Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
PLoS Biol ; 21(6): e3002175, 2023 06.
Article in English | MEDLINE | ID: mdl-37379322

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) protein 1 (TAL1) is a central transcription factor in hematopoiesis. The timing and level of TAL1 expression orchestrate the differentiation to specialized blood cells and its overexpression is a common cause of T-ALL. Here, we studied the 2 protein isoforms of TAL1, short and long, which are generated by the use of alternative promoters as well as by alternative splicing. We analyzed the expression of each isoform by deleting an enhancer or insulator, or by opening chromatin at the enhancer location. Our results show that each enhancer promotes expression from a specific TAL1 promoter. Expression from a specific promoter gives rise to a unique 5' UTR with differential regulation of translation. Moreover, our study suggests that the enhancers regulate TAL1 exon 3 alternative splicing by inducing changes in the chromatin at the splice site, which we demonstrate is mediated by KMT2B. Furthermore, our results indicate that TAL1-short binds more strongly to TAL1 E-protein partners and functions as a stronger transcription factor than TAL1-long. Specifically TAL1-short has a unique transcription signature promoting apoptosis. Finally, when we expressed both isoforms in mice bone marrow, we found that while overexpression of both isoforms prevents lymphoid differentiation, expression of TAL1-short alone leads to hematopoietic stem cell exhaustion. Furthermore, we found that TAL1-short promoted erythropoiesis and reduced cell survival in the CML cell line K562. While TAL1 and its partners are considered promising therapeutic targets in the treatment of T-ALL, our results show that TAL1-short could act as a tumor suppressor and suggest that altering TAL1 isoform's ratio could be a preferred therapeutic approach.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin , Hematopoiesis/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Isoforms/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Transcription Factors/metabolism
2.
Nature ; 566(7745): 490-495, 2019 02.
Article in English | MEDLINE | ID: mdl-30787436

ABSTRACT

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.


Subject(s)
Cell Differentiation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gastrulation , Organogenesis , Single-Cell Analysis , Animals , Cell Lineage/genetics , Chimera/embryology , Chimera/genetics , Chimera/metabolism , Endoderm/cytology , Endoderm/embryology , Endoderm/metabolism , Endothelium/cytology , Endothelium/embryology , Endothelium/metabolism , Female , Gastrulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Hematopoiesis/genetics , Male , Mesoderm/cytology , Mesoderm/embryology , Mice , Mutation/genetics , Myeloid Cells/cytology , Organogenesis/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/embryology , T-Cell Acute Lymphocytic Leukemia Protein 1/deficiency , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics
3.
FASEB J ; 37(4): e22870, 2023 04.
Article in English | MEDLINE | ID: mdl-36929052

ABSTRACT

Enhancers activate gene transcription remotely, which requires tissue specific transcription factors binding to them. GATA1 and TAL1 are hematopoietic/erythroid-specific factors and often bind together to enhancers, activating target genes. Interestingly, we found that some hematopoietic/erythroid genes are transcribed in a GATA1-dependent but TAL1-independnet manner. They appear to have enhancers within a relatively short distance. In this study, we paired highly transcribed hematopoietic/erythroid genes with the nearest GATA1/TAL1-binding enhancers and analyzed these putative enhancer-gene pairs depending on distance between them. Enhancers located at various distances from genes in the pairs, which was not related to transcription level of the genes. However, genes with enhancers at short distances away tended to be transcriptionally unaffected by TAL1 depletion. Histone H3K27ac extended from the enhancers to target genes. The H3K27ac extension was maintained without TAL1, even though it disappeared owing to the loss of GATA1. Intergenic RNA was highly transcribed from the enhancers to nearby target genes, independent of TAL1. Taken together, TAL1-independent transcription of hematopoietic/erythroid genes appears to be promoted by enhancers present in a short distance. These enhancers are likely to activate nearby target genes by tracking the intervening regions.


