orthologue HtrA1, BbHtrA is proteolytically active against numerous extracellular proteins in vitro. In this study, we utilized size exclusion chromatography and blue native polyacrylamide gel electrophoresis (BN-PAGE) to demonstrate BbHtrA oligomeric structures that were substrate independent and salt sensitive. Examination of the influence of transition metals on the activity of BbHtrA revealed that this protease is inhibited by Zn(2+) > Cu(2+) > Mn(2+). Extending this analysis to two other HtrA proteases, E. coli DegP and HtrA1, revealed that all three HtrA proteases were reversibly inhibited by ZnCl2 at all micro molar concentrations examined. Commercial inhibitors for HtrA proteases are not available and physiologic HtrA inhibitors are unknown. Our observation of conserved zinc inhibition of HtrA proteases will facilitate structural and functional studies of additional members of this important class of proteases.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Borrelia burgdorferi/enzymology , Chlorides/metabolism , Enzyme Inhibitors/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Zinc Compounds/metabolism , Zinc/metabolism , Bacterial Proteins/genetics , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Chlorides/chemistry , Enzyme Inhibitors/chemistry , Humans , Kinetics , Lyme Disease/microbiology , Serine Endopeptidases/genetics , Zinc/chemistry , Zinc Compounds/chemistry
10.
J Mol Recognit ; 30(5)2017 05.
Article in English | MEDLINE | ID: mdl-27859766

ABSTRACT

The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease. Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 on the basis of computational predictions on the crystal structure of the complex and experimentally tested for in vitro binding and borreliacidal activity. We find that Y32 and H49 on the LA-2 light chain, N52 on the LA-2 heavy chain and residues A208, N228 and N251 on OspA were the key constituents of OspA/LA-2 interface. These results reveal specific residues that may be exploited to modulate recognition of the protective epitope of OspA and have implications for developing prophylactic passive antibodies.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/metabolism , Antigens, Surface/chemistry , Bacterial Outer Membrane Proteins/chemistry , Bacterial Vaccines/chemistry , Borrelia burgdorferi/immunology , Epitopes/chemistry , Lipoproteins/chemistry , Lyme Disease/immunology , Amino Acid Motifs , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/genetics , Antigens, Surface/genetics , Antigens, Surface/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Vaccines/genetics , Bacterial Vaccines/metabolism , Binding Sites , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/genetics , Crystallography, X-Ray , Humans , Lipoproteins/genetics , Lipoproteins/metabolism , Mice , Models, Molecular , Mutation , Protein Binding , Structural Homology, Protein
11.
Mol Cell Proteomics ; 14(5): 1254-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25713121

ABSTRACT

Lyme disease is the most important vector-borne disease in the Northern hemisphere and represents a major public health challenge with insufficient means of reliable diagnosis. Skin is rarely investigated in proteomics but constitutes in the case of Lyme disease the key interface where the pathogens can enter, persist, and multiply. Therefore, we investigated proteomics on skin samples to detect Borrelia proteins directly in cutaneous biopsies in a robust and specific way. We first set up a discovery gel prefractionation-LC-MS/MS approach on a murine model infected by Borrelia burgdorferi sensu stricto that allowed the identification of 25 Borrelia proteins among more than 1300 mouse proteins. Then we developed a targeted gel prefractionation-LC-selected reaction monitoring (SRM) assay to detect 9/33 Borrelia proteins/peptides in mouse skin tissue samples using heavy labeled synthetic peptides. We successfully transferred this assay from the mouse model to human skin biopsies (naturally infected by Borrelia), and we were able to detect two Borrelia proteins: OspC and flagellin. Considering the extreme variability of OspC, we developed an extended SRM assay to target a large set of variants. This assay afforded the detection of nine peptides belonging to either OspC or flagellin in human skin biopsies. We further shortened the sample preparation and showed that Borrelia is detectable in mouse and human skin biopsies by directly using a liquid digestion followed by LC-SRM analysis without any prefractionation. This study thus shows that a targeted SRM approach is a promising tool for the early direct diagnosis of Lyme disease with high sensitivity (<10 fmol of OspC/mg of human skin biopsy).


Subject(s)
Antigens, Bacterial/analysis , Bacterial Outer Membrane Proteins/analysis , Borrelia burgdorferi/chemistry , Flagellin/analysis , Lyme Disease/diagnosis , Peptides/analysis , Proteomics/methods , Animals , Biopsy , Borrelia burgdorferi/metabolism , Chromatography, Liquid , Electrophoresis , Gels , Humans , Isotope Labeling , Lyme Disease/microbiology , Mice , Peptides/chemical synthesis , Proteomics/instrumentation , Skin/microbiology , Skin/pathology
12.
BMC Microbiol ; 16(1): 141, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27400788

ABSTRACT

BACKGROUND: Similar to Gram-negative organisms, Borrelia spirochetes are dual-membrane organisms with both an inner and outer membrane. Although the outer membrane contains integral membrane proteins, few of the borrelial outer membrane proteins (OMPs) have been identified and characterized to date. Therefore, we utilized a consensus computational network analysis to identify novel borrelial OMPs. RESULTS: Using a series of computer-based algorithms, we selected all protein-encoding sequences predicted to be OM-localized and/or to form ß-barrels in the borrelial OM. Using this system, we identified 41 potential OMPs from B. burgdorferi and characterized three (BB0838, BB0405, and BB0406) to confirm that our computer-based methodology did, in fact, identify borrelial OMPs. Triton X-114 phase partitioning revealed that BB0838 is found in the detergent phase, which would be expected of a membrane protein. Proteolysis assays indicate that BB0838 is partially sensitive to both proteinase K and trypsin, further indicating that BB0838 is surface-exposed. Consistent with a prior study, we also confirmed that BB0405 is surface-exposed and associates with the borrelial OM. Furthermore, we have shown that BB0406, the product of a co-transcribed downstream gene, also encodes a novel, previously uncharacterized borrelial OMP. Interestingly, while BB0406 has several physicochemical properties consistent with it being an OMP, it was found to be resistant to surface proteolysis. Consistent with BB0405 and BB0406 being OMPs, both were found to be capable of incorporating into liposomes and exhibit pore-forming activity, suggesting that both proteins are porins. Lastly, we expanded our computational analysis to identify OMPs from other borrelial organisms, including both Lyme disease and relapsing fever spirochetes. CONCLUSIONS: Using a consensus computer algorithm, we generated a list of candidate OMPs for both Lyme disease and relapsing fever spirochetes and determined that three of the predicted B. burgdorferi proteins identified were indeed novel borrelial OMPs. The combined studies have identified putative spirochetal OMPs that can now be examined for their roles in virulence, physiology, and disease pathogenesis. Importantly, the studies described in this report provide a framework by which OMPs from any human pathogen with a diderm ultrastructure could be cataloged to identify novel virulence factors and vaccine candidates.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Borrelia burgdorferi/chemistry , Algorithms , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/isolation & purification , Bacterial Outer Membrane Proteins/metabolism , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Computer Communication Networks , Computing Methodologies , Consensus , Genome, Bacterial , Humans , Liposomes/metabolism , Lyme Disease/microbiology , Operon , Porins/metabolism , Vaccine Potency , Virulence Factors/metabolism
13.
J Bacteriol ; 198(4): 664-72, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26644432

ABSTRACT

UNLABELLED: The Lyme disease spirochete Borrelia burgdorferi has five putative methyl-accepting chemotaxis proteins (MCPs). In this report, we provide evidence that a hypothetical protein, BB0569, is essential for the chemotaxis of B. burgdorferi. While BB0569 lacks significant homology to the canonical MCPs, it contains a conserved domain (spanning residues 110 to 170) that is often evident in membrane-bound MCPs such as Tar and Tsr of Escherichia coli. Unlike Tar and Tsr, BB0569 lacks transmembrane regions and recognizable HAMP and methylation domains and is similar to TlpC, a cytoplasmic chemoreceptor of Rhodobacter sphaeroides. An isogenic mutant of BB0569 constantly runs in one direction and fails to respond to attractants, indicating that BB0569 is essential for chemotaxis. Immunofluorescence, green fluorescent protein (GFP) fusion, and cryo-electron tomography analyses demonstrate that BB0569 localizes at the cell poles and is required for chemoreceptor clustering at the cell poles. Protein cross-linking studies reveal that BB0569 forms large protein complexes with MCP3, indicative of its interactions with other MCPs. Interestingly, analysis of B. burgdorferi mcp mutants shows that inactivation of either mcp2 or mcp3 reduces the level of BB0569 substantially and that such a reduction is caused by protein turnover. Collectively, these results demonstrate that the domain composition and function of BB0569 are similar in some respects to those of TlpC but that these proteins are different in their cellular locations, further highlighting that the chemotaxis of B. burgdorferi is unique and different from the Escherichia coli and Salmonella enterica paradigm. IMPORTANCE: Spirochete chemotaxis differs substantially from the Escherichia coli and Salmonella enterica paradigm, and the basis for controlling the rotation of the bundles of periplasmic flagella at each end of the cell is unknown. In recent years, Borrelia burgdorferi, the causative agent of Lyme disease, has been used as a model organism to understand spirochete chemotaxis and its role in infectious processes of the disease. In this report, BB0569, a hypothetical protein of B. burgdorferi, has been investigated by using an approach of genetic, biochemistry, and cryo-electron tomography analyses. The results indicate that BB0569 has a distinct role in chemotaxis that may be unique to spirochetes and represents a novel paradigm.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/physiology , Chemotaxis , Lyme Disease/microbiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/genetics , Humans , Molecular Sequence Data , Sequence Alignment
14.
Proteomics ; 15(21): 3662-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26256460

ABSTRACT

Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft-associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC-MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 (http://proteomecentral.proteomexchange.org/dataset/PXD002365).


Subject(s)
Antigens, Bacterial/analysis , Antigens, Surface/analysis , Bacterial Outer Membrane Proteins/analysis , Bacterial Vaccines/analysis , Borrelia burgdorferi/chemistry , Cholera Toxin/analysis , Lipoproteins/analysis , Membrane Microdomains/chemistry , Proteome/analysis , Amino Acid Sequence , Chromatography, Liquid , Detergents/chemistry , Lyme Disease/microbiology , Molecular Sequence Data , Sequence Alignment , Tandem Mass Spectrometry
15.
Anal Chem ; 87(22): 11383-8, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26491962

ABSTRACT

The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. The low abundance of bacterial proteins in human serum during infection imposes a challenge for early proteomic detection of Lyme disease. To address this challenge, we propose to detect membrane proteins released from bacteria due to disruption of their plasma membrane triggered by the innate immune system. These membrane proteins can be separated from the bulk of serum proteins by high-speed centrifugation causing substantial sample enrichment prior to targeted protein quantification using multiple reaction monitoring mass spectrometry. This new approach was first applied to detection of B. burgdorferi membrane proteins supplemented in human serum. Our results indicated that detection of B. burgdorferi membrane proteins, which are ≈10(7) lower in abundance than major serum proteins, is feasible. Therefore, quantitative analysis was also carried out for serum samples from three patients with acute Lyme disease. We were able to demonstrate the detection of ospA, the major B. burgdorferi lipoprotein at the level of 4.0 fmol of ospA/mg of serum protein. The results confirm the concept and suggest that the proposed approach can be expanded to detect other bacterial infections in humans, particularly where existing diagnostics are unreliable.


Subject(s)
Borrelia burgdorferi/chemistry , Lyme Disease/diagnosis , Membrane Proteins/blood , Humans , Lyme Disease/blood , Membrane Proteins/chemistry , Sensitivity and Specificity
16.
Microbiology (Reading) ; 161(Pt 3): 516-27, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25564498

ABSTRACT

The spirochaete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common tick-borne infection in the northern hemisphere. There is a long-standing debate regarding the role of pleomorphic forms in Lyme disease pathogenesis, while very little is known about the characteristics of these morphological variants. Here, we present a comprehensive analysis of B. burgdorferi pleomorphic formation in different culturing conditions at physiological temperature. Interestingly, human serum induced the bacterium to change its morphology to round bodies (RBs). In addition, biofilm-like colonies in suspension were found to be part of B. burgdorferi's normal in vitro growth. Further studies provided evidence that spherical RBs had an intact and flexible cell envelope, demonstrating that they are not cell wall deficient, or degenerative as previously implied. However, the RBs displayed lower metabolic activity compared with spirochaetes. Furthermore, our results indicated that the different pleomorphic variants were distinguishable by having unique biochemical signatures. Consequently, pleomorphic B. burgdorferi should be taken into consideration as being clinically relevant and influence the development of novel diagnostics and treatment protocols.


Subject(s)
Borrelia burgdorferi/chemistry , Borrelia burgdorferi/growth & development , Lyme Disease/microbiology , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Humans
17.
PLoS Pathog ; 9(5): e1003353, 2013.
Article in English | MEDLINE | ID: mdl-23696733

ABSTRACT

Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010) Cell Host & Microbe 8, 331-342]. Here, we show that these prokaryote membrane domains have the hallmarks of eukaryotic lipid rafts, despite lacking sphingolipids. Substitution experiments replacing cholesterol lipids with a set of sterols, ranging from strongly raft-promoting to raft-inhibiting when mixed with eukaryotic sphingolipids, showed that sterols that can support ordered domain formation are both necessary and sufficient for formation of B. burgdorferi membrane domains that can be detected by transmission electron microscopy or in living organisms by Förster resonance energy transfer (FRET). Raft-supporting sterols were also necessary and sufficient for formation of high amounts of detergent resistant membranes from B. burgdorferi. Furthermore, having saturated acyl chains was required for a biotinylated lipid to associate with the cholesterol-lipid-rich domains in B. burgdorferi, another characteristic identical to that of eukaryotic lipid rafts. Sterols supporting ordered domain formation were also necessary and sufficient to maintain B. burgdorferi membrane integrity, and thus critical to the life of the organism. These findings provide compelling evidence for the existence of lipid rafts and show that the same principles of lipid raft formation apply to prokaryotes and eukaryotes despite marked differences in their lipid compositions.


Subject(s)
Borrelia burgdorferi , Cholesterol , Membrane Microdomains , Animals , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Detergents/chemistry , Humans , Lyme Disease/metabolism , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism
18.
BMC Microbiol ; 15: 70, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25887384

ABSTRACT

BACKGROUND: Like all diderm bacteria studied to date, Borrelia burgdorferi possesses a ß-barrel assembly machine (BAM) complex. The bacterial BAM complexes characterized thus far consist of an essential integral outer membrane protein designated BamA and one or more accessory proteins. The accessory proteins are typically lipid-modified proteins anchored to the inner leaflet of the outer membrane through their lipid moieties. We previously identified and characterized the B. burgdorferi BamA protein in detail and more recently identified two lipoproteins encoded by open reading frames bb0324 and bb0028 that associate with the borrelial BamA protein. The role(s) of the BAM accessory lipoproteins in B. burgdorferi is currently unknown. RESULTS: Structural modeling of B. burgdorferi BB0028 revealed a distinct ß-propeller fold similar to the known structure for the E. coli BAM accessory lipoprotein BamB. Additionally, the structural model for BB0324 was highly similar to the known structure of BamD, which is consistent with the prior finding that BB0324 contains tetratricopeptide repeat regions similar to other BamD orthologs. Consistent with BB0028 and BB0324 being BAM accessory lipoproteins, mutants lacking expression of each protein were found to exhibit altered membrane permeability and enhanced sensitivity to various antimicrobials. Additionally, BB0028 mutants also exhibited significantly impaired in vitro growth. Finally, immunoprecipitation experiments revealed that BB0028 and BB0324 each interact specifically and independently with BamA to form the BAM complex in B. burgdorferi. CONCLUSIONS: Combined structural studies, functional assays, and co-immunoprecipitation experiments confirmed that BB0028 and BB0324 are the respective BamB and BamD orthologs in B. burgdorferi, and are important in membrane integrity and/or outer membrane protein localization. The borrelial BamB and BamD proteins both interact specifically and independently with BamA to form a tripartite BAM complex in B. burgdorferi. A working model has been developed to further analyze outer membrane biogenesis and outer membrane protein transport in this pathogenic spirochete.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Borrelia burgdorferi/enzymology , Lipoproteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/genetics , Borrelia burgdorferi/growth & development , Gene Deletion , Lipoproteins/chemistry , Lipoproteins/genetics , Models, Molecular , Permeability , Protein Binding , Protein Conformation , Protein Multimerization
19.
Microsc Microanal ; 21(3): 680-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25739645

ABSTRACT

Borrelia burgdorferi sensu lato, the causative agent of Lyme disease, is transmitted to humans through the bite of infected Ixodes spp. ticks. Successful infection of vertebrate hosts necessitates sophisticated means of the pathogen to escape the vertebrates' immune system. One strategy employed by Lyme disease spirochetes to evade adaptive immunity involves a highly coordinated regulation of the expression of outer surface proteins that is vital for infection, dissemination, and persistence. Here we characterized the expression pattern of bacterial surface antigens using different microscopy techniques, from fluorescent wide field to super-resolution and immunogold-scanning electron microscopy. A fluorescent strain of B. burgdorferi spirochetes was labeled with monoclonal antibodies directed against various bacterial surface antigens. Our results indicate that OspA is more evenly distributed over the surface than OspB and OspC that were present as punctate areas.


Subject(s)
Antigens, Bacterial/analysis , Borrelia burgdorferi/chemistry , Membrane Proteins/analysis , Microbiological Techniques/methods , Antibodies, Monoclonal/metabolism , Fluorescent Antibody Technique , Microscopy
20.
J Bacteriol ; 196(4): 859-72, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317399

ABSTRACT

The Borrelia burgdorferi outer membrane (OM) contains numerous surface-exposed lipoproteins but a relatively low density of integral OM proteins (OMPs). Few membrane-spanning OMPs of B. burgdorferi have been definitively identified, and none are well characterized structurally. Here, we provide evidence that the borrelial OMP P66, a known adhesin with pore-forming activity, forms a ß-barrel in the B. burgdorferi OM. Multiple computer-based algorithms predict that P66 forms a ß-barrel with either 22 or 24 transmembrane domains. According to our predicted P66 topology, a lysine residue (K487) known to be sensitive to trypsin cleavage is located within a surface-exposed loop. When we aligned the mature P66 amino acid sequences from B. burgdorferi and B. garinii, we found that K487 was present only in the B. burgdorferi P66 protein sequence. When intact cells from each strain were treated with trypsin, only B. burgdorferi P66 was trypsin sensitive, indicating that K487 is surface exposed, as predicted. Consistent with this observation, when we inserted a c-Myc tag adjacent to K487 and utilized surface localization immunofluorescence, we detected the loop containing K487 on the surface of B. burgdorferi. P66 was examined by both Triton X-114 phase partitioning and circular dichroism, confirming that the protein is amphiphilic and contains extensive (48%) ß-sheets, respectively. Moreover, P66 also was able to incorporate into liposomes and form channels in large unilamellar vesicles. Finally, blue native PAGE (BN-PAGE) revealed that under nondenaturing conditions, P66 is found in large complexes of ∼400 kDa and ∼600 kDa. Outer surface lipoprotein A (OspA) and OspB both coimmunoprecipitate with P66, demonstrating that P66 associates with OspA and OspB in B. burgdorferi. The combined computer-based structural analyses and supporting physicochemical properties of P66 provide a working model to further examine the porin and integrin-binding activities of this OMP as they relate to B. burgdorferi physiology and Lyme disease pathogenesis.


Subject(s)
Bacterial Proteins/chemistry , Borrelia burgdorferi/chemistry , Porins/chemistry , Antigens, Bacterial/metabolism , Antigens, Surface/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Bacterial Vaccines/metabolism , Borrelia burgdorferi/genetics , Immunoprecipitation , Lipoproteins/metabolism , Models, Molecular , Porins/analysis , Porins/genetics , Protein Binding , Protein Conformation , Protein Multimerization , Proteolysis , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL