Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Nature ; 594(7862): 246-252, 2021 06.
Article in English | MEDLINE | ID: mdl-33845483

ABSTRACT

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Proteome/metabolism , Proteomics , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , COVID-19/immunology , COVID-19/virology , Cell Line , Datasets as Topic , Drug Evaluation, Preclinical , Host-Pathogen Interactions/immunology , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Phosphorylation , Protein Interaction Maps , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Proteome/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Transforming Growth Factor beta/metabolism , Ubiquitination , Viral Proteins/chemistry , Viral Proteins/metabolism , Viroporin Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34016708

ABSTRACT

The SARS-CoV-2 pandemic has caused a surge in research exploring all aspects of the virus and its effects on human health. The overwhelming publication rate means that researchers are unable to keep abreast of the literature. To ameliorate this, we present the CoronaCentral resource that uses machine learning to process the research literature on SARS-CoV-2 together with SARS-CoV and MERS-CoV. We categorize the literature into useful topics and article types and enable analysis of the contents, pace, and emphasis of research during the crisis with integration of Altmetric data. These topics include therapeutics, disease forecasting, as well as growing areas such as "long COVID" and studies of inequality. This resource, available at https://coronacentral.ai, is updated daily.


Subject(s)
COVID-19 , Machine Learning , Middle East Respiratory Syndrome Coronavirus/metabolism , Pandemics , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome , Animals , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/therapy , COVID-19/transmission , Humans , Middle East Respiratory Syndrome Coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/therapy , Severe Acute Respiratory Syndrome/transmission
3.
Cell ; 133(2): 235-49, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18423196

ABSTRACT

Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.


Subject(s)
Oxidative Stress , Respiratory Distress Syndrome/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Humans , Influenza, Human/metabolism , Interleukin-6/metabolism , Lung , Mice , Mice, Inbred C57BL , NADPH Oxidases/metabolism , NF-kappa B/metabolism , Orthomyxoviridae Infections/metabolism , Phospholipids/metabolism , Severe Acute Respiratory Syndrome/metabolism , Signal Transduction
4.
J Biol Chem ; 297(6): 101399, 2021 12.
Article in English | MEDLINE | ID: mdl-34774526

ABSTRACT

The nonstructural protein 1 (nsp1) of severe acute respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2 is a critical viral protein that suppresses host gene expression by blocking the assembly of the ribosome on host mRNAs. To understand the mechanism of inhibition of host gene expression, we sought to identify cellular proteins that interact with nsp1. Using proximity-dependent biotinylation followed by proteomic analyses of biotinylated proteins, here we captured multiple dynamic interactions of nsp1 with host cell proteins. In addition to ribosomal proteins, we identified several pre-mRNA processing proteins that interact with nsp1, including splicing factors and transcription termination proteins, as well as exosome, and stress granule (SG)-associated proteins. We found that the interactions with transcription termination factors are primarily governed by the C-terminal region of nsp1 and are disrupted by the mutation of amino acids K164 and H165 that are essential for its host shutoff function. We further show that nsp1 interacts with Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and colocalizes with G3BP1 in SGs under sodium arsenite-induced stress. Finally, we observe that the presence of nsp1 disrupts the maturation of SGs over a long period. Isolation of SG core at different times shows a gradual loss of G3BP1 in the presence of nsp1.


Subject(s)
COVID-19/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Nonstructural Proteins/metabolism , Biotinylation , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions , Humans , Proteomics , Ribosomal Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/virology , Stress Granules/metabolism
5.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: mdl-33608407

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infects cells through interaction of its spike protein (SARS2-S) with angiotensin-converting enzyme 2 (ACE2) and activation by proteases, in particular transmembrane protease serine 2 (TMPRSS2). Viruses can also spread through fusion of infected with uninfected cells. We compared the requirements of ACE2 expression, proteolytic activation, and sensitivity to inhibitors for SARS2-S-mediated and SARS-CoV-S (SARS1-S)-mediated cell-cell fusion. SARS2-S-driven fusion was moderately increased by TMPRSS2 and strongly by ACE2, while SARS1-S-driven fusion was strongly increased by TMPRSS2 and less so by ACE2 expression. In contrast to that of SARS1-S, SARS2-S-mediated cell-cell fusion was efficiently activated by batimastat-sensitive metalloproteases. Mutation of the S1/S2 proteolytic cleavage site reduced effector cell-target cell fusion when ACE2 or TMPRSS2 was limiting and rendered SARS2-S-driven cell-cell fusion more dependent on TMPRSS2. When both ACE2 and TMPRSS2 were abundant, initial target cell-effector cell fusion was unaltered compared to that of wild-type (wt) SARS2-S, but syncytia remained smaller. Mutation of the S2 cleavage (S2') site specifically abrogated activation by TMPRSS2 for both cell-cell fusion and SARS2-S-driven pseudoparticle entry but still allowed for activation by metalloproteases for cell-cell fusion and by cathepsins for particle entry. Finally, we found that the TMPRSS2 inhibitor bromhexine, unlike the inhibitor camostat, was unable to reduce TMPRSS2-activated cell-cell fusion by SARS1-S and SARS2-S. Paradoxically, bromhexine enhanced cell-cell fusion in the presence of TMPRSS2, while its metabolite ambroxol exhibited inhibitory activity under some conditions. On Calu-3 lung cells, ambroxol weakly inhibited SARS2-S-driven lentiviral pseudoparticle entry, and both substances exhibited a dose-dependent trend toward weak inhibition of authentic SARS-CoV-2.IMPORTANCE Cell-cell fusion allows viruses to infect neighboring cells without the need to produce free virus and contributes to tissue damage by creating virus-infected syncytia. Our results demonstrate that the S2' cleavage site is essential for activation by TMPRSS2 and unravel important differences between SARS-CoV and SARS-CoV-2, among those, greater dependence of SARS-CoV-2 on ACE2 expression and activation by metalloproteases for cell-cell fusion. Bromhexine, reportedly an inhibitor of TMPRSS2, is currently being tested in clinical trials against coronavirus disease 2019. Our results indicate that bromhexine enhances fusion under some conditions. We therefore caution against the use of bromhexine in high dosages until its effects on SARS-CoV-2 spike activation are better understood. The related compound ambroxol, which similarly to bromhexine is clinically used as an expectorant, did not exhibit activating effects on cell-cell fusion. Both compounds exhibited weak inhibitory activity against SARS-CoV-2 infection at high concentrations, which might be clinically attainable for ambroxol.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Ambroxol/pharmacology , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Bromhexine/pharmacology , COVID-19/genetics , Cell Line , Humans , Mutation, Missense , Proteolysis/drug effects , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Severe Acute Respiratory Syndrome/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
FASEB J ; 35(4): e21360, 2021 04.
Article in English | MEDLINE | ID: mdl-33749932

ABSTRACT

The novel coronavirus disease, COVID-19, has grown into a global pandemic and a major public health threat since its breakout in December 2019. To date, no specific therapeutic drug or vaccine for treating COVID-19 and SARS has been FDA approved. Previous studies suggest that berberine, an isoquinoline alkaloid, has shown various biological activities that may help against COVID-19 and SARS, including antiviral, anti-allergy and inflammation, hepatoprotection against drug- and infection-induced liver injury, as well as reducing oxidative stress. In particular, berberine has a wide range of antiviral activities such as anti-influenza, anti-hepatitis C, anti-cytomegalovirus, and anti-alphavirus. As an ingredient recommended in guidelines issued by the China National Health Commission for COVID-19 to be combined with other therapy, berberine is a promising orally administered therapeutic candidate against SARS-CoV and SARS-CoV-2. The current study comprehensively evaluates the potential therapeutic mechanisms of berberine in preventing and treating COVID-19 and SARS using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analysis, and in silico molecular docking. An orally available immunotherapeutic-berberine nanomedicine, named NIT-X, has been developed by our group and has shown significantly increased oral bioavailability of berberine, increased IFN-γ production by CD8+ T cells, and inhibition of mast cell histamine release in vivo, suggesting a protective immune response. We further validated the inhibition of replication of SARS-CoV-2 in lung epithelial cells line in vitro (Calu3 cells) by berberine. Moreover, the expression of targets including ACE2, TMPRSS2, IL-1α, IL-8, IL-6, and CCL-2 in SARS-CoV-2 infected Calu3 cells were significantly suppressed by NIT-X. By supporting protective immunity while inhibiting pro-inflammatory cytokines; inhibiting viral infection and replication; inducing apoptosis; and protecting against tissue damage, berberine is a promising candidate in preventing and treating COVID-19 and SARS. Given the high oral bioavailability and safety of berberine nanomedicine, the current study may lead to the development of berberine as an orally, active therapeutic against COVID-19 and SARS.


Subject(s)
Antiviral Agents/pharmacology , Berberine/pharmacology , COVID-19 Drug Treatment , COVID-19 , Gene Expression Regulation/drug effects , Models, Biological , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome , Severe acute respiratory syndrome-related coronavirus/metabolism , Administration, Oral , COVID-19/metabolism , Cell Line , Computer Simulation , Humans , Pandemics , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/metabolism
7.
FASEB J ; 35(2): e21245, 2021 02.
Article in English | MEDLINE | ID: mdl-33495994

ABSTRACT

Lymphopenia is commonly observed in SARS and COVID-19 patients although the lymphocyte count is not always below 0.8 × 109 /L in all the patients. It is suggested that lymphopenia serves as a useful predictor for prognosis in the patients. It is also hypothesized that lymphopenia is related to glucocorticoids and apoptosis. However, the ordering between lymphopenia and apoptosis appears different between SARS and COVID-19 patients, ie, lymphopenia is prior to apoptosis in SARS patients whereas apoptosis is prior to lymphopenia in COVID-19 patients. This paper attempts to figure out this contradiction through three players, lymphopenia, glucocorticoids, and apoptosis. Although the literature does not provide a solid explanation, the level of glucocorticoids could determine the ordering between lymphopenia and apoptosis because the administration of high doses of glucocorticoids could lead to lymphopenia whereas low doses of glucocorticoids could benefit patients. In the meantime, this paper raises several questions, which need to be answered in order to better understand the whole course of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Glucocorticoids , Lymphopenia , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome , Severe acute respiratory syndrome-related coronavirus/metabolism , Apoptosis/drug effects , COVID-19/complications , COVID-19/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Humans , Lymphopenia/drug therapy , Lymphopenia/etiology , Lymphopenia/metabolism , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/metabolism
8.
BMC Bioinformatics ; 22(1): 18, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413085

ABSTRACT

BACKGROUND: The ongoing global COVID-19 pandemic is caused by SARS-CoV-2, a novel coronavirus first discovered at the end of 2019. It has led to more than 50 million confirmed cases and more than 1 million deaths across 219 countries as of 11 November 2020, according to WHO statistics. SARS-CoV-2, SARS-CoV, and MERS-CoV are similar. They are highly pathogenic and threaten public health, impair the economy, and inflict long-term impacts on society. No drug or vaccine has been approved as a treatment for these viruses. Efforts to develop antiviral measures have been hampered by the insufficient understanding of how the human body responds to viral infections at the cellular and molecular levels. RESULTS: In this study, journal articles and transcriptomic and proteomic data surveying coronavirus infections were collected. Response genes and proteins were then identified by differential analyses comparing gene/protein levels between infected and control samples. Finally, the H2V database was created to contain the human genes and proteins that respond to SARS-CoV-2, SARS-CoV, and MERS-CoV infection. CONCLUSIONS: H2V provides molecular information about the human response to infection. It can be a powerful tool to discover cellular pathways and processes relevant for viral pathogenesis to identify potential drug targets. It is expected to accelerate the process of antiviral agent development and to inform preparations for potential future coronavirus-related emergencies. The database is available at: http://www.zhounan.org/h2v .


Subject(s)
COVID-19/metabolism , Coronavirus Infections/metabolism , Databases, Genetic , Databases, Protein , Severe Acute Respiratory Syndrome/metabolism , User-Computer Interface , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/physiology , Proteomics , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology
9.
J Cell Physiol ; 236(4): 2430-2442, 2021 04.
Article in English | MEDLINE | ID: mdl-32901940

ABSTRACT

COVID-19, a new disease caused by the 2019-novel coronavirus (SARS-CoV-2), has swept the world and challenged its culture, economy, and health infrastructure. Forced emergence to find an effective vaccine to immunize people has led scientists to design and examine vaccine candidates all over the world. Until a vaccine is developed, however, effective treatment is needed to combat this virus, which is resistant to all conventional antiviral drugs. Accordingly, more about the structure, entry mechanism, and pathogenesis of COVID-19 is required. Angiotensin-converting enzyme 2 (ACE2) is the gateway to SARS-CoV and SARS-CoV-2, so our knowledge of SARS-CoV-2 can help us to complete its mechanism of interaction with ACE2 and virus endocytosis, which can be interrupted by neutralizing small molecules or proteins. ACE2 also plays a crucial role in lung injury.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/physiopathology , SARS-CoV-2/pathogenicity , Virus Internalization , Humans , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/physiopathology
10.
Biochem Biophys Res Commun ; 557: 273-279, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33894414

ABSTRACT

Recently, the novel coronavirus (SARS-CoV-2), which has spread from China to the world, was declared a global public health emergency, which causes lethal respiratory infections. Acetylation of several proteins plays essential roles in various biological processes, such as viral infections. We reported that the nucleoproteins of influenza virus and Zaire Ebolavirus were acetylated, suggesting that these modifications contributed to the molecular events involved in viral replication. Similar to influenza virus and Ebolavirus, the coronavirus also contains single-stranded RNA, as its viral genome interacts with the nucleocapsid (N) proteins. In this study, we report that SARS-CoV and SARS-CoV-2 N proteins are strongly acetylated by human histone acetyltransferases, P300/CBP-associated factor (PCAF), and general control nonderepressible 5 (GCN5), but not by CREB-binding protein (CBP) in vitro. Liquid chromatography-mass spectrometry analyses identified 2 and 12 acetyl-lysine residues from SARS-CoV and SARS-CoV-2 N proteins, respectively. Particularly in the SARS-CoV-2 N proteins, the acetyl-lysine residues were localized in or close to several functional sites, such as the RNA interaction domains and the M-protein interacting site. These results suggest that acetylation of SARS-CoV-2 N proteins plays crucial roles in their functions.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Histone Acetyltransferases/metabolism , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , CREB-Binding Protein/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2/chemistry
11.
Mol Syst Biol ; 16(7): e9841, 2020 07.
Article in English | MEDLINE | ID: mdl-32715628

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) leads to coronavirus disease 2019 (COVID-19), which poses an unprecedented worldwide health crisis, and has been declared a pandemic by the World Health Organization (WHO) on March 11, 2020. The angiotensin converting enzyme 2 (ACE2) has been suggested to be the key protein used by SARS-CoV-2 for host cell entry. In their recent work, Lindskog and colleagues (Hikmet et al, 2020) report that ACE2 is expressed at very low protein levels-if at all-in respiratory epithelial cells. Severe COVID-19, however, is characterized by acute respiratory distress syndrome and extensive damage to the alveoli in the lung parenchyma. Then, what is the role of the airway epithelium in the early stages of COVID-19, and which cells need to be studied to characterize the biological mechanisms responsible for the progression to severe disease after initial infection by the novel coronavirus?


Subject(s)
Coronavirus Infections/metabolism , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Conjunctiva/metabolism , Coronavirus Infections/enzymology , Host Microbial Interactions/genetics , Humans , Organ Specificity , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/enzymology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/enzymology , Spike Glycoprotein, Coronavirus/metabolism
12.
J Chem Inf Model ; 61(3): 1226-1243, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33619962

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α1-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α1-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α1 with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α1-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α1-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Design , Peptides/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , Humans , Models, Molecular , Peptides/chemistry , Protein Binding/drug effects , Protein Domains/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/metabolism
13.
Endocr J ; 68(2): 129-136, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33473054

ABSTRACT

We have reviewed the available literature on thyroid diseases and coronavirus disease 2019 (COVID-19), and data from the previous coronavirus pandemic, the severe acute respiratory syndrome (SARS) epidemic. We learned that both SARS and COVID-19 patients had thyroid abnormalities. In the limited number of SARS cases, where it was examined, decreased serum T3, T4 and TSH levels were detected. In a study of survivors of SARS approximately 7% of the patients had hypothyroidism. In the previous evaluation evidence was found that pituitary function was also affected in SARS. Others suggested a hypothalamic-pituitary-adrenal axis dysfunction. One result published recently indicates that a primary injury to the thyroid gland itself may play a key role in the pathogenesis of thyroid disorders in COVID-19 patients, too. Subacute thyroiditis, autoimmune thyroiditis and an atypical form of thyroiditis are complications of COVID-19. Thyroid hormone dysfunction affects the outcome by increasing mortality in critical illnesses like acute respiratory distress syndrome, which is a leading complication in COVID-19. Angiotensin-converting enzyme 2 is a membrane-bound enzyme, which is also expressed in the thyroid gland and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) uses it for docking, entering as well as replication. Based on the available results obtained in the SARS-CoV-2 pandemic, beside others, we suggest that it is necessary to monitor thyroid hormones in COVID-19.


Subject(s)
COVID-19/physiopathology , Graves Disease/physiopathology , Hypothyroidism/physiopathology , Respiratory Distress Syndrome/physiopathology , Thyroiditis/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/metabolism , Graves Disease/etiology , Graves Disease/metabolism , Humans , Hypothyroidism/etiology , Hypothyroidism/metabolism , Mortality , Prognosis , Receptors, Coronavirus/metabolism , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/physiopathology , Thyroid Gland/metabolism , Thyroiditis/etiology , Thyroiditis/metabolism , Thyroiditis, Autoimmune/etiology , Thyroiditis, Autoimmune/metabolism , Thyroiditis, Autoimmune/physiopathology , Thyroiditis, Subacute/etiology , Thyroiditis, Subacute/metabolism , Thyroiditis, Subacute/physiopathology , Thyrotropin/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism
14.
Molecules ; 26(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668428

ABSTRACT

Coronaviruses (CoVs) are positive-sense RNA enveloped viruses, members of the family Coronaviridae, that cause infections in a broad range of mammals including humans. Several CoV species lead to mild upper respiratory infections typically associated with common colds. However, three human CoV (HCoV) species: Severe Acute Respiratory Syndrome (SARS)-CoV-1, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV-2, are responsible for severe respiratory diseases at the origin of two recent epidemics (SARS and MERS), and of the current COronaVIrus Disease 19 (COVID-19), respectively. The easily transmissible SARS-CoV-2, emerging at the end of 2019 in China, spread rapidly worldwide, leading the World Health Organization (WHO) to declare COVID-19 a pandemic. While the world waits for mass vaccination, there is an urgent need for effective drugs as short-term weapons to combat the SARS-CoV-2 infection. In this context, the drug repurposing approach is a strategy able to guarantee positive results rapidly. In this regard, it is well known that several nucleoside-mimicking analogs and nucleoside precursors may inhibit the growth of viruses providing effective therapies for several viral diseases, including HCoV infections. Therefore, this review will focus on synthetic nucleosides and nucleoside precursors active against different HCoV species, paying great attention to SARS-CoV-2. This work covers progress made in anti-CoV therapy with nucleoside derivatives and provides insight into their main mechanisms of action.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Drug Repositioning , Nucleosides , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/drug therapy , Severe acute respiratory syndrome-related coronavirus/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/metabolism , Humans , Nucleosides/chemistry , Nucleosides/therapeutic use , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/metabolism
15.
J Cell Physiol ; 235(12): 9884-9894, 2020 12.
Article in English | MEDLINE | ID: mdl-32510598

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a global pandemic with high infectivity and pathogenicity, accounting for tens of thousands of deaths worldwide. Recent studies have found that the pathogen of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), shares the same cell receptor angiotensin converting enzyme II (ACE2) as SARS-CoV. The pathological investigation of COVID-19 deaths showed that the lungs had characteristics of pulmonary fibrosis. However, how SARS-CoV-2 spreads from the lungs to other organs has not yet been determined. Here, we performed an unbiased evaluation of cell-type-specific expression of ACE2 in healthy and fibrotic lungs, as well as in normal and failed adult human hearts, using published single-cell RNA-seq data. We found that ACE2 expression in fibrotic lungs mainly locates in arterial vascular cells, which might provide a route for bloodstream spreading of SARS-CoV-2. Failed human hearts have a higher percentage of ACE2-expressing cardiomyocytes, and SARS-CoV-2 might attack cardiomyocytes through the bloodstream in patients with heart failure. Moreover, ACE2 was highly expressed in cells infected by respiratory syncytial virus or Middle East respiratory syndrome coronavirus and in mice treated by lipopolysaccharide. Our findings indicate that patients with pulmonary fibrosis, heart failure, and virus infection have a higher risk and are more susceptible to SARS-CoV-2 infection. The SARS-CoV-2 might attack other organs by getting into the bloodstream. This study provides new insights into SARS-CoV-2 blood entry and heart injury and might propose a therapeutic strategy to prevent patients from developing severe complications.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Heart Injuries/virology , Lung/virology , Pneumonia, Viral/virology , Animals , COVID-19 , Gene Expression Profiling/methods , Heart Failure/metabolism , Lung/metabolism , Mice , Pandemics , RNA/metabolism , SARS-CoV-2 , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/metabolism
16.
Clin Infect Dis ; 71(15): 870-874, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32215613

ABSTRACT

Mortality from coronavirus disease 2019 (COVID-19) is strongly associated with cardiovascular disease, diabetes, and hypertension. These disorders share underlying pathophysiology related to the renin-angiotensin system (RAS) that may be clinically insightful. In particular, activity of the angiotensin-converting enzyme 2 (ACE2) is dysregulated in cardiovascular disease, and this enzyme is used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to initiate the infection. Cardiovascular disease and pharmacologic RAS inhibition both increase ACE2 levels, which may increase the virulence of SARS-CoV-2 within the lung and heart. Conversely, mechanistic evidence from related coronaviruses suggests that SARS-CoV-2 infection may downregulate ACE2, leading to toxic overaccumulation of angiotensin II that induces acute respiratory distress syndrome and fulminant myocarditis. RAS inhibition could mitigate this effect. With conflicting mechanistic evidence, we propose key clinical research priorities necessary to clarify the role of RAS inhibition in COVID-19 mortality that could be rapidly addressed by the international research community.


Subject(s)
Coronavirus Infections/metabolism , Coronavirus Infections/mortality , Pneumonia, Viral/metabolism , Pneumonia, Viral/mortality , Renin-Angiotensin System/physiology , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/mortality , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/virology
17.
J Virol ; 93(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30626688

ABSTRACT

Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Lung/immunology , Lung/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Serine Endopeptidases/metabolism , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Disease Models, Animal , Female , Humans , Lung/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Poly I-C/metabolism , Severe acute respiratory syndrome-related coronavirus , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/metabolism , Toll-Like Receptor 3/metabolism , Vero Cells
18.
Cytokine ; 133: 155143, 2020 09.
Article in English | MEDLINE | ID: mdl-32460144

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic in early 2020. The infection has been associated with a wide range of clinical symptoms. In the severely affected patients, it has caused dysregulation of immune responses including over-secretion of inflammatory cytokines and imbalances in the proportion of naïve helper T cells, memory helper T cells and regulatory T cells. Identification of the underlying mechanism of such aberrant function of immune system would help in the prediction of disease course and selection of susceptible patients for more intensive cares. In the current review, we summarize the results of studies which reported alterations in cytokine levels and immune cell functions in patients affected with SARS-CoV-2 and related viruses.


Subject(s)
Coronavirus Infections/immunology , Cytokines/metabolism , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/metabolism , Disease Progression , Disease Susceptibility/immunology , Disease Susceptibility/pathology , Humans , Influenza, Human/immunology , Influenza, Human/metabolism , Middle East Respiratory Syndrome Coronavirus , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology
19.
Respir Res ; 21(1): 252, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32993656

ABSTRACT

SARS-CoV-2 is causing a pandemic with currently > 29 million confirmed cases and > 900,000 deaths worldwide. The locations and mechanisms of virus entry into the human respiratory tract are incompletely characterized. We analyzed publicly available RNA microarray datasets for SARS-CoV-2 entry receptors and cofactors ACE2, TMPRSS2, BSG (CD147) and FURIN. We found that ACE2 and TMPRSS2 are upregulated in the airways of smokers. In asthmatics, ACE2 tended to be downregulated in nasal epithelium, and TMPRSS2 was upregulated in the bronchi. Furthermore, respiratory epithelia were negative for ACE-2 and TMPRSS2 protein expression while positive for BSG and furin, suggesting a possible alternative entry route for SARS-CoV-2.


Subject(s)
Asthma/virology , Coronavirus Infections/genetics , Gene Expression Regulation , Pneumonia, Viral/genetics , Serine Endopeptidases/genetics , Severe Acute Respiratory Syndrome/virology , Smoking/epidemiology , Asthma/physiopathology , COVID-19 , Databases, Factual , Humans , Pandemics , Receptors, Virus/genetics , Reference Values , Respiratory System/metabolism , Respiratory System/virology , Retrospective Studies , Severe Acute Respiratory Syndrome/metabolism , Smoking/physiopathology , Virus Internalization
20.
Nitric Oxide ; 102: 39-41, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32562746

ABSTRACT

COVID-19 is a severe pandemic which has caused a devastating amount of loss in lives around the world, and yet we still don't know how to appropriately treat this disease. We know very little about the pathogenesis of SARS-CoV-2, the virus which induces the COVID-19. However, COVID-19 does share many similar symptoms with SARS and influenza. Previous scientific discoveries learned from lab animal models and clinical practices shed light on possible pathogenic mechanisms in COVID-19. In the past decades, accumulated scientific findings confirmed the pathogenic role of free radicals damage in respiratory virus infection. Astonishingly very few medical professionals mention the crucial role of free radical damage in COVID-19. This hypothesis aims to summarize the crucial pathogenic role of free radical damage in respiratory virus induced pneumonia and suggest an antioxidative therapeutic strategy for COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/metabolism , Free Radicals/metabolism , Pandemics , Pneumonia, Viral/metabolism , Acetylcysteine/therapeutic use , Animals , Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Azithromycin/administration & dosage , Azithromycin/pharmacology , Azithromycin/therapeutic use , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Drug Therapy, Combination , Free Radicals/antagonists & inhibitors , Glutathione/therapeutic use , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Mice , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , NF-E2-Related Factor 2/agonists , Nitric Oxide/metabolism , Orthomyxoviridae Infections/metabolism , Oxidative Stress , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL