Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Eur J Neurosci ; 59(2): 208-219, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38105520

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a prevalent central nervous system complication predominantly observed in elderly patients. Sevoflurane, a general anaesthetic agent, has been implicated in the development of POCD, yet the underlying regulatory mechanisms potentially involving Sestrin1 (SESN1), a stress-responsive protein that plays a critical role in cellular homeostasis and protection against stress-induced damage, including oxidative stress and DNA damage, remain elusive. This study endeavoured to elucidate the impact of SESN1 on sevoflurane-induced cognitive impairment in rats. Employing a model in which SESN1 was transfected into SD male rats and cognitive dysfunction was induced by sevoflurane. The Morris Water Maze test was used for behavioural evaluation, Enzyme-Linked Immunosorbent Assay, Western blotting and immunofluorescence were applied to assess the influence of SESN1 on the inflammatory response and mitophagy in the rat hippocampus. The study further aimed to uncover the putative mechanism by which SESN1, through SIRT1, might modulate cognitive function. Concurrently, levels of malondialdehyde, superoxide dismutase and mitochondrially produced ATP within the rat hippocampus were quantified. Experimental outcomes suggested that SESN1 overexpression significantly mitigated the deleterious effects of sevoflurane anaesthesia, ameliorated neuroinflammation and inflammasome activation, modified mitochondrial function and facilitated mitophagy. Additionally, SESN1, via the activation of SIRT1, may suppress inflammasome activation and mitochondrial dysfunction. Collectively, these findings underscore SESN1's integral role in counteracting sevoflurane-induced cognitive impairment, impeding inflammasome activation, enhancing mitochondrial function and fostering mitophagy, which appear to be intricately linked to SESN1-mediated SIRT1 activation. SESN1 is a novel therapeutic target for POCD, potentially advancing neuroprotective strategies in clinical settings.


Subject(s)
Anesthesia , Cognitive Dysfunction , Humans , Male , Rats , Animals , Aged , Sevoflurane/pharmacology , Sirtuin 1/metabolism , Mitophagy , Inflammasomes/adverse effects , Inflammasomes/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Anesthesia/adverse effects , Hippocampus/metabolism , Sestrins/metabolism
2.
J Headache Pain ; 25(1): 3, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38177990

ABSTRACT

BACKGROUND: Neuroinflammation, mediated by the activation of microglia, contributes to central sensitization, which is associated with the development of chronic migraine (CM). TREM1 receptors amplify the inflammatory response. However, their relationship to CM is unclear. Thus, this study endeavoured to elucidate the exact role of TREM1 in CM. METHODS: Nitroglycerin (NTG) was repeatedly administered intraperitoneally to establish the CM model. Mechanical and thermal sensitivities were assessed using von Frey filaments and hot plate assays. Using Western blotting, TREM1, NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were all detected. Immunofluorescence was used to examine the cellular distribution of TREM1 and NLRP3, the number of microglia, immunoreactivity, and morphological changes. We examined the effects of TREM1 antagonists (LR12) and NF-κB inhibitors (PDTC) on pain behaviour, as well as the production of c-fos and CGRP. Additionally, we investigated whether LR12 and PDTC affect the activation of microglia and the NLRP3 inflammasome. We synthesized siRNA and TREM1-overexpressing plasmids to transfect BV2 cells treated with LPS and normal BV2 cells and treated TREM1-overexpressing BV2 cells with PDTC. The NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were quantified using Western blotting. RESULTS: Following NTG administration, the expression of TREM1 was significantly upregulated and exclusively localized in microglia in the TNC, and was well co-localized with NLRP3. Furthermore, activation of the classical NF-κB pathway was observed. Pre-treatment with LR12 and PDTC effectively attenuated mechanical hypersensitivity, suppressed the expression of c-fos and CGRP, and inhibited NF-κB activity in CM mice. Additionally, inhibition of TREM1 and NF-κB activity mitigated NTG-induced microglia and NLRP3 activation, as well as proinflammatory cytokines production. In vitro, knockdown of TREM1 resulted in attenuated activation of the NF-κB pathway following lipopolysaccharide (LPS) treatment and reduced expression of NLRP3 inflammasome components as well as proinflammatory cytokines. After TREM1 overexpression, the NF-κB pathway was activated, NLRP3 inflammasome components and proinflammatory cytokines were upregulated, and PDTC reversed this phenomenon. CONCLUSIONS: Our findings suggest that TREM1 regulates microglia and NLRP3 activation via the NF-κB pathway, thereby contributing to central sensitization and implicating its involvement in chronic migraine pathogenesis.


Subject(s)
Migraine Disorders , NF-kappa B , Animals , Mice , Calcitonin Gene-Related Peptide/metabolism , Central Nervous System Sensitization/physiology , Cytokines/metabolism , Inflammasomes/adverse effects , Inflammasomes/metabolism , Lipopolysaccharides , Microglia/metabolism , Migraine Disorders/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Nitroglycerin/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism
3.
Pulm Pharmacol Ther ; 83: 102259, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37726074

ABSTRACT

BACKGROUND: Acute pneumonia induced by Pseudomonas aeruginosa is characterized by massive infiltration of inflammatory cell and the production of reactive oxygen species (ROS), which lead to severe and transient pulmonary inflammation and acute lung injury. However, P.aeruginosa infection is resistant to multiple antibiotics and causes high mortality in clinic, the search for alternative prophylactic and therapeutic strategies is imperative. PURPOSE: This study was aimed to investigate the anti-inflammatory and antioxidant effects of DMB, a novel derivative of berberine, and explore the role of AIM2 inflammasome in P. aeruginosa-induced acute pneumonia. METHODS: Acute pneumonia mice were established by tracheal injection of P. aeruginosa suspension. Pathological changes of lung tissue were observed by its appearance and H&E staining. The lung coefficient ratio was measured to evaluate pulmonary edema. Inflammatory factors were detected by qRT-PCR, western blotting and immunohistochemistry. ROS and other indicators of oxidative damage were analyzed by flow cytometry and specific kit. Proteins related to AIM2 inflammasome were detected by western blotting. RESULTS: Compared with the P. aeruginosa-induced group, DMB ameliorated pulmonary edema, hyperemia, and pathological damage based on its appearance and H&E staining in DMB groups. First, DMB attenuated the inflammatory response induced by P.aeruginosa. Compared with the P. aeruginosa-induced group, the lung coefficient ratio was decreased by 31.5%, the MPO activity of lung tissue was decreased by 44.0%, the mRNA expression levels of TNF-α, IL-1ß and IL-6 were decreased by 64.8%, 51.2% and 64.0% respectively, and those protein expression levels were decreased by 40.1%, 42.8% and 47.8% respectively, and the number of white blood cells, neutrophils and monocytes were decreased by 53.5%, 29.4% and 13.7% in high dose (200 mg/kg) DMB group. Second, DMB alleviates oxidative stress in the lung tissue during P. aeruginosa-induced acute pneumonia. Compared with the P. aeruginosa-induced group, the level of GSH was increased by 42.5% and MDA was decreased by 49.5% in high dose DMB group. Moreover, the western blotting results showed that DMB markedly suppressed the expression of AIM2, ASC, Cleaved caspase1 and decreased the secretion of IL-1ß. Additionally, these results were also confirmed by in vitro experiments using MH-S and BEAS-2B cell lines. CONCLUSIONS: Taken together, these results indicated that DMB ameliorates P. aeruginosa-induced acute pneumonia through anti-inflammatory, antioxidant effects, and inhibition of AIM2 inflammasome activation.


Subject(s)
Pneumonia , Pulmonary Edema , Animals , Mice , Inflammasomes/adverse effects , Inflammasomes/metabolism , Pseudomonas aeruginosa , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Pulmonary Edema/drug therapy , Pneumonia/drug therapy , Pneumonia/chemically induced , Oxidative Stress , Anti-Inflammatory Agents/adverse effects
4.
Ann Hepatol ; 28(1): 100780, 2023.
Article in English | MEDLINE | ID: mdl-36309184

ABSTRACT

INTRODUCTION AND OBJECTIVES: Administration of carbon tetrachloride (CCl4), along with an hepatopathogenic diet, is widely employed as a chemical inducer to replicate human nonalcoholic steatohepatitis (NASH) in rodents; however, the role of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in this model remains unclear. We aimed to determine the relevance of NLRP3 inflammasome activation in the development of NASH induced by CCl4 along with an hepatopathogenic diet in male Wistar rats. MATERIALS AND METHODS: Animals were fed either a high fat, sucrose, and cholesterol diet (HFSCD) or a HFSCD plus intraperitoneal injections of low doses of CCl4 (400 mg/kg) once a week for 15 weeks. Liver steatosis, inflammation, fibrosis, and NLRP3 inflammasome activation were evaluated using biochemical, histological, ultrastructural, and immunofluorescence analyses, western blotting, and immunohistochemistry. RESULTS: Our experimental model reproduced several aspects of the human NASH pathophysiology. NLRP3 inflammasome activation was induced by the combined effect of HFSCD plus CCl4 and significantly increased levels of both proinflammatory and profibrogenic cytokines and collagen deposition in the liver; thus, NASH severity was higher in the HFSCD+CCl4 group than that in the HFSCD group, to which CCl4 was not administered. Hepatic stellate cells, the most profibrogenic cells, were activated by HFSCD plus CCl4, as indicated by elevated levels of α-smooth muscle actin. Thus, activation of the NLRP3 inflammasome, triggered by low doses of CCl4, exacerbates the severity of NASH. CONCLUSIONS: Our results indicate that NLRP3 inflammasome activation plays a key role and may be an important therapeutic target for NASH treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Rats , Animals , Male , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Inflammasomes/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Wistar , Liver/pathology , Cholesterol , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
5.
Allergol Immunopathol (Madr) ; 51(2): 82-89, 2023.
Article in English | MEDLINE | ID: mdl-36916091

ABSTRACT

BACKGROUND: Psoriasis is a prevalent inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes, and infiltration of inflammatory cells into the epidermis. However, the underlying mechanisms remain unclear. Tectorigenin is an active ingredient in traditional medicines and has anti-inflammatory activity. This research explored the effects of tectorigenin on the anti-inflammatory property, autophagy, and the underlying mechanisms in M5 ([IL-22, IL-17A, oncostatin M, IL-1α, and TNF-α])-stimulated HaCaT cells. METHODS: The in vitro model of mixed M5 cytokines-stimulated HaCaT keratinocytes was established to investigate the phenotypic features in psoriasis. Cell viability was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, cell proliferative rate by EdU (5-ethynyl-2'-deoxyuridine) assay, and autophagy was detected by immunofluorescence staining. After M5 exposure, the proliferative rate, protein expression of autophagy, and signaling activities of NLR family pyrin domain containing 3 (NLRP3) inflammasome and toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) were measured. The latter were quantitated using quantitative PCR and western blot, respectively. The inflammatory response was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: Tectorigenin exerted a protective effect in ameliorating the hyperproliferation and inflammation of HaCaT keratinocytes induced by M5 cytokines. Furthermore, tectorigenin on keratinocytes seemed to inactivate NLRP3 inflammasome and inhibit cell proliferation and inflammation response via suppression of TLR4/NF-κB pathway. CONCLUSION: This study proves that tectorigenin may be a potential therapeutic candidate for psoriasis treatment in future.


Subject(s)
NF-kappa B , Psoriasis , Humans , NF-kappa B/metabolism , Inflammasomes/adverse effects , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Keratinocytes/metabolism , Cytokines/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy
6.
Clin Exp Nephrol ; 26(11): 1055-1066, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35925422

ABSTRACT

BACKGROUND: Focal segmental glomerulosclerosis (FSGS) is characterized by podocyte damage and severe proteinuria. The exact mechanism of podocyte damage and loss remains unclear. Necroptosis, a lytic form of programmed cell death mediated by RIP3 and MLKL, has emerged as an important cell death pattern in multiple tissues and cell types. Necroptosis in FSGS has not been investigated. METHODS: Public GEO data regarding podocyte treated with vehicle or adriamycin (ADR) was identified and analyzed. Cultured human podocytes were used to explore the activation of necroptosis upon ADR stimulation. The expression of necroptosis pathway molecules, p-RIP3 and p-MLKL, was examined in the glomeruli and defoliated urinary podocytes of patients with FSGS. The effect of necroptosis inhibition was assessed in ADR-induced glomerulopathy mice using GSK872. RESULTS: Publicly available RNA-sequencing data analysis showed that both necroptosis and NLRP3 inflammasome pathway were up-regulated in ADR-injured podocyte. Immunofluorescent staining showed increased expression of p-RIP3 and p-MLKL, the active forms of RIP3 and MLKL, in podocytes of FSGS patients and ADR-induced glomerulopathy mice but not in the normal control. GSK872, an RIP3 kinase inhibitor, significantly inhibited the expression of p-RIP3, p-MLKL and activation of NLRP3 in cultured podocytes treated with ADR. GSK872 treatment of mice with ADR-induced nephropathy resulted in the reduced expression of p-RIP3, p-MLKL, NLRP3 and caspase-1 p20. GSK872 also significantly inhibited the expression of p-MLKL in the podocytes of ADR-induced nephropathy, resulting in the attenuation of proteinuria and renal histological lesions. CONCLUSION: Necroptosis pathway might be a valuable target for the treatment of FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Diseases , Podocytes , Animals , Caspases/adverse effects , Caspases/metabolism , Doxorubicin/adverse effects , Doxorubicin/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Inflammasomes/adverse effects , Inflammasomes/metabolism , Kidney Diseases/pathology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Necroptosis , Podocytes/metabolism , Proteinuria/pathology , RNA/adverse effects , RNA/metabolism , Sclerosis/chemically induced , Sclerosis/metabolism , Sclerosis/pathology
7.
Ophthalmic Res ; 65(1): 40-51, 2022.
Article in English | MEDLINE | ID: mdl-34530425

ABSTRACT

PURPOSE: The objective of the study was to investigate efficacy and mechanisms of mouse adipose-derived mesenchymal stem cell-derived exosomes (mADSC-Exos) in the benzalkonium chloride (BAC)-induced mouse dry eye model. METHODS: Exosomes in the mADSC culture supernatant were isolated by ultracentrifugation. Western blotting, nanoparticle tracking analysis, and transmission electron microscopy were used to characterize mADSC-Exos. An experimental mouse model of dry eye was established by instillation of 0.2% BAC. mADSC-Exos were administered following BAC treatment. The positive control group was treated with commercial eye drops (0.1% pranoprofen). Corneal fluorescein staining, tear secretion, and tear film break-up time (BUT) were evaluated, and histologic analysis of the cornea and conjunctiva was performed by hematoxylin and eosin and periodic acid-Schiff staining. Apoptosis in the corneal epithelium was detected with the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and by Western blotting. Levels of pro-inflammatory cytokines in the cornea and conjunctiva were evaluated by flow cytometry, and mRNA and protein levels of NLR family pyrin domain-containing 3 (NLRP3) pathway components were assessed by quantitative real-time PCR and Western blotting, respectively. RESULTS: mADSC-Exos were characterized as vesicles with a bilayer membrane. The particle size distribution peak was at 134 nm. mADSC-Exos specifically expressed cluster of differentiation (CD)9, CD63, and CD81. mADSC-Exos treatment repaired ocular surface damage. Additionally, mADSC-Exos inhibited cell apoptosis, decreased the levels of interleukin (IL)-1ß, IL-6, IL-1α, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, and increased levels of the anti-inflammatory cytokine IL-10. Meanwhile, NLRP3 inflammasome activation and upregulation of caspase-1, IL-1ß, and IL-18 were reversed by mADSC-Exos. CONCLUSIONS: mADSC-Exos alleviate ocular surface inflammation, suggesting that it is a promising treatment for dry eye.


Subject(s)
Dry Eye Syndromes , Exosomes , Mesenchymal Stem Cells , Animals , Benzalkonium Compounds/toxicity , Dry Eye Syndromes/metabolism , Exosomes/metabolism , Inflammasomes/adverse effects , Inflammasomes/metabolism , Mesenchymal Stem Cells/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein
8.
Allergol Immunopathol (Madr) ; 50(6): 107-114, 2022.
Article in English | MEDLINE | ID: mdl-36335453

ABSTRACT

OBJECTIVE: To assess the effects of anethole on monosodium urate (MSU)-induced inflammatory response, investigate its role in acute gouty arthritis (AGA), and verify its molecular mechanism. METHODS: Hematoxylin and eosin staining assay and time-dependent detection of degree of ankle swelling were performed to assess the effects of anethole on joint injury in MSU-induced AGA mice. Enzyme-linked-immunosorbent serologic assay was performed to demonstrate the production levels of inflammatory factors (interleukin 1ß [IL-1ß], interleukin 6 [IL-6], interleukin 8 [IL-8], tumor necrosis factor α [TNF-α], and monocyte chemo-attractant protein-1 [MCP-1]) in MSU-induced AGA mice. Western blot assays were used to confirm the effects of anethole on oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activity and the activation of toll-like receptors (TLRs)-myeloid differentiation factor 88 (MyD88) pathway in MSU-induced AGA mice. RESULTS: We observed that a significant joint injury occurred in MSU-induced AGA mice. Anethole could alleviate the pathological injury of the synovium in MSU-induced AGA mice and suppressed ankle swelling. In addition, we observed that anethole could inhibit MSU-induced inflammatory response and inflammasome activation in MSU-induced AGA mice. Moreover, we discovered that anethole enabled to inhibit the activation of TLRs/MyD88 pathway in MSU-induced AGA mice. Our findings further confirmed that anethole contributed to the inhibitory effects on progression in MSU-induced AGA mice. CONCLUSION: It confirmed that anethole ameliorated the MSU-induced inflammatory response in AGA mice in vivo via inhibiting TLRs-MyD88 pathway.


Subject(s)
Arthritis, Gouty , Mice , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Uric Acid/adverse effects , Myeloid Differentiation Factor 88/metabolism , Inflammasomes/adverse effects , Inflammasomes/metabolism , Inflammation/pathology , Interleukin-1beta/adverse effects , Interleukin-1beta/metabolism
9.
Gut ; 70(2): 379-387, 2021 02.
Article in English | MEDLINE | ID: mdl-32241903

ABSTRACT

OBJECTIVE: Systemic inflammation predisposes acutely decompensated (AD) cirrhosis to the development of acute-on-chronic liver failure (ACLF). Supportive treatment can improve AD patients, becoming recompensated. Little is known about the outcome of patients recompensated after AD. We hypothesise that different inflammasome activation is involved in ACLF development in compensated and recompensated patients. DESIGN: 249 patients with cirrhosis, divided into compensated and recompensated (previous AD), were followed prospectively for fatal ACLF development. Two external cohorts (n=327) (recompensation, AD and ACLF) were included. Inflammasome-driving interleukins (ILs), IL-1α (caspase-4/11-dependent) and IL-1ß (caspase-1-dependent), were measured. In rats, bile duct ligation-induced cirrhosis and lipopolysaccharide exposition were used to induce AD and subsequent recompensation. IL-1α and IL-1ß levels and upstream/downstream gene expression were measured. RESULTS: Patients developing ACLF showed higher baseline levels of ILs. Recompensated patients and patients with detectable ILs had higher rates of ACLF development than compensated patients. Baseline CLIF-C (European Foundation for the study of chronic liver failure consortium) AD, albumin and IL-1α were independent predictors of ACLF development in compensated and CLIF-C AD and IL-1ß in recompensated patients. Compensated rats showed higher IL-1α gene expression and recompensated rats higher IL-1ß levels with higher hepatic gene expression. Higher IL-1ß detection rates in recompensated patients developing ACLF and higher IL-1α and IL-1ß detection rates in patients with ACLF were confirmed in the two external cohorts. CONCLUSION: Previous AD is an important risk factor for fatal ACLF development and possibly linked with inflammasome activation. Animal models confirmed the results showing a link between ACLF development and IL-1α in compensated cirrhosis and IL-1ß in recompensated cirrhosis.


Subject(s)
Acute-On-Chronic Liver Failure/etiology , Inflammasomes/adverse effects , Liver Cirrhosis, Experimental/complications , Liver Cirrhosis/complications , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Interleukin-1alpha/blood , Interleukin-1alpha/metabolism , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Male , Middle Aged , Prospective Studies , Rats , Rats, Sprague-Dawley
10.
Zhongguo Zhen Jiu ; 44(4): 441-448, 2024 Apr 12.
Article in English, Zh | MEDLINE | ID: mdl-38621732

ABSTRACT

OBJECTIVES: To observe the effects of electroacupuncture (EA) with "intestinal disease prescription" on the intestinal mucosal barrier and NLRP3 inflammasome in rats with dextran sulfate sodium (DSS)-induced acute ulcerative colitis (UC), and explore the underlying mechanism of EA with "intestinal disease prescription" for the treatment of UC. METHODS: Thirty-two healthy male SPF-grade SD rats were randomly divided into a blank group, a model group, a medication group, and an EA group, with 8 rats in each group. Except for the blank group, the UC model was established by administering 5% DSS solution for 7 days. After modeling, the rats in the medication group were treated with mesalazine suspension (200 mg/kg) by gavage, while the rats in the EA group were treated with acupuncture at bilateral "Tianshu" (ST 25), "Shangjuxu" (ST 37) and "Zhongwan" (CV 12), with the ipsilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37) connected to the electrodes of the EA instrument, using disperse-dense wave, with a frequency of 10 Hz/50 Hz, and each intervention lasted for 20 minutes. Both interventions were performed once daily for 3 days. The general conditions of rats were observed daily. After intervention, the disease activity index (DAI) score was calculated; colon tissue morphology was observed using HE staining; serum levels of pro-inflammatory cytokines (interleukin [IL]-18, IL-1ß) were measured by ELISA; protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in colon tissues was detected by Western blot; positive expression of zonula occludens-1 (ZO-1) and Occludin in colon tissues was examined by immunofluorescence. RESULTS: Compared with the blank group, the rats in the model group exhibited poor general conditions, slow body weight gain, shortened colon length (P<0.01), increased DAI score and spleen index (P<0.01), elevated serum IL-18 and IL-1ß levels, and increased protein expression of NLRP3, ASC, and Caspase-1 in colon tissues (P<0.01), along with decreased positive expression of ZO-1 and Occludin in colon tissues (P<0.01). Compared with the model group, the rats in the medication group and the EA group exhibited improved general conditions, accelerated body weight gain, increased colon length (P<0.05), reduced DAI scores and spleen indexes (P<0.05), decreased serum IL-18 and IL-1ß levels, and lower protein expression of NLRP3, ASC and Caspase-1 in colon tissues (P<0.05), as well as increased positive expression of ZO-1 and Occludin in colon tissues (P<0.05). There were no significant differences in the above indexes between the medication group and the EA group (P>0.05). Compared with the blank group, the rats in the model group exhibited disrupted colon mucosal morphology, disordered gland arrangement, and atrophy of crypts, along with significant inflammatory cell infiltration. Compared with the model group, the rats in both the medication group and the EA group showed relatively intact colon mucosal morphology, with restored and improved gland and crypt structures, and reduced inflammatory cell infiltration. CONCLUSIONS: EA with "intestinal disease prescription" has a significant therapeutic effect on DSS-induced UC, possibly by regulating the expression of NLRP3 inflammasome and proteins related to the intestinal mucosal barrier, thereby alleviating symptoms of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Electroacupuncture , Rats , Male , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/therapy , Inflammasomes/adverse effects , Interleukin-18 , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Occludin , Body Weight , Caspases/adverse effects
11.
Hepatol Int ; 18(1): 188-205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183609

ABSTRACT

BACKGROUND AND PURPOSE: Alcoholic liver disease (ALD), a metabolic liver disease caused by excessive alcohol consumption, has attracted increasing attention due to its high prevalence and mortality. Up to date, there is no effective and feasible treatment method for ALD. This study was to investigate whether Farnesoid X receptor (FXR, NR1H4) can alleviate ALD and whether this effect is mediated by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. METHODS: The difference in FXR expression between normal subjects and ALD patients was analyzed using the Gene Expression Omnibus (GEO) database. Lieber-DeCarli liquid diet with 5% ethanol (v/v) (EtOH) was adopted to establish the mouse ALD model. Liver histopathological changes and the accumulation of lipid droplets were assessed by H&E and Oil Red O staining. Quantitative real-time PCR, Western blotting analysis and immunofluorescence staining were utilized to evaluate the expression levels of related genes and proteins. DCFH-DA staining was adopted to visualize reactive oxidative species (ROS). RESULTS: FXR was distinctly downregulated in liver tissues of patients with steatosis compared to normal livers using the GEO database, and in ethanol-induced AML-12 cellular steatosis model. FXR overexpression ameliorated hepatic lipid metabolism disorder and steatosis induced by ethanol by inhibiting the expression of genes involved in lipid synthesis and inducing the expression of genes responsible for lipid metabolism. Besides, FXR overexpression inhibited ethanol-induced AIM2 inflammasome activation and alleviated oxidative stress and ROS production during ethanol-induced hepatic steatosis. However, when FXR was knocked down, the results were completely opposite. CONCLUSIONS: FXR attenuated lipid metabolism disorders and lipid degeneration in alcohol-caused liver injury and alleviated oxidative stress and inflammation by inhibiting AIM2 inflammasome activation.


Subject(s)
Fatty Liver , Liver Diseases, Alcoholic , Melanoma , Animals , Humans , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ethanol/adverse effects , Ethanol/metabolism , Fatty Liver/etiology , Inflammasomes/adverse effects , Inflammasomes/metabolism , Lipids , Liver/pathology , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/genetics , Reactive Oxygen Species/metabolism
12.
Microsc Res Tech ; 87(6): 1348-1358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38380581

ABSTRACT

Wear particle-induced periprosthetic osteolysis is the key to aseptic loosening after artificial joint replacement. Osteoclastogenesis plays a central role in this process. Apelin-13 is a member of the adipokine family with anti-inflammatory effects. Here, we report that apelin-13 alleviates RANKL-mediated osteoclast differentiation and titanium particle-induced osteolysis in mouse calvaria. Mechanistically, apelin-13 inhibits NLRP3 inflammasome-mediated pyroptosis by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In summary, apelin-13 is expected to be a potential drug for relieving aseptic osteolysis. RESEARCH HIGHLIGHTS: This study reveals the molecular mechanism by which apelin-13 inhibits NLRP3 inflammasome activation and pyroptosis by promoting Nrf2. This study confirms that apelin-13 alleviates osteoclast activation by inhibiting pyroptosis. In vivo studies further confirmed that apelin-13 alleviated mouse skull osteolysis by inhibiting the activation of NLRP3 inflammasome.


Subject(s)
Intercellular Signaling Peptides and Proteins , Osteoclasts , Osteolysis , Animals , Mice , Inflammasomes/adverse effects , Inflammasomes/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteolysis/chemically induced , Osteolysis/metabolism , Pyroptosis/drug effects , RANK Ligand/metabolism , Titanium/pharmacology
13.
Am J Physiol Cell Physiol ; 305(2): C182-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23636457

ABSTRACT

Inspiration of a high concentration of oxygen, a therapy for acute lung injury (ALI), could unexpectedly lead to reactive oxygen species (ROS) production and hyperoxia-induced acute lung injury (HALI). Nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) senses the ROS, triggering inflammasome activation and interleukin-1ß (IL-1ß) production and secretion. However, the role of NLRP3 inflammasome in HALI is unclear. The main aim of this study is to determine the effect of NLRP3 gene deletion on inflammatory response and lung epithelial cell death. Wild-type (WT) and NLRP3(-/-) mice were exposed to 100% O2 for 48-72 h. Bronchoalveolar lavage fluid and lung tissues were examined for proinflammatory cytokine production and lung inflammation. Hyperoxia-induced lung pathological score was suppressed in NLRP3(-/-) mice compared with WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1ß, TNFα, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 were attenuated in NLRP3(-/-) mice. NLRP3 deletion decreased lung epithelial cell death and caspase-3 levels and a suppressed NF-κB levels compared with WT controls. Taken together, this research demonstrates for the first time that NLRP3-deficient mice have suppressed inflammatory response and blunted lung epithelial cell apoptosis to HALI.


Subject(s)
Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Carrier Proteins/metabolism , Hyperoxia/complications , Oxygen/adverse effects , Acute Lung Injury/genetics , Animals , Bronchoalveolar Lavage Fluid/immunology , Carrier Proteins/genetics , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , DNA Fragmentation , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Genetic Predisposition to Disease , Hyperoxia/metabolism , Inflammasomes/adverse effects , Inflammasomes/metabolism , Interleukin-1beta/analysis , Interleukin-6/analysis , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Oxygen/administration & dosage , Oxygen/therapeutic use , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
Immun Inflamm Dis ; 11(7): e877, 2023 07.
Article in English | MEDLINE | ID: mdl-37506136

ABSTRACT

INTRODUCTION: A recent study confirmed that thiolutin (THL), as a potent inflammasome inhibitor, plays a promising therapeutic role in multiple inflammatory disease models. However, the effect of THL on psoriasis has not been reported so far. METHODS: A psoriasiform dermatitis model was prepared by applying 5% imiquimod (IMQ) cream on mice. A total of 36 mice were randomly divided into six groups: control, model, model + THL-L/M/H (THL, 1/2.5/5 mg/kg/day), model + methotrexate (1 mg/kg/day). Psoriasis area and severity index (PASI) scores were observed and calculated. The histological changes in skin, liver, and kidney tissues were observed by hematoxylin and eosin staining. Alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, and blood creatinine were measured by automatic biochemistry analyzer. The size of the spleens was determined, and the proportion of Foxp3 + CD4+ regulatory T (Treg) cells in the spleens was tested by flow cytometry. The proinflammatory factors and nucleotide oligomerization domain nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome protein levels were examined by reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry, respectively. RESULTS: THL administration preeminently reduced the thickness, scaling, and erythema of the skin lesions, alleviated IMQ-induced psoriasiform lesions in mice, reduced the PASI score, and ameliorated histopathological changes in mouse skin. The spleen index was decreased by almost half and the proportion of Foxp3 + CD4+ Treg cells was increased after intervention by THL. THL intervention did not affect liver and kidney function, but decreased the expression levels of proinflammatory factors and NLRP3 inflammasome in the skin of psoriatic mice. CONCLUSIONS: THL may alleviate IMQ-induced psoriasis-like manifestations in mice by inhibiting NLRP3 inflammasome.


Subject(s)
Dermatitis , Psoriasis , Mice , Animals , Imiquimod/toxicity , Imiquimod/therapeutic use , Inflammasomes/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Inflammation/drug therapy , Inflammation/pathology , Forkhead Transcription Factors
15.
Appl Biochem Biotechnol ; 195(11): 7060-7074, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36976509

ABSTRACT

Asthma is a frequently chronic respiratory disease with inflammation and remodeling in the airway. OTUB1 has been reported to be associated with pulmonary diseases. However, the role and potential mechanism of OTUB1 in asthma remain unclear. The expressions of OTUB1 in the bronchial mucosal tissues of asthmatic children and TGF-ß1-induced BEAS-2B cells were determined. The biological behaviors were assessed in an asthma in vitro model using a loss-function approach. The contents of inflammatory cytokines were detected by ELISA kits. The related protein expressions were performed using western blot assay. Besides, the interaction between OTUB1 and TRAF3 was detected by Co-IP and ubiquitination assays. Our results showed that OTUB1 level was increased in asthmatic bronchial mucosal tissues and TGF-ß1-induced BEAS-2B cells. OTUB1 knockdown promoted proliferation, inhibited apoptosis and EMT of TGF-ß1-treated cells. The inhibition of OTUB1 attenuated the TGF-ß1-induced inflammation and remodeling. Furthermore, OTUB1 knockdown inhibited the deubiquitination of TRAF3 and further suppressed the activation of NLRP3 inflammasome. The overexpression of TRAF3 or NLRP3 reversed the positive role of OTUB1 knockdown in TGF-ß1-induced cells injury. Collectively, OTUB1 deubiquitinates TRAF3 to activate NLRP3 inflammasome, thereby leading to inflammation and remodeling of TGF-ß1-induced cells, and further promoting the pathogenesis of asthma.


Subject(s)
Asthma , Transforming Growth Factor beta1 , Child , Humans , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Inflammasomes/adverse effects , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cell Line , Asthma/chemically induced , Asthma/metabolism , Inflammation
16.
Immun Inflamm Dis ; 11(11): e1069, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38018571

ABSTRACT

BACKGROUND: Ulcerative colitis (UC), a chronic inflammatory disease, is caused by abnormal immune system reactions resulting in inflammation and ulcers in the large intestine. Phillygenin (PHI) is a natural compound found in Forsythia suspensa (Thunb.) Vahl, which is known for its antipyretic, anti-inflammatory, antiobesity, and other biological activities. However, the therapeutic role and molecular mechanisms of PHI on UC are still insufficiently researched. METHODS: In this study, dextran sulfate sodium (DSS) and 2.5% 2,4,6-trinitro-Benzenesulfonic acid (TNBS)-induced acute UC were used to investigate the therapeutic effects of PHI. We evaluated the effects of PHI on disease activity index (DAI), body weight, mortality, intestinal mucosal barrier, cytokine secretion, and macrophage infiltration into colon tissue using various techniques such as flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), RT-qPCR, and Western blot analysis. RESULTS: Our findings revealed that PHI has therapeutic properties in UC treatment. PHI was able to maintain body weight, reduce DAI and mortality, restore the intestinal mucosal barrier, and inhibit cytokine secretion. Flow cytometry assay and immunofluorescence indicated that PHI reduces macrophage infiltration into colon tissue. Mechanistically, PHI may exert anti-inflammatory effects by downregulating the TLR4/MyD88/NF-κB pathway and inhibiting the activation of NLRP3 inflammasome. CONCLUSION: In conclusion, PHI possesses significant anti-inflammatory properties and is expected to be a potential drug for UC treatment. Our study delves into the underlying mechanisms of PHI therapy and highlights the potential for further research in developing PHI-based treatments for UC.


Subject(s)
Colitis, Ulcerative , Forsythia , NF-kappa B/metabolism , Colitis, Ulcerative/drug therapy , Inflammasomes/adverse effects , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Toll-Like Receptor 4/metabolism , Forsythia/metabolism , Signal Transduction , Anti-Inflammatory Agents/adverse effects , Cytokines/metabolism , Body Weight
17.
J Ovarian Res ; 16(1): 58, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36945010

ABSTRACT

BACKGROUND: Premature ovarian insufficiency (POI) is a common clinical problem, however, there are currently no effective therapies. Pyroptosis induced by the NLRP3 inflammasome is considered a possible mechanism of POI. Placental mesenchymal stem cells (PMSCs) have excellent immunomodulatory potential and offer a promising method for treating POI. METHODS: Female Sprague-Dawley rats were randomly divided into four treatment groups: control (no POI), POI with no PMSCs, POI with PMSCs transplant, and POI with hormones (estrogen + progesterone) as positive control. POI was induced by exposure to 4-vinylcyclohexene diepoxide (VCD) for 15 days. After four weeks, all animals were euthanized and examined for pathology. Hormone levels were measured and ovarian function was evaluated in relation to the estrous cycle. Levels of NLRP3 inflammasome pathway proteins were determined by immunohistochemistry and western blot. RESULTS: VCD significantly damaged rat follicles at different estrous stages. Injection of human PMSCs improved ovarian function and reproductive ability of POI rats compared to the sham and hormone groups. Our data also showed that PMSCs markedly suppress cell pyroptosis via downregulation of the NLRP3 inflammasome, caspase-1, IL-1ß and IL-18 compared to the other two groups. The human PMSCs increased the expression of IL-4 and IL-10 and decreased pro-inflammatory factors by phenotypic changes in macrophages. CONCLUSIONS: Our findings revealed a novel mechanism of follicular dysfunction and ovarian fibrosis via activation of the NLRP3 inflammasome followed by secretion of pro-inflammatory factors. Transplantation of PMSCs into POI rats suppressed pro-inflammatory factor production, NLRP3 inflammasome formation and pyroptosis, and improved ovarian function.


Subject(s)
Menopause, Premature , Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Rats , Female , Humans , Pregnancy , Animals , Inflammasomes/adverse effects , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Placenta/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Estrogens/metabolism , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism
18.
Biomater Adv ; 139: 213005, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882152

ABSTRACT

Gout is a self-limiting inflammatory arthritis mediated by the precipitation of monosodium urate (MSU) crystals that further activate the NLRP3 inflammasome and initiate a cascade of inflammatory events. However, the key physicochemical properties of MSU crystals that determine the acute phase of gout have not been fully identified. In this study, a library of engineered MSU crystals with well-controlled size and shape is designed to explore their proinflammatory potentials in mediating the pathological progress of gout. It is demonstrated that medium-sized long aspect ratio MSU crystals induce more prominent IL-1ß production in vitro due to enhanced cellular uptake and the production of mitochondrial reactive oxygen species (mtROS). The characteristics of MSU crystals are also correlated with their inflammatory potentials in both acute peritonitis and arthritis models. Furthermore, 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) is demonstrated to inhibit MSU-induced oxidative burst by removing plasma membrane cholesterol. As a result, it attenuates the inflammatory responses both in vitro and in vivo. Additionally, antioxidant N-acetylcysteine (NAC) is shown to alleviate acute gouty symptom by suppressing oxidative stress. This study identifies the key physicochemical properties of MSU crystals that mediate the pathogenesis of gout, which sheds light on novel design strategies for the intervention of gout.


Subject(s)
Arthritis, Gouty , Gout , Arthritis, Gouty/chemically induced , Gout/drug therapy , Humans , Inflammasomes/adverse effects , Macrophages/metabolism , Uric Acid/adverse effects
19.
J Invest Surg ; 35(5): 1050-1061, 2022 May.
Article in English | MEDLINE | ID: mdl-34696682

ABSTRACT

Background: The activation of alveolar macrophages (AMs) modulated via leucine-rich repeat (NLR) pyrin domain containing 3 (NLRP3) inflammasome activation is key to the progression of renal ischemia/reperfusion (rI/R)-mediated acute lung injury (ALI). Sirtuin-1 (SIRT1) can attenuate NLRP3 inflammasome activation during I/R stress and may be an important mechanism underlying ALI pathogenesis. Penehyclidine hydrochloride (PHC), an anticholinergic drug, exerts protective effects against rI/R-mediated ALI. This study aimed to decipher the effects of PHC on SIRT1 activation and the underlying mechanism of the protective activity of PHC against rI/R-mediated ALI.Materials and methods: We used an ALI rat model and the rat AMs cell line NR8383 to assess the degree of lung injury in vivo and in vitro.Results: The results show that PHC attenuates rI/R-mediated lung injury indices, myeloperoxidase, and apoptosis in vivo. It decreases the rI/R-mediated release of prostaglandin E2 and nitric oxide, mitochondrial reactive oxygen species production, and the activity of NADPH oxidase-4 in vitro. PHC ameliorates the rI/R-induced activation of the thioredoxin-interacting protein, caspase 1 (P10 unit), and NLRP3 inflammasome, along with reduced activation of interleukin-1ß and interleukin-18 in vitro. We show that PHC alleviates the rI/R-induced reduction of SIRT1 and the depletion of SIRT1 eliminates the ameliorating activity of PHC on the NLRP3 inflammasome activation in vitro. Conclusions: In summary, the findings suggest that PHC ameliorates the rI/R-mediated ALI through the SIRT1-mediated NLRP3 inflammasome activation.


Subject(s)
Acute Lung Injury , Inflammasomes , Acute Lung Injury/metabolism , Animals , Inflammasomes/adverse effects , Inflammasomes/metabolism , Ischemia , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Quinuclidines , Rats , Reperfusion , Sirtuin 1/metabolism
20.
Anal Cell Pathol (Amst) ; 2022: 6984200, 2022.
Article in English | MEDLINE | ID: mdl-35256925

ABSTRACT

Background: The definitive mechanisms of CI-AKI include contrast medium (CM) nephrotoxicity and CM disturbances in renal blood flow, but how the immune system responds to CM has rarely been mentioned in previous studies, and different cell death pathways have not been clearly distinguished. Aim: To confirm whether MRI detect early CI-AKI and to investigate whether immunity-related responses, pyroptosis, and mitophagy participate in contrast-induced acute renal injury (CI-AKI). Methods: C57BL/6 mice with CI-AKI were established by tail vein injection of iodixanol 320. Magnetic resonance imaging of 9.4 T scanner and microscopic appearance of renal H&E staining were tools to test the occurrence of CI-AKI at different times. Immunohistochemistry and NGAL were used to examine the immune responses in the kidneys with CI-AKI. Transmission electron microscopy and western blot methods were used to distinguish various cell death pathways in CI-AKI. Key Results. The densitometry of T2WI, DTI, and BOLD presents CI-AKI in a regular way. The microscopic appearance presents the strongest renal damage in CI-AKI mice that existed between 12 h (P < 0.0001) and 24 h (P < 0.05) after contrast medium (CM) injection. Strong correlation may exist between MRI densitometry (T2WI, DTI, and BOLD) and pathology. Neutrophil and macrophage chemotaxis occurred in CI-AKI, and we observed that Ly6G was the strongest at 48 h (P < 0.0001). Pyroptosis (Nlrp3/caspase-1, P < 0.05), mitophagy (BNIP/Nix, P < 0.05), and apoptosis (Bax, P < 0.05) occurred in CI-AKI. Conclusions: fMRI can detect early CI-AKI immediately after CM injection. NLRP3 inflammasomes are involved in CI-AKI, and mitophagy may play a role in mitigating kidney injury. The mitochondrion is one of the key organelles in the tubular epithelium implicated in CI-AKI.


Subject(s)
Acute Kidney Injury , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnostic imaging , Animals , Inflammasomes/adverse effects , Inflammasomes/metabolism , Kidney/metabolism , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mitophagy
SELECTION OF CITATIONS
SEARCH DETAIL