Subject(s)
DNA, Intergenic , Enhancer Elements, Genetic , Hematopoiesis , Histones , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , Hematopoiesis/genetics , Histones/genetics , Histones/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism
4.
Mol Cancer ; 22(1): 12, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36650499

ABSTRACT

The acquisition of genetic abnormalities engendering oncogene dysregulation underpins cancer development. Certain proto-oncogenes possess several dysregulation mechanisms, yet how each mechanism impacts clinical outcome is unclear. Using T-cell acute lymphoblastic leukemia (T-ALL) as an example, we show that patients harboring 5'super-enhancer (5'SE) mutations of the TAL1 oncogene identifies a specific patient subgroup with poor prognosis irrespective of the level of oncogene dysregulation. Remarkably, the MYB dependent oncogenic 5'SE can be targeted using Mebendazole to induce MYB protein degradation and T-ALL cell death. Of note Mebendazole treatment demonstrated efficacy in vivo in T-ALL preclinical models. Our work provides proof of concept that within a specific oncogene driven cancer, the mechanism of oncogene dysregulation rather than the oncogene itself can identify clinically distinct patient subgroups and pave the way for future super-enhancer targeting therapy.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Mebendazole
5.
EMBO J ; 38(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30814124

ABSTRACT

Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.


Subject(s)
Cell Lineage , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Hematopoiesis , Nanog Homeobox Protein/physiology , Pluripotent Stem Cells/cytology , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Animals , Cell Differentiation , Embryo, Mammalian/metabolism , Embryonic Development , Embryonic Stem Cells/metabolism , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Transgenic , Pluripotent Stem Cells/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics
6.
Blood ; 138(16): 1441-1455, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34075404

ABSTRACT

Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.


Subject(s)
GATA2 Transcription Factor/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Erythroid Cells/metabolism , Erythroid Cells/pathology , Gene Regulatory Networks , Hematopoiesis , Humans , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Transcriptional Regulator ERG/genetics
7.
Haematologica ; 108(5): 1259-1271, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36632736

ABSTRACT

T-cell acute lymphocytic leukemia protein 1 (TAL1) is one of the most frequently deregulated oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). Its deregulation can occur through diverse cis-alterations, including SIL-TAL1 microdeletions, translocations with T-cell Receptor loci, and more recently described upstream intergenic non-coding mutations. These mutations consist of recurrent focal microinsertions that create an oncogenic neo-enhancer accompanied by activating epigenetic marks. This observation laid the groundwork for an innovative paradigm concerning the activation of proto-oncogenes via genomic alterations of non-coding intergenic regions. However, for the majority of T-ALL expressing TAL1 (TAL1+), the deregulation mechanism remains 'unresolved'. We took advantage of H3K27ac and H3K4me3 chromatin immunoprecipitation sequencing data of eight cases of T-ALL, including five TAL1+ cases. We identified a putative novel oncogenic neo-enhancer downstream of TAL1 in an unresolved monoallelic TAL1+ case. A rare but recurrent somatic heterozygous microinsertion within this region creates a de novo binding site for MYB transcription factor. Here we demonstrate that this mutation leads to increased enhancer activity, gain of active epigenetic marks, and TAL1 activation via recruitment of MYB. These results highlight the diversity of non-coding mutations that can drive oncogene activation.


Subject(s)
Enhancer Elements, Genetic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Cell Acute Lymphocytic Leukemia Protein 1 , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Mutation , Oncogene Proteins, Fusion/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Lymphocytes/metabolism , Transcription Factors/genetics
8.
Haematologica ; 108(2): 367-381, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36073513

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of thymic T-cell precursors. Overexpression of oncogenic transcription factor TAL1 is observed in 40-60% of human T-ALL cases, frequently together with activation of the NOTCH1 and PI3K-AKT pathways. In this study, we performed chemical screening to identify small molecules that can inhibit the enhancer activity driven by TAL1 using the GIMAP enhancer reporter system. Among approximately 3,000 compounds, PIK- 75, a known inhibitor of PI3K and CDK, was found to strongly inhibit the enhancer activity. Mechanistic analysis demonstrated that PIK-75 blocks transcriptional activity, which primarily affects TAL1 target genes as well as AKT activity. TAL1-positive, AKT-activated T-ALL cells were very sensitive to PIK-75, as evidenced by growth inhibition and apoptosis induction, while T-ALL cells that exhibited activation of the JAK-STAT pathway were insensitive to this drug. Together, our study demonstrates a strategy targeting two types of core machineries mediated by oncogenic transcription factors and signaling pathways in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Transcription Factors/genetics , T-Lymphocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
9.
Development ; 146(11)2019 06 03.
Article in English | MEDLINE | ID: mdl-31097478

ABSTRACT

The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Endothelium, Vascular/embryology , Gene Expression Regulation, Developmental , Neovascularization, Physiologic/genetics , Zebrafish Proteins/physiology , Zebrafish , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites/genetics , Cell Differentiation/genetics , Chromosome Mapping/methods , Datasets as Topic , Embryo, Nonmammalian , Endothelial Cells/physiology , Endothelium, Vascular/metabolism , Genomics/methods , LIM Domain Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Transcription Factors/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
Haematologica ; 107(10): 2304-2317, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35354248

ABSTRACT

TAL1 is ectopically expressed in about 30% of T-cell acute lymphoblastic leukemia (T-ALL) due to chromosomal rearrangements leading to the STIL-TAL1 fusion genes or due to non-coding mutations leading to a de novo enhancer driving TAL1 expression. Analysis of sequence data from T-ALL cases demonstrates a significant association between TAL1 expression and activating mutations of the PI3K-AKT pathway. We investigated the oncogenic function of TAL1 and the possible cooperation with PI3K-AKT pathway activation using isogenic pro-T-cell cultures ex vivo and in vivo leukemia models. We found that TAL1 on its own suppressed T-cell growth, in part by affecting apoptosis genes, while the combination with AKT pathway activation reduced apoptosis and was strongly driving cell proliferation ex vivo and leukemia development in vivo. As a consequence, we found that TAL1+AKTE17K transformed cells are more sensitive to PI3K-AKT pathway inhibition compared to AKTE17K transformed cells, related to the negative effect of TAL1 in the absence of activated PI3K-AKT signaling. We also found that both TAL1 and PI3K-AKT signaling increased the DNA-repair signature in T cells resulting in synergy between PARP and PI3K-AKT pathway inhibition. In conclusion, we have developed a novel mouse model for TAL1+AKTE17K driven T-ALL development and have identified a vulnerability of these leukemia cells to PI3K-AKT and PARP inhibitors.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , DNA , Mice , Phosphatidylinositol 3-Kinases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , T-Lymphocytes/metabolism
11.
Nucleic Acids Res ; 48(6): 3119-3133, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32086528

ABSTRACT

Aberrant activation of the TAL1 is associated with up to 60% of T-ALL cases and is involved in CTCF-mediated genome organization within the TAL1 locus, suggesting that CTCF boundary plays a pathogenic role in T-ALL. Here, we show that -31-Kb CTCF binding site (-31CBS) serves as chromatin boundary that defines topologically associating domain (TAD) and enhancer/promoter interaction required for TAL1 activation. Deleted or inverted -31CBS impairs TAL1 expression in a context-dependent manner. Deletion of -31CBS reduces chromatin accessibility and blocks long-range interaction between the +51 erythroid enhancer and TAL1 promoter-1 leading to inhibition of TAL1 expression in erythroid cells, but not T-ALL cells. However, in TAL1-expressing T-ALL cells, the leukemia-prone TAL1 promoter-IV specifically interacts with the +19 stem cell enhancer located 19 Kb downstream of TAL1 and this interaction is disrupted by the -31CBS inversion in T-ALL cells. Inversion of -31CBS in Jurkat cells alters chromatin accessibility, histone modifications and CTCF-mediated TAD leading to inhibition of TAL1 expression and TAL1-driven leukemogenesis. Thus, our data reveal that -31CBS acts as critical regulator to define +19-enhancer and the leukemic prone promoter IV interaction for TAL1 activation in T-ALL. Manipulation of CTCF boundary can alter TAL1 TAD and oncogenic transcription networks in leukemogenesis.


Subject(s)
CCCTC-Binding Factor/genetics , Carcinogenesis/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Binding Sites/genetics , Chromatin/genetics , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Histone Code/genetics , Humans , Jurkat Cells , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Binding/genetics , Transcription, Genetic/genetics
12.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563322

ABSTRACT

The B-cell CLL/lymphoma 11B gene (BCL11B) plays a crucial role in T-cell development, but its role in T-cell malignancies is still unclear. To study its role in the development of T-cell neoplasms, we generated an inducible BCL11B knockout in a murine T cell leukemia/lymphoma model. Mice, bearing human oncogenes TAL BHLH Transcription Factor 1 (TAL1; SCL) or LIM Domain Only 1 (LMO1), responsible for T-cell acute lymphoblastic leukemia (T-ALL) development, were crossed with BCL11B floxed and with CRE-ER/lox mice. The mice with a single oncogene BCL11Bflox/floxCREtg/tgTAL1tg or BCL11Bflox/floxCREtg/tgLMO1tg were healthy, bred normally, and were used to maintain the mice in culture. When crossed with each other, >90% of the double transgenic mice BCL11Bflox/floxCREtg/tgTAL1tgLMO1tg, within 3 to 6 months after birth, spontaneously developed T-cell leukemia/lymphoma. Upon administration of synthetic estrogen (tamoxifen), which binds to the estrogen receptor and activates the Cre recombinase, the BCL11B gene was knocked out by excision of its fourth exon from the genome. The mouse model of inducible BCL11B knockout we generated can be used to study the role of this gene in cancer development and the potential therapeutic effect of BCL11B inhibition in T-cell leukemia and lymphoma.


Subject(s)
Leukemia, T-Cell , Transcription Factors , Animals , Disease Models, Animal , LIM Domain Proteins/genetics , Leukemia, T-Cell/genetics , Mice , Mice, Knockout , Mice, Transgenic , Nuclear Proteins/genetics , Repressor Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics
13.
Development ; 145(19)2018 10 11.
Article in English | MEDLINE | ID: mdl-30185409

ABSTRACT

Stem cell leukemia (Scl or Tal1) and lymphoblastic leukemia 1 (Lyl1) encode highly related members of the basic helix-loop-helix family of transcription factors that are co-expressed in the erythroid lineage. Previous studies have suggested that Scl is essential for primitive erythropoiesis. However, analysis of single-cell RNA-seq data of early embryos showed that primitive erythroid cells express both Scl and Lyl1 Therefore, to determine whether Lyl1 can function in primitive erythropoiesis, we crossed conditional Scl knockout mice with mice expressing a Cre recombinase under the control of the Epo receptor, active in erythroid progenitors. Embryos with 20% expression of Scl from E9.5 survived to adulthood. However, mice with reduced expression of Scl and absence of Lyl1 (double knockout; DKO) died at E10.5 because of progressive loss of erythropoiesis. Gene expression profiling of DKO yolk sacs revealed loss of Gata1 and many of the known target genes of the SCL-GATA1 complex. ChIP-seq analyses in a human erythroleukemia cell line showed that LYL1 exclusively bound a small subset of SCL targets including GATA1. Together, these data show for the first time that Lyl1 can maintain primitive erythropoiesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Erythropoiesis , Neoplasm Proteins/metabolism , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Embryo, Mammalian/cytology , Erythrocytes/metabolism , Erythroid Cells/metabolism , Erythropoiesis/genetics , GATA1 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Mice, Knockout , Neoplasm Proteins/genetics , Protein Binding , Stem Cells/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism
14.
Blood ; 134(10): 826-835, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31300405

ABSTRACT

The stem cell leukemia (Scl or Tal1) protein forms part of a multimeric transcription factor complex required for normal megakaryopoiesis. However, unlike other members of this complex such as Gata1, Fli1, and Runx1, mutations of Scl have not been observed as a cause of inherited thrombocytopenia. We postulated that functional redundancy with its closely related family member, lymphoblastic leukemia 1 (Lyl1) might explain this observation. To determine whether Lyl1 can substitute for Scl in megakaryopoiesis, we examined the platelet phenotype of mice lacking 1 or both factors in megakaryocytes. Conditional Scl knockout (KO) mice crossed with transgenic mice expressing Cre recombinase under the control of the mouse platelet factor 4 (Pf4) promoter generated megakaryocytes with markedly reduced but not absent Scl These Pf4Sclc-KO mice had mild thrombocytopenia and subtle defects in platelet aggregation. However, Pf4Sclc-KO mice generated on an Lyl1-null background (double knockout [DKO] mice) had severe macrothrombocytopenia, abnormal megakaryocyte morphology, defective pro-platelet formation, and markedly impaired platelet aggregation. DKO megakaryocytes, but not single-knockout megakaryocytes, had reduced expression of Gata1, Fli1, Nfe2, and many other genes that cause inherited thrombocytopenia. These gene expression changes were significantly associated with shared Scl and Lyl1 E-box binding sites that were also enriched for Gata1, Ets, and Runx1 motifs. Thus, Scl and Lyl1 share functional roles in platelet production by regulating expression of partner proteins including Gata1. We propose that this functional redundancy provides one explanation for the absence of Scl and Lyl1 mutations in inherited thrombocytopenia.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Blood Platelets/physiology , Neoplasm Proteins/physiology , T-Cell Acute Lymphocytic Leukemia Protein 1/physiology , Thrombopoiesis/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , Megakaryocytes/pathology , Megakaryocytes/physiology , Mice , Mice, Knockout , Mice, Transgenic , Neoplasm Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Thrombocytopenia/blood , Thrombocytopenia/genetics
15.
J Immunol ; 202(10): 2837-2842, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30962294

ABSTRACT

Lymphoid specification is the process by which hematopoietic stem cells (HSCs) and their progeny become restricted to differentiation through the lymphoid lineages. The basic helix-loop-helix transcription factors E2A and Lyl1 form a complex that promotes lymphoid specification. In this study, we demonstrate that Tal1, a Lyl1-related basic helix-loop-helix transcription factor that promotes T acute lymphoblastic leukemia and is required for HSC specification, erythropoiesis, and megakaryopoiesis, is a negative regulator of murine lymphoid specification. We demonstrate that Tal1 limits the expression of multiple E2A target genes in HSCs and controls the balance of myeloid versus T lymphocyte differentiation potential in lymphomyeloid-primed progenitors. Our data provide insight into the mechanisms controlling lymphocyte specification and may reveal a basis for the unique functions of Tal1 and Lyl1 in T acute lymphoblastic leukemia.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , Cell Differentiation/immunology , Lymphoid Progenitor Cells/immunology , Myeloid Progenitor Cells/immunology , Neoplasm Proteins/immunology , T-Cell Acute Lymphocytic Leukemia Protein 1/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Mice , Mice, Knockout , Neoplasm Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics
16.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34360789

ABSTRACT

The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to the CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and the promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf-/-) mouse embryos, we identified the pathways and direct target genes activated or repressed by EKLF. This genome-wide study together with the molecular/cellular analysis of the mouse erythroleukemic cells (MEL) indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another DNA-binding hematopoietic transcription factor TAL1/SCL, known to be an Eklf activator and essential for definitive erythroid differentiation. Further identification of the authentic Tal gene promoter in combination with the in vivo genomic footprinting approach and DNA reporter assay demonstrate that EKLF activates the Tal gene through binding to a specific CACCC motif located in its promoter. These data establish the existence of a previously unknow positive regulatory feedback loop between two DNA-binding hematopoietic transcription factors, which sustains mammalian erythropoiesis.


Subject(s)
Erythropoiesis , Fetus/embryology , Hematopoiesis, Extramedullary , Kruppel-Like Transcription Factors/metabolism , Liver/embryology , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Animals , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout , Response Elements , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics
17.
Int J Mol Sci ; 21(10)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443726

ABSTRACT

In the spinal cord, excitatory V2a and inhibitory V2b interneurons are produced together by the final division of common P2 progenitors. During V2a and V2b diversification, Tal1 is necessary and sufficient to promote V2b differentiation and Vsx2 suppresses the expression of motor neuron genes to consolidate V2a interneuron identity. The expression program of Tal1 is triggered by a Foxn4-driven regulatory network in the common P2 progenitors. Why the expression of Tal1 is inhibited in V2a interneurons at the onset of V2a and V2b sub-lineage diversification remains unclear. Since transcription repressor Vsx1 is expressed in the P2 progenitors and newborn V2a cells in zebrafish, we investigated the role of Vsx1 in V2a fate specification during V2a and V2b interneuron diversification in this species by loss and gain-of-function experiments. In vsx1 knockdown embryos or knockout Go chimeric embryos, tal1 was ectopically expressed in the presumptive V2a cells, while the generation of V2a interneurons was significantly suppressed. By contrast, in vsx1 overexpression embryos, normal expression of tal1 in the presumptive V2b cells was suppressed, while the generation of V2a interneuron was expanded. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly bind to tal1 promoter and repress tal1 transcription. These results indicate that Vsx1 can directly repress tal1 transcription and plays an essential role in defining V2a interneuron sub-lineage during V2a and V2b sub-lineage diversification in zebrafish.


Subject(s)
Eye Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Interneurons/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Animals , Cell Lineage , Eye Proteins/genetics , Homeodomain Proteins/genetics , Interneurons/cytology , Neurogenesis , Promoter Regions, Genetic , Protein Binding , Spinal Cord/cytology , Spinal Cord/embryology , Spinal Cord/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Zebrafish
18.
Biochem Biophys Res Commun ; 519(2): 234-239, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31493871

ABSTRACT

Chronic myeloid leukemia (CML) is associated with chromosomal translocation t(9; 22), which results in formation of the BCR-ABL oncogene. CML is treated with tyrosine kinase inhibitors (TKIs), which target BCR-ABL, to eradicate BCR-ABL + cells. However, the TKI imatinib (IM) fails to eliminate quiescent leukemia stem cells (LSCs) in CML. In this study, we demonstrate that transcription factor TAL1 is down-regulated in CML LSCs by BCR-ABL, and IM triggers TAL1 mRNA expression. In addition, loss of TAL1 abrogates IM-induced CML cell apoptosis. RNA-seq analysis suggests that TAL1 expression may affect PI3K/AKT pathway. Moreover, depletion of TAL1 inhibits the expression of PTEN, which is a negative regulator of the PI3K/AKT pathway. Our results reveal an unexpected involvement of TAL1 in CML etiology and demonstrate that TAL1 may regulate PTEN expression and lead to inhibition of the PI3K/AKT pathway in the response of CML cells to TKI. These results implicate regulation of PTEN expression as a novel mechanism for the transcriptional regulatory networks of TAL1 in CML.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Cells, Cultured , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/deficiency , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics
20.
J Cell Mol Med ; 22(3): 1464-1474, 2018 03.
Article in English | MEDLINE | ID: mdl-28994199

ABSTRACT

The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self-renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway-PD0325901 (PD)-significantly reduces the expansion of CD34+ and CD34+  CD38- cells, while there is no change in the expression of stemness-related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB-MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst-forming unit-erythroid colony (BFU-E) as well as enhancement of erythroid glycophorin-A marker. These results are in total conformity with up-regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down-regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self-renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB-haematopoietic progenitor cells.


Subject(s)
Benzamides/pharmacology , Diphenylamine/analogs & derivatives , Erythroid Cells/drug effects , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , MAP Kinase Signaling System/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Animals, Newborn , Antigens, CD/genetics , Antigens, CD/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Diphenylamine/pharmacology , Erythroid Cells/cytology , Erythroid Cells/immunology , Female , Fetal Blood/cytology , Fetal Blood/immunology , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/immunology , Gene Expression Regulation , Glycophorins/genetics , Glycophorins/immunology , Graft Survival , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Immunophenotyping , LIM Domain Proteins/genetics , LIM Domain Proteins/immunology , Mice , Pregnancy , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/immunology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL